19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Cell Membrane, metabolism, Culture Media, Female, Glycoside Hydrolases, In Vitro Techniques, Lymphocytes, physiology, Lymphokines, Lysophosphatidylcholines, pharmacology, Macrophage Activation, Mice, Mice, Inbred BALB C, Protein Precursors, Vitamin D-Binding Protein

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A brief (30 min) treatment of mouse peritoneal cells (mixture of nonadherent lymphocytes and adherent macrophages) with 1-20 micrograms of lysophosphatidylcholine (lyso-PC) per ml in serum-supplemented RPMI medium 1640, followed by a 3-hr cultivation of the adherent cells alone, results in a greatly enhanced Fc receptor-mediated phagocytic activity of macrophages. This rapid process of macrophage activation was found to require a serum factor, the vitamin D3 binding protein (the human protein is known as group-specific component; Gc). Efficient activation of macrophages was achieved by using medium containing purified human Gc protein. Analysis of intercellular signal transmission among nonadherent (B and T) cells revealed that lyso-PC-treated B cells modify Gc protein to yield a proactivating factor, which can be converted by T cells to the macrophage-activating factor. This rapid generation process of the macrophage-activating factor was also demonstrated by stepwise incubation of Gc protein with lyso-PC-treated B-cell ghosts and untreated T-cell ghosts, suggesting that Gc protein is modified by preexisting membranous enzymes to yield the macrophage-activating factor. Incubation of Gc protein with a mixture of beta-galactosidase and sialidase efficiently generated the macrophage-activating factor. Stepwise incubation of Gc protein with B- or T-cell ghosts and sialidase or beta-galactosidase revealed that Gc protein is modified by beta-galactosidase of B cells and sialidase of T cells to yield the macrophage-activating factor. Administration to mice of a minute amount (4-10 pg per mouse) of in vitro, enzymatically generated macrophage-activating factor resulted in a greatly enhanced (3- to 7-fold) ingestion activity of macrophages.

          Related collections

          Author and article information

          Comments

          Comment on this article