51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: not found
          • Article: not found

          Fate of Pesticides in the Environment and its Bioremediation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring of bioremediation by soil biological activities.

            An evaluation of soil biological activities as a monitoring instrument for the decontamination process of a mineral-oil-contaminated soil was made using measurements of microbial counts, soil respiration, soil biomass and several enzyme activities. The correlations between these parameters and with the levels of hydrocarbon residues were investigated; the effects of different N- and P-sources on hydrocarbon decontamination and soil biological activities were determined. Inorganic nutrients stimulated hydrocarbon biodegradation but not all biological activities to a significant extent. Biodegradation could be monitored well by soil biological parameters: the residual hydrocarbon content correlated positively with soil respiration, biomass-C (substrate-induced respiration), and with activities of soil dehydrogenase, urease and catalase. Soil lipase activity and the number of hydrocarbon utilizers correlated negatively (P < 0.0001) with the remaining hydrocarbon content.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increase of laccase activity during interspecific interactions of white-rot fungi.

              White-rot fungi are of interest due to their ability to degrade lignin. Lignin-degrading enzymes such as laccase can also degrade xenobiotic compounds. The effects of interspecific interactions between white-rot fungi and other microorganisms on laccase activity was studied in laboratory cultures. Laccase activity in cultures of Trametes versicolor and Pleurotus ostreatus increased significantly after the introduction of soil fungi, bacteria and yeasts or after contact with nonsterile soil. Addition of Trichoderma harzianum to cultures of T. versicolor increased laccase activity more than 40 fold, whereas addition of other soil fungi or bacteria resulted in 2-25 fold increases and the addition of soil or soil extracts led to 10-15 fold increases. No laccase induction was detected after addition of heat or filter-sterilized microbial cultures, soil or soil extract. Increased decolorization of the synthetic dye Remazol Brilliant Blue R occurred in mixed cultures. When T. versicolor was cocultured with other soil microorganisms, the number of colony forming units of the other soil microbes decreased. This effect could not be shown to be caused by laccase. In 16 of 24 species of white-rot fungi tested, laccase increased following the addition of T. harzianum. The increase was only absent in species with no or low laccase production. Co-inoculation of P. ostreatus and T. versicolor resulted in an increase of laccase in the mixed culture.
                Bookmark

                Author and article information

                Journal
                Mycobiology
                Mycobiology
                MB
                Mycobiology
                The Korean Society of Mycology
                1229-8093
                2092-9323
                December 2010
                31 December 2010
                : 38
                : 4
                : 238-248
                Affiliations
                Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, UK.
                Author notes
                Corresponding author ( n.magan@ 123456cranfield.ac.uk )
                Article
                10.4489/MYCO.2010.38.4.238
                3741516
                23956663
                ffb2e38a-8959-401f-a41d-e9ba3a6795ad
                © The Korean Society of Mycology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 October 2010
                : 24 November 2010
                Categories
                Minireview

                Plant science & Botany
                environmental factors,extracellular enzymes,fungi,inoculants,soil,xenobiotic mixture

                Comments

                Comment on this article