24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lonicerae Japonicae Flos (LJF) is an important traditional Chinese medicine for the treatment of various ailments and plays a vital role in improving global human health. However, as unable to escape from adversity, the quality of sessile organisms is dramatically affected by salt stress. To systematically explore the quality formation of LJF in morphology, physiology, and bioactive constituents' response to multiple levels of salt stress, UFLC-QTRAP-MS/MS and multivariate statistical analysis were performed. Lonicera japonica Thunb. was planted in pots and placed in the field, then harvested after 35 days under salt stress. Indexes of growth, photosynthetic pigments, osmolytes, lipid peroxidation, and antioxidant enzymes were identified to evaluate the salt tolerance in LJF under different salt stresses (0, 100, 200, and 300 mM NaCl). Then, the total accumulation and dynamic variation of 47 bioactive constituents were quantitated. Finally, Partial least squares discrimination analysis and gray relational analysis were performed to systematically cluster, distinguish, and evaluate the samples, respectively. The results showed that 100 mM NaCl induced growth, photosynthetic, antioxidant activities, osmolytes, lipid peroxidation, and multiple bioactive constituents in LJF, which possessed the best quality. Additionally, a positive correlation was found between the accumulation of phenolic acids with antioxidant enzyme activity under salt stress, further confirming that phenolic acids could reduce oxidative damage. This study provides insight into the quality formation and valuable information to improve the LJF medicinal value under salt stress.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of salinity tolerance.

          The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Determinations of total carotenoids and chlorophyllsaandbof leaf extracts in different solvents

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidating the molecular mechanisms mediating plant salt-stress responses.

              Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
                Bookmark

                Author and article information

                Contributors
                liuxunh1959@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                16 February 2021
                16 February 2021
                2021
                : 11
                : 3939
                Affiliations
                [1 ]GRID grid.410745.3, ISNI 0000 0004 1765 1045, College of Pharmacy, , Nanjing University of Chinese Medicine, ; Nanjing, 210023 China
                [2 ]Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023 China
                [3 ]National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023 China
                Article
                83566
                10.1038/s41598-021-83566-6
                7887249
                33414495
                ffa06d4c-a64d-4820-a950-d14da6834330
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 June 2020
                : 4 February 2021
                Funding
                Funded by: Priority Academic Program Development of Jiangsu Higher Education Institutions of China
                Award ID: ysxk-2014
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                plant stress responses,biochemistry,plant sciences
                Uncategorized
                plant stress responses, biochemistry, plant sciences

                Comments

                Comment on this article