Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Realization of Quantum Spin Hall State in Monolayer 1T'-WTe2

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling. By investigating electronic structure of epitaxially grown monolayer 1T'-WTe2 using angle-resolved photoemission (ARPES) and first principle calculations, we observe clear signatures of the topological band inversion and the band gap opening, which are the hallmarks of a QSH state. Scanning tunneling microscopy measurements further confirm the correct crystal structure and the existence of a bulk band gap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T'-WTe2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).

          Related collections

          Most cited references 2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

          We show that the Quantum Spin Hall Effect, a state of matter with topological properties distinct from conventional insulators, can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the electronic state changes from a normal to an "inverted" type at a critical thickness \(d_c\). We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss the methods for experimental detection of the QSH effect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Spin Hall Insulator State in HgTe Quantum Wells

            Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.
              Bookmark

              Author and article information

              Journal
              2017-03-09
              Article
              1703.03151

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              Custom metadata
              19 pages, 4 figures; includes Supplemental Material (11 pages, 7 figures)
              cond-mat.mtrl-sci cond-mat.mes-hall

              Condensed matter, Nanophysics

              Comments

              Comment on this article