48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Application of Medical Artificial Intelligence Technology in Rural Areas of Developing Countries

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Artificial intelligence (AI) is a rapidly developing computer technology that has begun to be widely used in the medical field to improve the professional level and efficiency of clinical work, in addition to avoiding medical errors. In developing countries, the inequality between urban and rural health services is a serious problem, of which the shortage of qualified healthcare providers is the major cause of the unavailability and low quality of healthcare in rural areas. Some studies have shown that the application of computer-assisted or AI medical techniques could improve healthcare outcomes in rural areas of developing countries. Therefore, the development of suitable medical AI technology for rural areas is worth discussing and probing.

          Methods: This article reviews and discusses the literature concerning the prospects of medical AI technology, the inequity of healthcare, and the application of computer-assisted or AI medical techniques in rural areas of developing countries.

          Results: Medical AI technology not only could improve physicians' efficiency and quality of medical services, but other health workers could also be trained to use this technique to compensate for the lack of physicians, thereby improving the availability of healthcare access and medical service quality. This article proposes a multilevel medical AI service network, including a frontline medical AI system (basic level), regional medical AI support centers (middle levels), and a national medical AI development center (top level).

          Conclusion: The promotion of medical AI technology in rural areas of developing countries might be one means of alleviating the inequality between urban and rural health services. The establishment of a multilevel medical AI service network system may be a solution.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Dermatologist-level classification of skin cancer with deep neural networks

          Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Artificial intelligence in healthcare: past, present and future

            Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in medicine.

              Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.
                Bookmark

                Author and article information

                Journal
                Health Equity
                Health Equity
                heq
                Health Equity
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2473-1242
                01 August 2018
                2018
                01 August 2018
                : 2
                : 1
                : 174-181
                Affiliations
                [ 1 ]Department of Social Medicine, Washington Institute for Health Sciences , Arlington, Virginia.
                [ 2 ]Department of Neurosciences, Georgetown University Medical Center , Washington, District of Columbia.
                Author notes
                [*] [ * ]Address correspondence to: Bin Li, MD, Department of Neurosciences, Georgetown University Medical Center, 3800 Reservoir Road NW, Washington, DC 20007, bl444@ 123456georgetown.edu
                Article
                10.1089/heq.2018.0037
                10.1089/heq.2018.0037
                6110188
                30283865
                ff7a6dcc-9216-47a5-a7a9-5f50d6f095de
                © Jonathan Guo and Bin Li 2018; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                References: 54, Pages: 8
                Categories
                Narrative Review

                artificial intelligence,developing countries,healthcare,rural areas,service network

                Comments

                Comment on this article