58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vascular development and hemodynamic force in the mouse yolk sac

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular remodeling of the mouse embryonic yolk sac is a highly dynamic process dependent on multiple genetic signaling pathways as well as biomechanical factors regulating proliferation, differentiation, migration, cell-cell, and cell-matrix interactions. During this early developmental window, the initial primitive vascular network of the yolk sac undergoes a dynamic remodeling process concurrent with the onset of blood flow, in which endothelial cells establish a branched, hierarchical structure of large vessels and smaller capillary beds. In this review, we will describe the molecular and biomechanical regulators which guide vascular remodeling in the mouse embryonic yolk sac, as well as live imaging methods for characterizing endothelial cell and hemodynamic function in cultured embryos.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.

          Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial growth factor is a secreted angiogenic mitogen.

            Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4.

              The vertebrate circulatory system is composed of arteries and veins. The functional and pathological differences between these vessels have been assumed to reflect physiological differences such as oxygenation and blood pressure. Here we show that ephrin-B2, an Eph family transmembrane ligand, marks arterial but not venous endothelial cells from the onset of angiogenesis. Conversely, Eph-B4, a receptor for ephrin-B2, marks veins but not arteries. ephrin-B2 knockout mice display defects in angiogenesis by both arteries and veins in the capillary networks of the head and yolk sac as well as in myocardial trabeculation. These results provide evidence that differences between arteries and veins are in part genetically determined and suggest that reciprocal signaling between these two types of vessels is crucial for morphogenesis of the capillary beds.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                20 August 2014
                2014
                : 5
                : 308
                Affiliations
                Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
                Author notes

                Edited by: Kersti K. Linask, University of South Florida Morsani College of Medicine, USA

                Reviewed by: Christopher John Drake, Medical University of South Carolina, USA; Ganesh Acharya, UiT-The Arctic University of Norway, Norway; Caitlin A. Czajka, Medical University of South Carolina, USA

                *Correspondence: Irina V. Larina, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, BCM 335, Houston, TX 77030, USA e-mail: larina@ 123456bcm.edu

                This article was submitted to Biophysics, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00308
                4138559
                25191274
                ffc04b72-6355-4c67-824e-05586991a309
                Copyright © 2014 Garcia and Larina.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 June 2014
                : 29 July 2014
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 94, Pages: 10, Words: 8654
                Categories
                Physics
                Review Article

                Anatomy & Physiology
                yolk sac,live imaging,vascular remodeling,mouse development,hemodynamics
                Anatomy & Physiology
                yolk sac, live imaging, vascular remodeling, mouse development, hemodynamics

                Comments

                Comment on this article