24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Amygdala–prefrontal cortex connectivity increased during face discrimination but not time perception

      1 , 2 , 3 , 1 , 2 , 3
      European Journal of Neuroscience
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Amygdala-frontal connectivity during emotion regulation.

          Successful control of affect partly depends on the capacity to modulate negative emotional responses through the use of cognitive strategies (i.e., reappraisal). Recent studies suggest the involvement of frontal cortical regions in the modulation of amygdala reactivity and the mediation of effective emotion regulation. However, within-subject inter-regional connectivity between amygdala and prefrontal cortex in the context of affect regulation is unknown. Here, using psychophysiological interaction analyses of functional magnetic resonance imaging data, we show that activity in specific areas of the frontal cortex (dorsolateral, dorsal medial, anterior cingulate, orbital) covaries with amygdala activity and that this functional connectivity is dependent on the reappraisal task. Moreover, strength of amygdala coupling with orbitofrontal cortex and dorsal medial prefrontal cortex predicts the extent of attenuation of negative affect following reappraisal. These findings highlight the importance of functional connectivity within limbic-frontal circuitry during emotion regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging.

            Brain imaging studies in humans have shown that face processing in several areas is modulated by the affective significance of faces, particularly with fearful expressions, but also with other social signals such gaze direction. Here we review haemodynamic and electrical neuroimaging results indicating that activity in the face-selective fusiform cortex may be enhanced by emotional (fearful) expressions, without explicit voluntary control, and presumably through direct feedback connections from the amygdala. fMRI studies show that these increased responses in fusiform cortex to fearful faces are abolished by amygdala damage in the ipsilateral hemisphere, despite preserved effects of voluntary attention on fusiform; whereas emotional increases can still arise despite deficits in attention or awareness following parietal damage, and appear relatively unaffected by pharmacological increases in cholinergic stimulation. Fear-related modulations of face processing driven by amygdala signals may implicate not only fusiform cortex, but also earlier visual areas in occipital cortex (e.g., V1) and other distant regions involved in social, cognitive, or somatic responses (e.g., superior temporal sulcus, cingulate, or parietal areas). In the temporal domain, evoked-potentials show a widespread time-course of emotional face perception, with some increases in the amplitude of responses recorded over both occipital and frontal regions for fearful relative to neutral faces (as well as in the amygdala and orbitofrontal cortex, when using intracranial recordings), but with different latencies post-stimulus onset. Early emotional responses may arise around 120ms, prior to a full visual categorization stage indexed by the face-selective N170 component, possibly reflecting rapid emotion processing based on crude visual cues in faces. Other electrical components arise at later latencies and involve more sustained activities, probably generated in associative or supramodal brain areas, and resulting in part from the modulatory signals received from amygdala. Altogether, these fMRI and ERP results demonstrate that emotion face perception is a complex process that cannot be related to a single neural event taking place in a single brain regions, but rather implicates an interactive network with distributed activity in time and space. Moreover, although traditional models in cognitive neuropsychology have often considered that facial expression and facial identity are processed along two separate pathways, evidence from fMRI and ERPs suggests instead that emotional processing can strongly affect brain systems responsible for face recognition and memory. The functional implications of these interactions remain to be fully explored, but might play an important role in the normal development of face processing skills and in some neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroanatomical and neurochemical substrates of timing.

              We all have a sense of time. Yet, there are no sensory receptors specifically dedicated for perceiving time. It is an almost uniquely intangible sensation: we cannot see time in the way that we see color, shape, or even location. So how is time represented in the brain? We explore the neural substrates of metrical representations of time such as duration estimation (explicit timing) or temporal expectation (implicit timing). Basal ganglia (BG), supplementary motor area, cerebellum, and prefrontal cortex have all been linked to the explicit estimation of duration. However, each region may have a functionally discrete role and will be differentially implicated depending upon task context. Among these, the dorsal striatum of the BG and, more specifically, its ascending nigrostriatal dopaminergic pathway seems to be the most crucial of these regions, as shown by converging functional neuroimaging, neuropsychological, and psychopharmacological investigations in humans, as well as lesion and pharmacological studies in animals. Moreover, neuronal firing rates in both striatal and interconnected frontal areas vary as a function of duration, suggesting a neurophysiological mechanism for the representation of time in the brain, with the excitatory-inhibitory balance of interactions among distinct subtypes of striatal neuron serving to fine-tune temporal accuracy and precision.
                Bookmark

                Author and article information

                Journal
                European Journal of Neuroscience
                Eur J Neurosci
                Wiley
                0953-816X
                1460-9568
                September 12 2019
                December 2019
                September 05 2019
                December 2019
                : 50
                : 11
                : 3873-3888
                Affiliations
                [1 ]Brain Research Centre Ankara University Ankara Turkey
                [2 ]Department of Interdisciplinary Neuroscience Health Science Institute Ankara University Ankara Turkey
                [3 ]Department of Physiology School of Medicine Ankara University Ankara Turkey
                Article
                10.1111/ejn.14537
                31376287
                fffed6c2-778d-4744-89e8-4a4cf9852d8a
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article