+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice.

      Immunology and Cell Biology

      Animals, Antigen Presentation, immunology, Arginase, metabolism, Cell Differentiation, Interleukin-10, Macrophages, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Mice, SCID, Mice, Transgenic, Phagocytosis, Signal Transduction, T-Lymphocyte Subsets, T-Lymphocytes, Regulatory, Transforming Growth Factor beta

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          CD4(+)CD25(+) regulatory T cells (Treg cells) are important in maintenance of peripheral tolerance. The direct effect of CD4(+)CD25(+) Treg cells on macrophages was studied using a mouse model in which syngeneic CD4(+)CD25(+) Treg cells were adoptively transferred into the peritoneal cavity of SCID mice. Peritoneal macrophages in mice transferred with CD4(+)CD25(+) Treg cells expressed significantly higher levels of CD23, CD47 and CD206 and less CD80 and major histocompatibility complex class II molecules as compared with those mice that received either CD4(+)CD25(-) T cells or no cells. Macrophages of mice injected with CD4(+)CD25(+) Treg cells displayed a remarkably enhanced phagocytosis of chicken red blood cells, and arginase activity together with an increased interleukin-10 (IL-10) production, whereas they showed a decreased antigen-presenting ability and nitric oxide production. Furthermore, CD4(+)CD25(+) Treg cells and CD4(+)CD25(-) T cells showed strong antagonistic effects on macrophage polarizations in vivo. Blocking arginase, IL-10 and/or transforming growth factor-β (TGF-β) partially but significantly reversed the effects of CD4(+)CD25(+) Treg cells to induce M2 macrophages in vivo suggesting that CD4(+)CD25(+) Treg cells have the ability to induce M2 macrophages at least in part through arginase, IL-10 and TGF-β pathways. Thus, we have provided the in vivo evidence to support the unknown pathways for CD4(+)CD25(+) Treg cells to regulate innate immunity by promoting the differentiation of M2 macrophages as well as by inhibiting M1 macrophage induction by CD4(+)CD25(-) T cells in mice. CD4(+)CD25(+) Treg cells efficiently induced M2 macrophage differentiation in mice, offering the in vivo evidence to support the role of CD4(+)CD25(+) Treg cells in regulating innate immunity.

          Related collections

          Author and article information



          Comment on this article