Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Empirical Model for Mobile Learning and their Factors. Case Study: Universities Located in the Urban City of Guadalajara, México Translated title: Modelo empírico para aprendizaje móvil y sus factores. Estudio de caso: universidades en la zona metropolitana de Guadalajara, México

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Information and communication technologies (ICT) are producing new and innovative teaching-learning processes. The research question we focused on is: Which is the empirical model and the factors for mobile learning at universities located within the Metropolitan Zone of Guadalajara, in Jalisco, México? Our research is grounded on a documentary study that chose variables used by specialists in m-learning using Analytic Hierarchy Process (AHP). The factors discovered were three: Technology (TECH); Contents Teaching-Learning Management and Styles (CTLMS); and Professor and Student Role (PSR). We used 13 dimensions and 60 variables. 20 professors and 800 students in social sciences courses participated in the study; they came from 7 universities located in the Urban City of Guadalajara, during 2013-2014 school cycles (24 months). We applied questionnaires and the data were analyzed by structural equations modeling (SEM), using EQS 6.1 software. The results suggest that there are 9/60 variables that have the most influence to improve the interaction with m-Learning model within the universities.

      Translated abstract

      Las tecnologías de información están produciendo nuevas formas en el proceso de enseñanza-aprendizaje, por lo que nuestra pregunta de investigación es: ¿cuál es el modelo empírico del aprendizaje móvil y sus factores en las universidades localizadas en la zona metropolitana de Guadalajara, México? Así, esta investigación se orienta a responderla y se basa en un estudio documental para seleccionar las variables con especialistas en m-learning mediante el uso del proceso analítico jerárquico. Los factores finales fueron tres: tecnología; contenidos, administración de la enseñanza-aprendizaje y estilos; y rol estudiante-profesor con trece dimensiones y sesenta variables. El estudio fue aplicado en veinte profesores y ochocientos estudiantes de ciencias sociales, pertenecientes a siete universidades localizadas en la zona metropolitana de Guadalajara, México, durante el periodo 2013-2014 (24 meses). Los datos de los cuestionarios fueron analizados por modelización de ecuaciones estructurales, usando el software EQS 6.1. Los resultados finales señalan que son nueve de sesenta variables las que tienen mayor influencia para mejorar la interacción con el modelo m-learning en las citadas universidades.

      Related collections

      Most cited references 42

      • Record: found
      • Abstract: found
      • Article: not found

      Comparative fit indexes in structural models.

      Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evaluating the fit of a structural model. A drawback of existing indexes is that they estimate no known population parameters. A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models. Two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes. CFI avoids the underestimation of fit often noted in small samples for Bentler and Bonett's (1980) normed fit index (NFI). FI is a linear function of Bentler and Bonett's non-normed fit index (NNFI) that avoids the extreme underestimation and overestimation often found in NNFI. Asymptotically, CFI, FI, NFI, and a new index developed by Bollen are equivalent measures of comparative fit, whereas NNFI measures relative fit by comparing noncentrality per degree of freedom. All of the indexes are generalized to permit use of Wald and Lagrange multiplier statistics. An example illustrates the behavior of these indexes under conditions of correct specification and misspecification. The new fit indexes perform very well at all sample sizes.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Confirmatory fator analyses for applied Research

          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Structural Equation Modeling With EQS: Basic Concepts, Applications, and Programming

            Bookmark

            Author and article information

            Affiliations
            [1 ] Universidad de Guadalajara Mexico
            Contributors
            Role: ND
            Role: ND
            Role: ND
            Journal
            apertura
            Apertura (Guadalajara, Jal.)
            Apert. (Guadalaj., Jal.)
            Universidad de Guadalajara, Sistema de Universidad Virtual
            2007-1094
            2016
            : 7
            : 2
            : 35-48
            S1665-61802016000100035

            This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

            Product
            Product Information: SciELO Mexico
            Categories
            Education & Educational Research

            Comments

            Comment on this article