48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Jellyfish Modulate Bacterial Dynamic and Community Structure

      research-article
      , , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter.

          We used a method that combines microautoradiography with hybridization of fluorescent rRNA-targeted oligonucleotide probes to whole cells (MICRO-FISH) to test the hypothesis that the relative contributions of various phylogenetic groups to the utilization of dissolved organic matter (DOM) depend solely on their relative abundance in the bacterial community. We found that utilization of even simple low-molecular-weight DOM components by bacteria differed across the major phylogenetic groups and often did not correlate with the relative abundance of these bacterial groups in estuarine and coastal environments. The Cytophaga-Flavobacter cluster was overrepresented in the portion of the assemblage consuming chitin, N-acetylglucosamine, and protein but was generally underrepresented in the assemblage consuming amino acids. The amino acid-consuming assemblage was usually dominated by the alpha subclass of the class Proteobacteria, although the representation of alpha-proteobacteria in the protein-consuming assemblages was about that expected from their relative abundance in the entire bacterial community. In our experiments, no phylogenetic group dominated the consumption of all DOM, suggesting that the participation of a diverse assemblage of bacteria is essential for the complete degradation of complex DOM in the oceans. These results also suggest that the role of aerobic heterotrophic bacteria in carbon cycling would be more accurately described by using three groups instead of the single bacterial compartment currently used in biogeochemical models.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ecology of Cytophaga-Flavobacteria in aquatic environments.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole genome analysis of the marine Bacteroidetes'Gramella forsetii' reveals adaptations to degradation of polymeric organic matter.

              Members of the Bacteroidetes, formerly known as the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum, are among the major taxa of marine heterotrophic bacterioplankton frequently found on macroscopic organic matter particles (marine snow). In addition, they have been shown to also represent a significant part of free-living microbial assemblages in nutrient-rich microenvironments. Their abundance and distribution pattern in combination with enzymatic activity studies has led to the notion that organisms of this group are specialists for degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool, implying a major role of Bacteroidetes in the marine carbon cycle. Despite their ecological importance, comprehensive molecular data on organisms of this group have been scarce so far. Here we report on the first whole genome analysis of a marine Bacteroidetes representative, 'Gramella forsetii' KT0803. Functional analysis of the predicted proteome disclosed several traits which in joint consideration suggest a clear adaptation of this marine Bacteroidetes representative to the degradation of high molecular weight organic matter, such as a substantial suite of genes encoding hydrolytic enzymes, a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                20 June 2012
                : 7
                : 6
                : e39274
                Affiliations
                [1]National Institute of Biology, Marine Biology Station, Piran, Slovenia
                University of Delaware, United States of America
                Author notes

                Conceived and designed the experiments: AM VT. Performed the experiments: TT VT. Analyzed the data: TT TK VT. Contributed reagents/materials/analysis tools: TT TK VT. Wrote the paper: TT TK AM VT.

                Article
                PONE-D-12-08340
                10.1371/journal.pone.0039274
                3379990
                22745726
                ff9d34d0-b5e3-41ff-80ab-cdeb0f99b3d0
                Tinta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 March 2012
                : 22 May 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Marine Environments
                Ecological Metrics
                Biomass (Ecology)
                Coastal Ecology
                Community Ecology
                Marine Ecology
                Marine Biology
                Coastal Ecology
                Marine Ecology
                Marine Monitoring
                Microbiology
                Microbial Ecology
                Population Biology
                Population Dynamics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article