26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ZnO Treatment on Mechanical Behavior of Polyethylene/Yellow Birch Fiber Composites When Exposed to Fungal Wood Rot

      , , ,
      Polymers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wood plastic composite (WPC) usage and demand have increased because of its interesting chemical and mechanical properties compared to other plastic materials. However, there is a possibility of structural and mechanical changes to the material when exposed to the external environment; most research on wood plastic is performed on the material with elevated fiber content (40–70%). Therefore, more research needs to be performed regarding these issues, especially when the fiber content of the WPC is low. In this study, composite materials composed of high-density polyethylene (HDPE) reinforced with yellow birch fibers (20 and 30%) were made by injection molding. The fibers were treated with dissolved zinc oxide (ZnO) powder in sodium oxide (NaOH) solution, and the fabricated material was exposed to fungal rot. ZnO treatment in this case is different from most studies because ZnO nanoparticles are usually employed. The main reason was to obtain better fixation of ZnO on the fibers. The mechanical properties of the composites were assessed by the tensile and Izod impact tests. The impact energies of the samples fabricated with ZnO-treated fibers and exposed to Gloephyllum trabeum and Trametes versicolor decreased, when compared to samples fabricated with ZnO-nontreated fibers. The mechanical properties of the samples composed of ZnO-treated fibers and exposed to rot decreased, which were reported by a decreased Young’s modulus and impact energies. The usage of ZnO treatment prevented mycelium proliferation, which was nonexistent on the samples. It has been noted that the decrease in mechanical properties of the treated samples was because of the action of NaOH used to dissolve the ZnO powder.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Characterization and properties of natural fiber polymer composites: A comprehensive review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Zinc Oxide—From Synthesis to Application: A Review

            Zinc oxide can be called a multifunctional material thanks to its unique physical and chemical properties. The first part of this paper presents the most important methods of preparation of ZnO divided into metallurgical and chemical methods. The mechanochemical process, controlled precipitation, sol-gel method, solvothermal and hydrothermal method, method using emulsion and microemulsion enviroment and other methods of obtaining zinc oxide were classified as chemical methods. In the next part of this review, the modification methods of ZnO were characterized. The modification with organic (carboxylic acid, silanes) and inroganic (metal oxides) compounds, and polymer matrices were mainly described. Finally, we present possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced. This review provides useful information for specialist dealings with zinc oxide.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review of the recent developments in biocomposites based on natural fibres and their application perspectives

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                POLYCK
                Polymers
                Polymers
                MDPI AG
                2073-4360
                September 2023
                September 06 2023
                : 15
                : 18
                : 3664
                Article
                10.3390/polym15183664
                ff7607d7-5514-4c73-83f8-f4046c8fa9bb
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article