30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson’s Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The identification of biomarkers for early diagnosis of Parkinson’s disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to “Alzheimer’s disease”, “PD”, “Huntington’s disease”, “prion diseases”, as well as for “oxidative phosphorylation”, “thermogenesis”, “metabolic pathways”, “ Staphylococcus aureus infection”, gap junction, “platelet activation”, “apelin signalling”, “retrograde endocannabinoid signalling”, “systemic lupus erythematosus”, and “non-alcoholic fatty liver disease”. Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3.

          MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47.

            We established microRNA profiles from active and inactive multiple sclerosis lesions. Using laser capture microdissection from multiple sclerosis lesions to pool single cells and in vitro cultures, we assigned differentially expressed microRNA to specific cell types. Astrocytes contained all 10 microRNA that were most strongly upregulated in active multiple sclerosis lesions, including microRNA-155, which is known to modulate immune responses in different ways but so far had not been assigned to central nervous system resident cells. MicroRNA-155 was expressed in human astrocytes in situ, and further induced with cytokines in human astrocytes in vitro. This was confirmed with astrocyte cultures from microRNA-155-|-lacZ mice. We matched microRNA upregulated in phagocytically active multiple sclerosis lesions with downregulated protein coding transcripts. This converged on CD47, which functions as a 'don't eat me' signal inhibiting macrophage activity. Three microRNA upregulated in active multiple sclerosis lesions (microRNA-34a, microRNA-155 and microRNA-326) targeted the 3'-untranslated region of CD47 in reporter assays, with microRNA-155 even at two distinct sites. Our findings suggest that microRNA dysregulated in multiple sclerosis lesions reduce CD47 in brain resident cells, releasing macrophages from inhibitory control, thereby promoting phagocytosis of myelin. This mechanism may have broad implications for microRNA-regulated macrophage activation in inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Profiles of Extracellular miRNA in Cerebrospinal Fluid and Serum from Patients with Alzheimer's and Parkinson's Diseases Correlate with Disease Status and Features of Pathology

              The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue- such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                15 April 2020
                April 2020
                : 21
                : 8
                : 2743
                Affiliations
                [1 ]Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; marco.sancandi.16@ 123456ucl.ac.uk (M.S.); a.mercer@ 123456ucl.ac.uk (A.M.)
                [2 ]Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK; P.onganer@ 123456westminster.ac.uk
                [3 ]Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK; igor.kraev@ 123456open.ac.uk
                [4 ]Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
                Author notes
                [* ]Correspondence: S.lange@ 123456westminster.ac.uk ; Tel.: +44-(0)207-911-5000 (ext. 64832)
                Author information
                https://orcid.org/0000-0003-3190-8831
                https://orcid.org/0000-0002-5086-2560
                https://orcid.org/0000-0002-7193-3102
                Article
                ijms-21-02743
                10.3390/ijms21082743
                7215947
                32326590
                ffbb46e7-abb9-4abc-b9fe-006d4218c9ac
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 March 2020
                : 13 April 2020
                Categories
                Article

                Molecular biology
                peptidylarginine deiminases (pads),protein deimination,extracellular vesicles (evs),pre-motor parkinson’s disease,microrna (mir21, mir155, mir210)

                Comments

                Comment on this article