36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Puerarin attenuates glucocorticoid-induced apoptosis of hFOB1.19 cells through the JNK-and Akt-mediated mitochondrial apoptotic pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Puerarin is an active component of Pueraria lobata, which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aimed to evaluate the osteoprotective effect of puerarin on glucocorticoid (GC)-induced apoptosis of osteoblasts in vitro. The effects of puerarin on dexamethasone (DEX)-induced cell apoptosis were assessed using enzyme-linked immunosorbent assay and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and found that the viability of hFOB1.19 cells was significantly increased following exposure to between 10 −6 and 10 −10 M puerarin, with a maximal anti-apoptotic effect at a concentration of 10 −8 M. In addition, compared with the control group, puerarin upregulated the transcription and protein levels of B-cell lymphoma-2 and downregulated B-cell-associated X protein in the hFOB1.19 cells. Puerarin attenuated the DEX-induced release of cytochrome c and cleavage of caspase-3, and treatment with puerarin inhibited the c-Jun N-terminal kinase (JNK) pathway and activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in the hFOB1.19 cells. Furthermore, the Akt inhibitor, LY294002, partly eliminated the protective effect of puerarin on DEX-induced apoptosis, and puerarin combined with the JNK inhibitor, SP600125, suppressed DEX-induced apoptosis to a lesser extent than in the cells treated with SP600125 alone. These results suggested that the JNK and PI3K/Akt signaling pathways mediate the inhibitory effects of puerarin on apoptosis in the hFOB1.19 cells. In conclusion, puerarin prevented DEX-induced apoptosis of hFOB1.19 cells via inhibition of the JNK pathway and activation of the PI3K/Akt signaling pathway in the cells, dependent on the mitochondrial apoptotic pathway. These results support puerarin as a promising target in the treatment of GC-induced osteoporosis.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?

          The mitochondrial pathway of apoptosis proceeds when molecules sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane permeabilization (MOMP). This process is controlled by the BCL-2 family, which is composed of both pro- and anti-apoptotic proteins. Although there is no disagreement that BCL-2 proteins regulate apoptosis, the mechanism leading to MOMP remains controversial. Current debate focuses on what interactions within the family are crucial to initiate MOMP. Specifically, do the BH3-only proteins directly engage BAX and/or BAK activation or do these proteins solely promote apoptosis by neutralization of anti-apoptotic BCL-2 proteins? We describe these models and contend that BH3-only proteins must perform both functions to efficiently engage MOMP and apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphoinositide 3-kinase signalling pathways.

            Phosphoinositide 3-kinases (PI3Ks) phosphorylate the 3'-OH position of the inositol ring of inositol phospholipids, producing three lipid products: PtdIns(3)P, PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). These lipids bind to the pleckstrin homology (PH) domains of proteins and control the activity and subcellular localisation of a diverse array of signal transduction molecules. Three major classes of signalling molecule are regulated by binding of D-3 phosphoinositides to PH domains: guanine-nucleotide-exchange proteins for Rho family GTPases, the TEC family tyrosine kinases such as BTK and ITK in B and T lymphocytes, respectively, and the AGC superfamily of serine/threonine protein kinases. These molecules are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes, including cell cycle progression, cell growth, cell motility, cell adhesion and cell survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives.

              Glucocorticoids are widely used for their unsurpassed anti-inflammatory and immunomodulatory effects. However, the therapeutic use of glucocorticoids is almost always limited by substantial adverse outcomes such as osteoporosis, diabetes, and obesity. These unwanted outcomes are a major dilemma for clinicians because improvements in the primary disorder seem to be achievable only by accepting substantial adverse effects that are often difficult to prevent or treat. To understand the pathogenesis of glucocorticoid-induced osteoporosis, it is necessary to consider that the actions of glucocorticoids on bone and mineral metabolism are strongly dose and time dependent. At physiological concentrations, endogenous glucocorticoids are key regulators of mesenchymal cell differentiation and bone development, with additional regulatory roles in renal and intestinal calcium handling. However, at supraphysiological concentrations, glucocorticoids affect the same systems in different and often unfavourable ways. For many years, these anabolic and catabolic actions of glucocorticoids on bone were deemed paradoxical. In this Review, we highlight recent advances in our understanding of the mechanisms underlying the physiology and pathophysiology of glucocorticoid action on the skeleton and discuss present and future management strategies for glucocorticoid-induced osteoporosis.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                August 2015
                23 June 2015
                23 June 2015
                : 36
                : 2
                : 345-354
                Affiliations
                Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
                Author notes
                Correspondence to: Dr Qin Fu, Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, 36 Sanhao Street, Liaoning 110004, P.R. China, E-mail: qinfucmu@ 123456163.com
                Article
                ijmm-36-02-0345
                10.3892/ijmm.2015.2258
                4501663
                26101183
                ff5fe950-affe-4b00-91ba-43f65c3ed1d2
                Copyright © 2015, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 11 November 2014
                : 21 May 2015
                Categories
                Articles

                puerarin,apoptosis,osteoporosis,akt,c-jun n-terminal kinase
                puerarin, apoptosis, osteoporosis, akt, c-jun n-terminal kinase

                Comments

                Comment on this article