28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Post-transplant diabetes mellitus in patients with solid organ transplants

      ,
      Nature Reviews Endocrinology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.

          Glucose metabolism is normally regulated by a feedback loop including islet β cells and insulin-sensitive tissues, in which tissue sensitivity to insulin affects magnitude of β-cell response. If insulin resistance is present, β cells maintain normal glucose tolerance by increasing insulin output. Only when β cells cannot release sufficient insulin in the presence of insulin resistance do glucose concentrations rise. Although β-cell dysfunction has a clear genetic component, environmental changes play an essential part. Modern research approaches have helped to establish the important role that hexoses, aminoacids, and fatty acids have in insulin resistance and β-cell dysfunction, and the potential role of changes in the microbiome. Several new approaches for treatment have been developed, but more effective therapies to slow progressive loss of β-cell function are needed. Recent findings from clinical trials provide important information about methods to prevent and treat type 2 diabetes and some of the adverse effects of these interventions. However, additional long-term studies of drugs and bariatric surgery are needed to identify new ways to prevent and treat type 2 diabetes and thereby reduce the harmful effects of this disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin-sensitive obesity.

            The association between obesity and impaired insulin sensitivity has long been recognized, although a subgroup of obese individuals seems to be protected from insulin resistance. In this study, we systematically studied differences in adipose tissue biology between insulin-sensitive (IS) and insulin-resistant (IR) individuals with morbid obesity. On the basis of glucose infusion rate during euglycemic hyperinsulinemic clamps, 60 individuals with a BMI of 45 +/- 1.3 kg/m(2) were divided into an IS and IR group matched for age, sex, and body fat prior to elective surgery. We measured fat distribution, circulating adipokines, and parameters of inflammation, glucose, and lipid metabolism and characterized adipose tissue morphology, function, and mRNA expression in abdominal subcutaneous (sc) and omental fat. IS compared with IR obese individuals have significantly lower visceral fat area (138 +/- 27 vs. 316 +/- 91 cm(2)), number of macrophages in omental adipose tissue (4.9 +/- 0.8 vs. 13.2 +/- 1.4%), mean omental adipocyte size (528 +/- 76 vs. 715 +/- 81 pl), circulating C-reactive protein, progranulin, chemerin, and retinol-binding protein-4 (all P values <0.05), and higher serum adiponectin (6.9 +/- 3.4 vs. 3.4 +/- 1.7 ng/ml) and omental adipocyte insulin sensitivity (all P values <0.01). The strongest predictors of insulin sensitivity by far were macrophage infiltration together with circulating adiponectin (r(2) = 0.98, P < 0.0001). In conclusion, independently of total body fat mass, increased visceral fat accumulation and adipose tissue dysfunction are associated with IR obesity. This suggests that mechanisms beyond a positive caloric balance such as inflammation and adipokine release determine the pathological metabolic consequences in patients with obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

              Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Endocrinology
                Nat Rev Endocrinol
                Springer Nature
                1759-5029
                1759-5037
                January 8 2019
                Article
                10.1038/s41574-018-0137-7
                30622369
                ff7327cc-3914-40cb-ba44-4a0d88de4ff7
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article