102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetics of ecological divergence during speciation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Though this process is a major generator of biodiversity, its genetic basis remains poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but that depend on the ecological context.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

          <p>The first two editions of this manual have been mainstays of molecular biology for nearly twenty years, with an unrivalled reputation for reliability, accuracy, and clarity.<br>In this new edition, authors Joseph Sambrook and David Russell have completely updated the book, revising every protocol and adding a mass of new material, to broaden its scope and maintain its unbeatable value for studies in genetics, molecular cell biology, developmental biology, microbiology, neuroscience, and immunology.<br>Handsomely redesigned and presented in new bindings of proven durability, this three–volume work is essential for everyone using today’s biomolecular techniques.<br>The opening chapters describe essential techniques, some well–established, some new, that are used every day in the best laboratories for isolating, analyzing and cloning DNA molecules, both large and small.<br>These are followed by chapters on cDNA cloning and exon trapping, amplification of DNA, generation and use of nucleic acid probes, mutagenesis, and DNA sequencing.<br>The concluding chapters deal with methods to screen expression libraries, express cloned genes in both prokaryotes and eukaryotic cells, analyze transcripts and proteins, and detect protein–protein interactions.<br>The Appendix is a compendium of reagents, vectors, media, technical suppliers, kits, electronic resources and other essential information.<br>As in earlier editions, this is the only manual that explains how to achieve success in cloning and provides a wealth of information about why techniques work, how they were first developed, and how they have evolved. </p>
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ecology of individuals: incidence and implications of individual specialization.

            Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual-level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species distributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between-individual variation can sometimes comprise the majority of the population's niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, behavioral, and ecological mechanisms that can generate intrapopulation variation. Finally, individual specialization has potentially important ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency-dependent interactions that can profoundly affect the population's stability, the amount of intraspecific competition, fitness-function shapes, and the population's capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genomic basis of adaptive evolution in threespine sticklebacks

              Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                30 July 2014
                08 June 2014
                17 July 2014
                17 January 2015
                : 511
                : 7509
                : 307-311
                Affiliations
                [1 ]Human Biology and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
                [2 ]Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
                [3 ]Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
                [4 ]Department of Aquatic Ecology, EAWAG, 79 Seestraße, Kastanienbaum, Switzerland
                [5 ]Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
                [6 ]Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
                Author notes
                Correspondence and requests for materials should be addressed to M.E.A. ( marnegar@ 123456fhcrc.org )
                Article
                NIHMS581866
                10.1038/nature13301
                4149549
                24909991
                ff31c3a2-661e-49c4-94a4-3f846ad2b913
                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article