36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: not found
          • Article: not found

          Marine DNA Viral Macro- and Microdiversity from Pole to Pole

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial life under extreme energy limitation.

            A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 10⁴- to 10⁶-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model

                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Microbiol
                Springer Science and Business Media LLC
                1740-1526
                1740-1534
                November 5 2019
                Article
                10.1038/s41579-019-0270-x
                31690825
                ff15234a-1067-4251-8728-e14de9b35888
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article