77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bayesian Inference of Infectious Disease Transmission from Whole-Genome Sequence Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomics is increasingly being used to investigate disease outbreaks, but an important question remains unanswered—how well do genomic data capture known transmission events, particularly for pathogens with long carriage periods or large within-host population sizes? Here we present a novel Bayesian approach to reconstruct densely sampled outbreaks from genomic data while considering within-host diversity. We infer a time-labeled phylogeny using Bayesian evolutionary analysis by sampling trees (BEAST), and then infer a transmission network via a Monte Carlo Markov chain. We find that under a realistic model of within-host evolution, reconstructions of simulated outbreaks contain substantial uncertainty even when genomic data reflect a high substitution rate. Reconstruction of a real-world tuberculosis outbreak displayed similar uncertainty, although the correct source case and several clusters of epidemiologically linked cases were identified. We conclude that genomics cannot wholly replace traditional epidemiology but that Bayesian reconstructions derived from sequence data may form a useful starting point for a genomic epidemiology investigation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

          Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming clinical microbiology with bacterial genome sequencing.

            Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DensiTree: making sense of sets of phylogenetic trees.

              Bayesian analysis through programs like BEAST (Drummond and Rumbaut, 2007) and MrBayes (Huelsenbeck et al., 2001) provides a powerful method for reconstruction of evolutionary relationships. One of the benefits of Bayesian methods is that well-founded estimates of uncertainty in models can be made available. So, for example, not only the mean time of a most recent common ancestor (tMRCA) is estimated, but also the spread. This distribution over model space is represented by a set of trees, which can be rather large and difficult to interpret. DensiTree is a tool that helps navigating these sets of trees. The main idea behind DensiTree is to draw all trees in the set transparently. As a result, areas where a lot of the trees agree in topology and branch lengths show up as highly colored areas, while areas with little agreement show up as webs. This makes it possible to quickly get an impression of properties of the tree set such as well-supported clades, distribution of tMRCA and areas of topological uncertainty. Thus, DensiTree provides a quick method for qualitative analysis of tree sets. DensiTree is freely available from http://compevol.auckland.ac.nz/software/DensiTree/. The program is licensed under GPL and source code is available. remco@cs.auckland.ac.nz
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                molbiolevol
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                July 2014
                08 April 2014
                08 April 2014
                : 31
                : 7
                : 1869-1879
                Affiliations
                1Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
                2Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
                3School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
                4Department of Mathematics, Imperial College London, United Kingdom
                Author notes
                *Corresponding author: E-mail: xavier.didelot@ 123456gmail.com .

                Associate editor: Eduardo Rocha

                Article
                msu121
                10.1093/molbev/msu121
                4069612
                24714079
                ffeae861-8464-4ad3-aa39-9331c8f5113c
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 11
                Categories
                Methods

                Molecular biology
                Molecular biology

                Comments

                Comment on this article