30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generalized trajectory surface-hopping method for internal conversion and intersystem crossing.

      1 , 1
      The Journal of chemical physics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trajectory-based fewest-switches surface-hopping (FSSH) dynamics simulations have become a popular and reliable theoretical tool to simulate nonadiabatic photophysical and photochemical processes. Most available FSSH methods model internal conversion. We present a generalized trajectory surface-hopping (GTSH) method for simulating both internal conversion and intersystem crossing processes on an equal footing. We consider hops between adiabatic eigenstates of the non-relativistic electronic Hamiltonian (pure spin states), which is appropriate for sufficiently small spin-orbit coupling. This choice allows us to make maximum use of existing electronic structure programs and to minimize the changes to available implementations of the traditional FSSH method. The GTSH method is formulated within the quantum mechanics (QM)/molecular mechanics framework, but can of course also be applied at the pure QM level. The algorithm implemented in the GTSH code is specified step by step. As an initial GTSH application, we report simulations of the nonadiabatic processes in the lowest four electronic states (S0, S1, T1, and T2) of acrolein both in vacuo and in acetonitrile solution, in which the acrolein molecule is treated at the ab initio complete-active-space self-consistent-field level. These dynamics simulations provide detailed mechanistic insight by identifying and characterizing two nonadiabatic routes to the lowest triplet state, namely, direct S1 → T1 hopping as major pathway and sequential S1 → T2 → T1 hopping as minor pathway, with the T2 state acting as a relay state. They illustrate the potential of the GTSH approach to explore photoinduced processes in complex systems, in which intersystem crossing plays an important role.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: not found
          • Article: not found

          Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            QM/MM methods for biomolecular systems.

            Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Proton transfer in solution: Molecular dynamics with quantum transitions

                Bookmark

                Author and article information

                Journal
                J Chem Phys
                The Journal of chemical physics
                1089-7690
                0021-9606
                Sep 28 2014
                : 141
                : 12
                Affiliations
                [1 ] Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
                Article
                10.1063/1.4894849
                25273406
                ff881397-ceb7-43e0-a207-1a866fdc829b
                History

                Comments

                Comment on this article