16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multiple synchronization attractors of serially connected spin-torque nanooscillators

      , , , ,
      Physical Review B
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Single spin detection by magnetic resonance force microscopy.

          Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 micro m remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 10(12) nuclear spins for MRI-based microscopy, or 10(7) electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current

            We describe direct electrical measurements of microwave-frequency dynamics in individual nanomagnets that are driven by spin transfer from a DC spin-polarized current. We map out the dynamical stability diagram as a function of current and magnetic field, and we show that spin transfer can produce several different types of magnetic excitations, including small-angle precession, a more complicated large-angle motion, and a high-current state that generates little microwave signal. The large-angle mode can produce a significant emission of microwave energy, as large as 40 times the Johnson-noise background.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Current-driven Magnetization Reversal and Spin Wave Excitations in Co/Cu/Co Pillars

              Using thin film pillars ~100 nm in diameter, containing two ferromagnetic Co layers of different thicknesses separated by a paramagnetic Cu spacer, we examine effects of torques due to spin-polarized currents flowing perpendicular to the layers. In accordance with spin-transfer theory, spin-polarized electrons flowing from the thin to the thick Co layer can switch the magnetic moments of the layers antiparallel, while a reversed electron flow causes switching to a parallel state. When large magnetic fields are applied, the current no longer fully reverses the magnetic moment, but instead stimulates spin-wave excitations.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                1098-0121
                1550-235X
                July 2012
                July 18 2012
                : 86
                : 1
                Article
                10.1103/PhysRevB.86.014418
                ff7bfaa5-c84e-4daa-9abe-6ea381901de4
                © 2012

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article