40
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Applications of modern ferroelectrics.

          J. Scott (2007)
          Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-powered nanowire devices.

            The harvesting of mechanical energy from ambient sources could power electrical devices without the need for batteries. However, although the efficiency and durability of harvesting materials such as piezoelectric nanowires have steadily improved, the voltage and power produced by a single nanowire are insufficient for real devices. The integration of large numbers of nanowire energy harvesters into a single power source is therefore necessary, requiring alignment of the nanowires as well as synchronization of their charging and discharging processes. Here, we demonstrate the vertical and lateral integration of ZnO nanowires into arrays that are capable of producing sufficient power to operate real devices. A lateral integration of 700 rows of ZnO nanowires produces a peak voltage of 1.26 V at a low strain of 0.19%, which is potentially sufficient to recharge an AA battery. In a separate device, a vertical integration of three layers of ZnO nanowire arrays produces a peak power density of 2.7 mW cm(-3). We use the vertically integrated nanogenerator to power a nanowire pH sensor and a nanowire UV sensor, thus demonstrating a self-powered system composed entirely of nanowires.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency.

              Nanogenerators capable of converting energy from mechanical sources to electricity with high effective efficiency using low-cost, nonsemiconducting, organic nanomaterials are attractive for many applications, including energy harvesters. In this work, near-field electrospinning is used to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties. Under mechanical stretching, nanogenerators have shown repeatable and consistent electrical outputs with energy conversion efficiency an order of magnitude higher than those made of PVDF thin films. The early onset of the nonlinear domain wall motions behavior has been identified as one mechanism responsible for the apparent high piezoelectricity in nanofibers, rendering them potentially advantageous for sensing and actuation applications.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                26 January 2017
                February 2017
                : 7
                : 2
                : 27
                Affiliations
                [1 ]Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
                [2 ]Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074, China
                [3 ]Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; lyjiang@ 123456eng.uwo.ca
                Author notes
                [* ]Correspondence: zyan@ 123456hust.edu.cn ; Tel.: +86-185-7175-8470
                Article
                nanomaterials-07-00027
                10.3390/nano7020027
                5333012
                ff95c6de-26b5-477b-ac0e-9670d737e825
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 December 2016
                : 18 January 2017
                Categories
                Review

                piezoelectric nanomaterials,continuum mechanics modeling,size-dependent properties,surface effects,flexoelectricity,non-local theory

                Comments

                Comment on this article