33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      P2X7 Interactions and Signaling – Making Head or Tail of It

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular adenine nucleotides play important roles in cell–cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.

          Related collections

          Most cited references256

          • Record: found
          • Abstract: found
          • Article: not found

          The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

          Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The HSP90 chaperone machinery

            The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis. Recent progress has shed light on the interactions of HSP90 with its clients and co-chaperones, and on their functional implications. This opens up new avenues for the development of drugs that target HSP90, which could be valuable for the treatment of cancers and protein-misfolding diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages

              The interleukin-1 (IL-1) family cytokines are cytosolic proteins that exhibit inflammatory activity upon release into the extracellular space. These factors are released following various cell death processes, with pyroptosis being a common mechanism. Recently, it was recognized that phagocytes can achieve a state of hyperactivation, which is defined by their ability to secrete IL-1 while retaining viability, yet it is unclear how IL-1 can be secreted from living cells. Herein, we report that the pyroptosis regulator gasdermin D (GSDMD) was necessary for IL-1β secretion from living macrophages that have been exposed to inflammasome activators, such as bacteria and their products or host-derived oxidized lipids. Cell- and liposome-based assays demonstrated that GSDMD pores were required for IL-1β transport across an intact lipid bilayer. These findings identify a non-pyroptotic function for GSDMD, and raise the possibility that GSDMD pores represent conduits for the secretion of cytosolic cytokines under conditions of cell hyperactivation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                07 August 2019
                2019
                : 12
                : 183
                Affiliations
                Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine , LMU Munich, Munich, Germany
                Author notes

                Edited by: Eric Boué-Grabot, Université de Bordeaux, France

                Reviewed by: Hana Zemkova, Institute of Physiology (ASCR), Czechia; Toshi Kawate, Cornell University, United States

                These authors have contributed equally to this work

                Article
                10.3389/fnmol.2019.00183
                6693442
                31440138
                ff9b321f-e205-40ad-b013-e2f37b8e2529
                Copyright © 2019 Kopp, Krautloher, Ramírez-Fernández and Nicke.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 May 2019
                : 11 July 2019
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 315, Pages: 25, Words: 0
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Funded by: Horizon 2020 10.13039/501100007601
                Categories
                Neuroscience
                Review

                Neurosciences
                c-terminus,protein-protein interaction (ppi),signaling/signaling pathways,p2x7 (purino) receptor,network

                Comments

                Comment on this article