53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF Sequence-binding Elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by heregulin or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and heregulin-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented heregulin-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential that HSF-1 plays in Akt-induced Slug upregulation. Together, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            • Record: found
            • Abstract: found
            • Article: not found

            ErbB receptors and signaling pathways in cancer.

            The ErbB receptor tyrosine kinases play important roles in normal physiology and in cancer. Epidermal growth factor receptor (EGFR) and ErbB2 in particular are mutated in many epithelial tumors, and clinical studies suggest that they play roles in cancer development and progression. These receptors have been intensely studied, not only to understand the mechanisms underlying their oncogenic potential, but also to exploit them as therapeutic targets. ErbB receptors activate a multiplicity of intracellular pathways via their ability to interact with numerous signal transducers. Furthermore, there are now many ErbB-targeted inhibitors used in the clinic. In this review we will concentrate on breast tumors with ERBB2 gene amplification/receptor overexpression and non-small cell lung cancer (NSCLC) with activating EGFR mutations. We will discuss data showing the important role that the PI3K/Akt pathway plays, not only in cancer development, but also in response to targeted therapies. Finally, mechanisms contributing to resistance to ErbB-targeted therapeutics will also be discussed.
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of HSF1 function in the heat stress response: implications in aging and disease.

              To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.

                Author and article information

                Journal
                8711562
                6325
                Oncogene
                Oncogene
                Oncogene
                0950-9232
                1476-5594
                29 January 2014
                27 January 2014
                29 January 2015
                29 July 2015
                : 34
                : 5
                : 546-557
                Affiliations
                [1 ]Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA
                [2 ]Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina 27710, USA
                [3 ]Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
                Author notes
                Correspondence: Hui-Wen Lo, Ph.D., Division of Surgical Sciences, Department of Surgery (Box 3156), Duke Cancer Institute, Duke University School of Medicine, 423 MSRB I, 103 Research Drive, Durham, NC 27710, USA. huiwen.lo@ 123456duke.edu
                Article
                NIHMS550289
                10.1038/onc.2013.582
                4112182
                24469056
                ff678625-7c0e-4d6c-b177-f69eb79cb43d

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Oncology & Radiotherapy
                slug,emt,akt,hsf-1,her2,gene regulation,phosphorylation,cancer
                Oncology & Radiotherapy
                slug, emt, akt, hsf-1, her2, gene regulation, phosphorylation, cancer

                Comments

                Comment on this article

                Related Documents Log