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The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major
mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing,
microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen,
and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various
human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous
system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion,
vasodilation, andmodulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory
neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved
in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful
clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The
first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high
and moderate emesis.

1. Tachykinins and Their Receptors

The tachykinins are one of the largest conserved families
of peptides involved in neurotransmission and inflamma-
tory processes. The idea that tachykinins act exclusively as
neuropeptides is currently being challenged. Substance P
(SP), a small undecapeptide present in both mammalian and
nonmammalian species, was the first member of the family to
be discovered (as early as 1931, by von Euler andGaddum). SP
is associated with multiple processes: hematopoiesis, wound
healing, microvasculature permeability, neurogenic inflam-
mation, leukocyte trafficking, cell survival, and metastatic
dissemination [1–5]. The three classical members of the
mammalian tachykinin family are SP and neurokinin A
(NKA), both encoded by the TAC1 gene, and neurokinin
B (NKB), encoded by the TAC3 gene. A third mam-
malian tachykinin gene (TAC4) codes for hemokinins and
endokinins [1, 6, 7].The TAC1 gene (according to the Human

Genome Organization (HUGO) Gene Nomenclature Com-
mittee (http://www.genenames.org/) also encodes other ta-
chykinins, including NKA, neuropeptide K (NPK). and neu-
ropeptide 𝛾 (NP𝛾). On the other hand, the TAC3 gene only
codes for NKB (previously known as PPT-B gene). In 2000,
Zhang et al. identified a third gene called TAC4 (previously
named preprotachykinin-C (PPT-C)) and demonstrated its
association with the hematopoietic system and the matura-
tion of B lymphocytes [7]. This gene encodes hemokinin 1
(HK-1) and its shorter derivative hemokinin (4–11) and four
other peptides called endokinins (EKS), EKA, EKB, EKC, and
EKD [6].

Tachykinin receptors have been divided into three dif-
ferent types according to their affinity ligands (high or
low): TACR1 (NK-1 receptor), TACR2 (NK-2 receptor), and
TACR3 (NK-3 receptor) (Table 1), which have preferential
(but not exclusive) affinities for SP, NKA, and NKB respec-
tively [8–10]. The order of potency of these receptors per
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Table 1: Genes of human tachykinin receptors.

Receptor Gen Access number Chromosomal
location

NK-1 TACR1 NM 001058 2p13.1-p12
NK-2 TACR2 NM 001057 10q11-q21
NK-3 TACR3 NM 001059 4q25

tachykinin is shown as follows [10, 11]. Order of affinity of
tachykinin receptor by its agonists is

(a) Receptor NK-1: SP>NKA>NKB;

(b) Receptor NK-2: NKA>NKB>SP;

(c) Receptor NK-3: NKB>NKA>SP.

NP𝛾 and NPK preferentially bind to the NK-2 receptor.
The affinities of NKA and NKB for the NK-1 receptor are,
respectively, 100 and 500 times lower than that of SP [12]. It
has also been reported that SP interacts with fibronectin (FN)
and hematopoietic growth factor inducible neurokinin-1 type
(HGFIN) [13, 14]. The homology between the NK1 receptor
and HGFIN has recently been described. This finding may
be relevant because both the NK-1 receptor and HGFIN have
been linked to tumorigenesis, including breast cancer (BC)
[14]. However, whereas the NK-1 receptor has been described
as a tumor promoter, HGFIN may act as a suppressor [14].

The three tachykinin receptors belong to family 1
(rhodopsin-like) G protein-coupled receptors (GPCRs) and
are encoded by five exons [9, 15]. These are seven-
transmembrane-helix receptors which share the same struc-
tural unit: three extracellular (EL1, EL2, and EL3) and three
intracellular loops (C1, C2, and C3) with the possibility
of a fourth loop, due to the palmitoylation of cysteine
(Cys), flanked by seven intermembrane domains (TM 1-VII),
and an amino-terminal extracellular and carboxy-terminal
cytoplasmic domain [9] (Figure 1).

The carboxy-terminal conserved domain of tachykinins
(Phe-X-Gly-Leu-Met-NH2) interacts with tachykinin recep-
tors, while the amino-terminal sequence is responsible for
the specificity of the receptor [16]. All tachykinins are
amidated at the C-terminal and deamidation suppresses
their activity [8]. The second and third loops are involved
in the binding of agonists or antagonists, while the third
cytoplasmic loop is responsible for binding to protein G.The
C-terminus contains serine/threonine residues which, once
phosphorylated, cause desensitization of the receptor when it
is repeatedly activated by the agonist.The 5 region of the gene
has several putative regulatory DNA elements such as the
cAMP responsive element, AP-1, AP-2, AP4, NF-QB, OCT-2,
and a domain Sp-1 [16]. Specifically, the NK-1 receptor has
407 amino acids and a relative molecular mass of 46 kDa
[17]. NK-2 and NK-3 consist of 398 and 465 amino acids,
respectively, NK-3 being the longest of the three receptors.
Themost important splicing identified loses the last 96 amino
acids at the C-terminus and thus has 311 amino acids [18–
20] (Figure 1). This shorter or truncated isoform (NK1-Tr) is
generated when the intron located between exons 4 and 5

is not removed and the premature stop codon is identified
before starting exon 5.

Lai et al. [21] observed that SP specifically increased
intracellular calcium in embryonic kidney cells (HEK293)
stably transfected with the long isoform, while there was
no effect in those transfected with the truncated isoform.
Likewise, cells expressing the long isoform activated NF-
B and IL-8, while those expressing the truncated one had
a lower mRNA expression of IL-8 and were unable to
activate NF-QB. The activation of protein kinase Erk was
also altered in the same cells: whereas phosphorylation
of this protein through the long isoform was fast (1 to
2 minutes) and sustained, cells transfected with truncated
isoform were not able to phosphorylate Erk protein within
20min after exposure to SP [21]. In addition, other studies
have demonstrated that SP had a lower relative affinity for
the truncated receptor form (up to 10 times less than the
full isoform) [18]. Moreover, the loss of certain C-terminal
serine and threonine residues is important for G protein-
coupled receptor kinase (GRK) interaction and 𝛽-arrestin
recruitment for subsequent receptor internalization [22–24].

Therefore, the truncated form should be capable of
prolonging the responses after ligand binding because its
desensitization and internalization are affected. Besides the
differences between the two isoforms, another important
phenomenon involved in the receptor signaling should be
mentioned. Tansky, Leeman, and Pothoulakis showed that
the amino terminal end had two glycosylated Asn (N-) sites
and described how these glycosylations can influence the
functional level of the receptors [25].

They observed that nonglycosylated receptors showed
half the affinity for SP shown by glycosylated receptors, and
in fact the nonglycosylated NK-1 receptor was internalized
faster than the glycosylated form.This also suggested the pos-
sibility that glycosylation may be a feature in the stabilization
of the receptor in the plasma membrane. Several bands of
different molecular weights have been identified, probably
due to this phenomenon. For example, in lymphocytes,
certain forms of glycosylated receptor (58 kDa) have been
described [26], while others with bands of 38 and 33 kDa
appear in IM-9 lymphoblasts (26). Furthermore, isoforms
with bands of 75, 58, 46, and 34 kDa have been identified
in several studies of tumor pancreatic carcinoma cell lines
[27, 28].

In the past two decades, other isoforms have been
identified besides the conventional ones, with different SP
affinities. For example, in rat salivary glands another appar-
ently truncated isoform has also been detected in the C-
terminal end, with 8 kDa less than the long isoform [29]. Li et
al. also demonstrated that the short isoform seems to have an
SP affinity similar to that of the complete isoform. It has been
suggested that this isoform comes from posttranslational
modifications [30]. In addition, other studies have shown
that some receptor isoforms present different affinities from
the “classic” forms. This has led to a division of the NK-
1 receptor into three different classes: (1) the “classic” NK-
1 receptor (which shows greater binding affinity for the SP
ligand), (2) the “sensitive to septide” NK-1 receptor (showing
a very similar affinity for binding to SP and other tachykinins
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Figure 1: Schematicmodel of the NK-1 receptor. (a) Complete isoform or long isoform-full length (NK1-FL) with 407 amino acids. It contains
an extracellular N-terminus, seven transmembrane domains, three extracellular loops (E1, E2, and E3) and three intracellular loops (C1, C2,
and C3), a possible C4 because of a Cys palmitoylation residue and an intracellular C-terminus. Asn14 and Asn18 are given as putative
glycosylation sites. (b) Depiction of the truncated isoform with 311 amino acids, showing that this isoform has lost a part of the C-terminal
end, and also the intracellular Ser/Thr residues responsible for internalization. Modified from [149].
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as NKA, NPK, NP𝛾, NKB, and even other synthetic peptides
such as septide fragment 6–11 SP, which gives the receptor its
name) [10, 31], and (3) the “newNK-1 sensitive” receptor [32].
This subtype has a higher affinity for longer tachykinins and
does not bind to septide or SP (6–11). However, more studies
are needed to identify the real differences in the signaling
pathways of each NK-1R isoform and the preferred sites of
expression of the different isoforms or glycosylated forms.

1.1. Signaling Pathways Modulated by Tachykinins and Their
NK-1R. The physiological processes mediated by SP or other
tachykinins occur via the NK-1 receptor, which belongs to
the large family of G-protein-coupled receptors (GPCRs).
Via second messengers, G proteins activate transduction
pathways within the cell. Which pathways are activated by
G proteins depends on the nature of the proteins belonging
to this large family: for example, the activation of NF-𝜅B
mediated by SP, interleukins, or growth factors (IL-1, IL-6, IL-
8, TNF-𝛼, and IFNy) and the activation of MAPKs pathway
or PI3K/Akt among others [33–35].

1.1.1. GPCR-Mediated Signal Transduction: Classification and
Function of G Proteins. GPCRs mediate their signaling
through heterotrimeric G proteins transmitting signals from
a variety of surface cell receptors to enzymes and ion chan-
nels. This complex is composed by three distinct subunits:
the G𝛼 subunit that binds to GDP/GTP and the G𝛽 and G𝛾
subunits that form the G𝛽𝛾 complex (which present strong
bindings between them) [36, 37]. After binding SP to the
specific NK-1 receptor, a change occurs in the G𝛼 subunit,
allowing it to exchange GTP for GDP and permitting the
dissociation of the G𝛽𝛾 dimer. These subunits (G𝛼 and G𝛽𝛾)
begin their own signaling cascade separately and positively
or negatively regulate the activity of enzyme effectors and ion
channels that are cell type- or GPCR-specific [38, 39].

The GTP hydrolysis returns the G𝛼 subunit to its inactive
state, allowing again the trimeric formation with the G𝛽𝛾
subunit [40]. G𝛽𝛾 in contrast to the G𝛽𝛾 subunit, the broad
range of the 𝛼 subunit is limited because all 𝛼 subunits, except
G
𝛼t, have a palmitic acid posttranslational modification in

the amino-terminal portion, which keeps them adhered to
the plasma membrane [41]. The 𝛼 subunit itself has intrinsic
GTPase capacity and may modulate its own inactivation. In
any case, this GTP hydrolysis is relatively low compared with
other accessory proteins called cytoplasmic regulators of G
protein signaling (RGS) [42] (Figure 2).

(i) Gq/11: the receptor interaction by the agonists regu-
lates the activation of Gq/11 protein and the subse-
quent activation of phospholipase C𝛽 (PLC𝛽), which
degrades the phosphatidylinositol 4, 5-bisphosphate
(PIP2) to produce two compounds: diacylglycerol
(DAG) and inositol 1,4,5-triphosphate (IP3), respon-
sible for increasing intracellular calcium [43–47].

(ii) Gs: this subunit is responsible for the activation of
the second messenger adenylate cyclase (AC), which
catalyzes the conversion of cytoplasmic ATP into
cyclic adenosine monophosphate (cAMP) when the

Gs-related pathway is activated (by contrast, AC inhi-
bition is conducted by the Pertussis toxin-sensitive
Gi-protein (PTX) in rat submandibular cells) [48].
Other studies have reported that the Gs subunit is
the substrate of cholera toxin (CTX), produced by
Vibrio cholerae, which catalyzes its ADP ribosylation
and inhibits its intrinsic GTPase activity [42]. It has
been widely reported that increased cAMP levels lead
to activation of protein kinase A (PKA). Activation
of PKA, then, phosphorylates the transcription factor
CREB (cAMP-responsive element-binding protein
CRE). CREB binds to the cAMP response element
(CRE) of a target gene and negatively affects the
activation of NF-QB [49]. However, despite the Gs
action, the power to generate cAMP accumulation by
NK-1R agonists is lower than the ability to induce IP

3

and intracellular calcium of Gq/11 [50].
(iii) Gi: the role of this class member is to mediate

the inhibition of different types of AC. Functional
studies have been conducted with PTX, produced by
Bordetella pertussis. Unlike CTX, PTX decouples the
G protein from its receptor and remains inactive and
bound to GDP [51].

(iv) G
12/13

: this subunit is expressed ubiquitously inmam-
mals and is composed by two proteins, G

𝛼12
and

G
𝛼13

which are also toxin resistant [42]. Meshki et
al. reported that the G

12/13
subunit could regulate

changes in cytoskeletal rearrangement when the cell
was preparing to migrate. These changes depend on
the activation of Rho/Rock which directly modulates
themyosin regulatory light chain. Phosphorylation of
this protein is associated with the formation of small
spherical outgrowths arising from the membrane
known as bubbles or blebs, in a process known as
blebbing. This process is not always associated with
apoptosis but may be associated with the cytoplasmic
disorganization at the time of cell migration and
Meshki et al.’s study showed how the NK-1 receptor
had the ability to interact with the G

12/13
protein

throughout this process [52].
(v) Go: this subunit is one of the most abundant G

proteins in neuronal and neuroendocrine tissues [53].
Nishimura et al. provided the first evidence ofNK-1R’s
potential to activate Go in Sf9 cells [54]. This subunit
signals downstream of frizzled (Fz) GPCRs. Go is
crucial for the activation of Wnt-𝛽-catenin signaling
pathways [42]. While Go is abundant in nervous
tissues, its deficiency causes lesions that appear to be
mediated mainly by this subunit [42, 55].

The G𝛽𝛾 subunit has been less studied than G𝛼. The 𝛽𝛾
complex can be formed by five different 𝛽 subunits and 12
𝛾 subunits [42]. At first, it was thought that its role was
merely passive but later it was found that it may play a role
in the activation of effectors such as PLC𝛽, adenylyl cyclases,
PI3K, K+ ion channels, and Src. All these associations
between trimeric G proteins and second messengers lead
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Figure 2: Heterotrimeric G protein activation by GTP and consequent separation of subunits. Heterotrimeric G proteins have been grouped
into four distinct families based on the G

𝛼
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associatedwithG
𝛼s andG𝛼q subunits and aremainly howNK-1 receptor signals [48, 50, 59].The different signaling pathways activated by each

subunit will be explained below. This figure was made using Servier Medical Art collection (http://creativecommons.org/licenses/by/3.0).

to a cascade of intracellular events that cause a particular
response, depending on cell type.

GPCRs constitute a large family of cell surface receptors
which regulate many cellular functions, including cell prolif-
eration, survival and motility, the sense of smell, emesis, and
depression. They have recently emerged as key receptors in
tumor growth, angiogenesis, and metastasis.

Specifically, interactions involving theGq/11 protein occur
in several systems and endocrine secretion, vasodilatation,
neuromodulation, and activation of monocytes as well as
in cell proliferation [56–60]. Therefore, experimental evi-
dence from several recent studies supports the view that
alterations in the endocrine system regulated by NK-1R
and SP contribute to the development of pathologies such
as depression, neural degeneration, alcohol addiction, pain,
migraine, inflammatory bowel disease, pruritus, viral infec-
tion, bacterial infection, cancer, and emesis [27, 35, 61–65].

1.1.2. Signaling Pathways of NK-1R and SP. TheNK-1 receptor
signals through different pathways depending on the nature
of the G proteins. For example, in glioblastoma cell lines
and in many other tumor types, the SP binding causes
the accumulation of DAG, which in turn activates PKC.
This protein phosphorylates other proteins such as c-Raf-
1 and MEK, which phosphorylate tyrosine protein kinase
Erk1/Erk2 (also known as p-42/44) of theMAPKprotein fam-
ily [27, 65–69]. The mechanism by which PKC activates ERK
is not entirely understood. Discordant results are found in the
literature, in which different molecules have been implicated
in MAPK activation via GPCRs. These disparities may be
explained by differences in the cell culture methods used or
the nature of the samples analyzed [70–76]. Subsequently,
transcription factors such as c-fos or c-myc are activated

and induce DNA synthesis and cell proliferation (Figure 3).
Another protein kinase activated by NK-1 receptor is PKC𝛿.
Earlier studies by Della Rocca et al. [77] found that PLC
activation dependent on bothGq/11 (𝛼1B adrenergic receptor)
and G𝛽𝛾 subunits (Gi dissociated from 𝛼2A adrenergic
receptor protein) increased cytoplasmic IP3 levels, resulting
in an increase in cytoplasmic Ca2+. High concentrations
of intracellular calcium, probably through calmodulin, lead
to kinase activation, called proline-rich tyrosine kinase 2
(Pyk2, English protein tyrosine kinase 2) associated with
focal adhesion kinase (FAK). In turn, this Pyk2 activity
(now known as PTK2B) regulates kinase protein Src. Src-
dependent tyrosine phosphorylation of adaptor proteins such
as Shc recruits Grb2-SOS complex to the plasma membrane
and initiates the phosphorylation cascade leading the Erk1/2
activation that triggers cell proliferation pathways [77].

According to some studies, MAPK activation depends
not only on G proteins and their canonical or classical
pathway signaling, but also on the scaffold for the assembly
of multiprotein complexes for NK-1R internalization or other
GPCRs. In some models such as G𝛼q-coupled proteinase-
activated receptor 2 (PAR2), the interaction of this receptor
with 𝛽-arrestin internalization proteins causes a retention of
Raf-1 and phosphorylated Erk1/2 proteins in the cytoplasm
and these proteins cannot be transferred to the nucleus [78].

However, others such as the 𝛽2-adrenergic receptor (𝛽2-
AR) are internalized through the complex formed by 𝛽-
arrestin, Src, and Erk [79]. In this case,𝛽2-AR receptor activa-
tion causes Erk1/2 phosphorylation and induces a different set
of cellular responses to those produced by PAR2, since Erk1/2
is not retained in the cytoplasm. These differences may be
due to the different scaffolding protein complexes responsible
for the distinct subcellular localization of activated kinases
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in the second messenger IP3 and DAG, stimulating calcium mobilization and PKC activation, respectively [151]. Via nonreceptor protein
kinases such as Src or Pyk2, PKC may activate the MAPK pathway but may also activate the Raf protein directly [77]. Another parallel
mechanism that regulates MAPK may be developed during NK-1R internalization and its protein recruitment by 𝛽-arrestins [22, 78].
Although the mechanism is unknown, the Erk1/2 protein is also involved in NF-QB activation [84]. This G𝛼q subunit also mediates IL-6
production by activation of p38 MAPK [152]. (4) The G𝛼12/13 subunit is responsible for the activation of Rho/Rock which directly regulates
the phosphorylation of the myosin light chain (MLC) [52]. Phosphorylation of this protein is associated with cytoskeletal reorganization and
cell migration. The 𝛽𝛾 dimer activates proteins such as Src, PI3K, and PLC [85]. This figure was made using Servier Medical Art collection
(http://creativecommons.org/licenses/by/3.0).

for internalization, because they may be responsible for
governing the mitogenic potential of each particular signal.

The requirement for 𝛽-arrestin-dependent endocytosis
differs between receptor types. This variation also appears
to be cell type-independent, as the two receptors (NK-1R
and PAR2) expressed in the same cell line (KNRK) induce

the formation of different protein scaffold complexes [22].
Therefore, better studies are needed to identify the GPCR C-
terminal end responsible for the internalization process, since
this cytoplasmic tail is the key for binding proteins. Feng et al.
[23] observed that stimulation of the NK-1 receptor (overex-
pressed in KNRK cells or naturally expressed in endothelial
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cells) by SP, activated Erk1/2 via a 𝛽-arrestin-dependent
mechanism. SP induced the formation of a multiprotein
complex near the plasma membrane containing 𝛽-arrestins,
Src, and Erk1/2. Once activated, Erk1/2 translocates into the
nucleus to induce proliferation and antiapoptotic effects [22].

NK-IR internalization and recycling seems to modulate
cellular responses to SP binding, and although SP is degraded,
the receptor recovery towards the plasmamembrane does not
seem to be dependent on new protein synthesis [80].

In addition to its mitogenic activity, SP is also capable of
stimulating cytokine release from normal cells and immune
cells from the tumor microenvironment in order to promote
tumor progression.Moreover, theNF-QB-mediatedGprotein
is involved in several cell types. It has been shown that
tachykinins activate NF-QB and stimulate the production of
proinflammatory cytokines in several cell types: colon epithe-
lial cells [34], macrophages [81], mast cells [82], T cells [83],
and astrocytoma cells [84] and in a lung adenocarcinoma
epithelial cell (A549) [56]. However, not all the mechanisms
by which this activation occurs are totally known. NF-QB
activation by SP is calcium-dependent in astrocytoma cells,
but not in colon epithelial cells [34, 81].

Another downstream effector of the various signaling
pathways activated by NK-1R is the serine/threonine protein
kinase Akt, also known as kinase B (PKB) protein. Phospho-
inositol 3-kinase or PI3K is responsible for activating Akt.
PI3K can be activated by receptor tyrosine kinases (RTKs)
or by integrins transactivation or GPCRs [85]. It is unclear
how G proteins activate PI3K, but it is known that PIP2
is converted to PIP3 (capable of activating Akt) by PI3K,
whereas PTEN opposes this reaction by dephosphorylating
PIP3.The role ofG𝛽𝛾 subunit in PI3K activation has also been
reported, because it is known that there is a direct activation
of kinase by the𝛽𝛾 dimer [85] (Figure 3). GonzálezMoles and
colleagues [86] reported that stimulation of the bradykinin
receptor (a receptor of the same family as NK-1) by G𝛼q and
𝛽
1
𝛾
2
subunits increasedAkt phosphorylation due to PI3K and

this was responsible for NF-QB activation inHeLa transfected
cells. These results suggested that if bradykinin receptor
phosphorylation leads to IKK2 activation, then activation of
G𝛼q, 𝛽1𝛾2, PI3K and Akt is required (Figure 3). However,
these authors reported that inhibition of PI3K and Akt only
partially inhibited the activation of downstream proteins,
so their study does not exclude other parallel signaling
pathways such as those mentioned above, including the
MAPK pathway.

Finally, other intracellular signaling mechanisms by
whichNK-1R is responsible for SP-induced cell shape changes
have also been described. These changes depend on the
activation of Rho/Rock which directly modulates the myosin
regulatory light chain. Meshki and collaborators reported
that NK1R has the ability to interact with proteins from the
G
12/13

family [52].
Therefore, all these studies have identified key molecules

involved in NK-1R signaling, in various cell types, such as
p42/44 protein (MAPK), p38 MAPK, NFQB, PI3K, Akt, Src,
EGFR, Rho/Rock, 𝛽-arrestin, and Pyk2 depicted in Figure 3.

2. Distribution of Tachykinin Receptors in
the Body

As previously mentioned, tachykinins and their receptors
are widely expressed in various human systems such as the
nervous [19, 87–89], cardiovascular [90–93], genitourinary
[94], immune systems, gastrointestinal tract [28, 95–102] and
in some tissues such as salivary gland [103], skin, and muscle
(Figure 4). Tachykinin receptors are not evenly distributed.
The NK-1 and NK-3 receptors are found in the nervous
system and in peripheral tissues, whereas the NK-2 receptor
is found only in the peripheral tissues (kidney [104], lung,
placenta [105] and skeletal muscle) [57, 106, 107]. Specifically,
like its higher affinity ligand SP, the NK-1 receptor is involved
in cellular responses such as pain transmission, endocrine
and paracrine secretion, vasodilation and modulation of cell
proliferation. It also acts as a neuromodulator contributing
to brain homeostasis but also the sensory neuronal transmis-
sion associated with depression, stress, anxiety and emesis.
Additionally, the NK-1 receptor is responsible for modulating
the immune system’s inflammatory response. Expression
of the NK-1 receptor has been identified in lymphocytes,
monocytes, macrophages, NK cells and microglia. NK-1R
is also expressed in bone marrow cells (cells of lymphoid
and myeloid lineage) and is considered an hematopoietic
regulator [58, 108–112]. Both in normal tissue and during
hematopoiesis, NK-1R mediates stimulation effects and NK-
2 exerts suppressor functions (when NK-1R is expressed in
normal cells, there is a down-regulation of NK-2R) [113, 114].

3. NK-1R as a Therapeutic Target

SP, through the NK-1 receptor signal, has been implicated
in the regulation of many physiological and pathophysio-
logical functions such as neuronal survival, regulation of
cell movement, pain, inflammation, salivation, depression,
stress responses, emotions, reward, neurogenesis, vigilance,
cancer progression, and emesis [63, 115–123]. Moreover, the
tachykinergic system can regulate motility in several cells
[52], stimulates platelet aggregation [124], and is present
in many human body fluids such as breast milk, blood,
saliva, and cerebrospinal fluid [122]. The ubiquity of the
SP/NK-1 receptor system in many biological functions and
its upregulation under pathological conditions makes this
system an important target for several diseases (depres-
sion, neural degeneration, alcohol addiction, pain, migraine,
inflammatory bowel disease, pruritus, viral infection, bacte-
rial infection, cancer, and emesis [27, 35, 61–65]). Among all
these conditions, the NK-1R antagonist has only been subject
to clinical development in the treatment of chemotherapy-
induced nausea and vomiting (CINV) and in depression.
These clinical trials led to the registration of aprepitant by
the regulatory agencies EMA and FDA as the first NK-1
receptor antagonist to treat chemotherapy-induced nausea
and vomiting.

3.1. Emesis. NK-1R and SP are present in brain regions
involved in the vomiting reflex (the nucleus tractus solitarius
and area postrema) [125]. Aprepitant (MK-869, brand name
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Figure 4: NK-1 receptor distributed in the human body. NK-1R distribution across human tissues.This figure wasmade using ServierMedical
Art collection (http://creativecommons.org/licenses/by/3.0).

EMEND) is the first the neurokinin-1 receptor antagonist to
be commercialized. When added to a standard regimen of
a 5-HT3 receptor antagonist and dexamethasone in cancer
patients receiving highly emetogenic chemotherapy, aprepi-
tant improves the complete response (CR) rate in acute
CINV. It also improves the CR in delayed CINV when
used in combination with dexamethasone compared with
dexamethasone alone [126]. The use of aprepitant in patients
receiving moderately emetogenic chemotherapy was recently
approved after phase III clinical trials had demonstrated its
efficacy [127]. Aprepitant is a substrate, a moderate inhibitor,
and an inducer of cytochrome P450 (CYP3A4) and CYP2C9.
Drug interactions should be monitored when aprepitant is
given together with agents affected by CYP3A4 and CYP2C9
isoenzymes.

Aprepitant is the only antagonist with high affinity for
the NK-1 receptor approved to date by the US Food and
Drug Administration (FDA). It was approved in 2003 for
oral administration. In 2008, its prodrug, fosaprepitant, was
approved for intravenous use.

These two drugs are the only available agents in this
class for preventing chemotherapy-induced and postoper-
ative nausea and vomiting. However, other agents such as
netupitant and rolapitant are currently undergoing phase III
clinical trials and are expected to be commercialized in the
near future [128]. More information on NK-1R as a target for
CINV will appear in the following pages of this issue.

3.2. Depression. The NK-1R antagonist was tested as a novel
antidepressant mechanism in an exploratory phase II clinical
trial also using aprepitant [121].

In situations of stress and anxiety, neuropeptides such as
SP are released at a rate proportional to the intensity and
frequency of stimulation [129]. In fact some studies show
that the SP/NK-1R interaction plays an important role in
the regulation of emotional behavior [129]. There is evidence
that psychosocial help reduces depression, anxiety, and pain
and may prolong survival in some cancer patients. Indeed,
various forms of stress have been associated with mammary
tumorigenesis [130, 131]. Specifically, the NK-1 receptor and
SP are involved in emotional responses to stress, suggesting
that an alteration in the tachykinergic system may be the key
to triggering pathogenesis such as depression (SP expression
has been shown to increase during depression [121] whereas
the genetic deletion of its receptor induces an anxiolytic and
antidepressant effect [132]). It has even been reported that
psychotropic drugs modify the expression of genes encoding
the synthesis of tachykinin in some areas of the rat brain
[133, 134]. Some of these findings suggest that a reduction
in SP levels in certain regions of the brain, with NK-1R
antagonists, may have a therapeutic effect as antidepressant
drug in affective disorders and also in disorders related
to cancer. In fact, several publications and reviews have
reported experiments correlating emotional behavior (the
limbic system) and cancer [35, 135, 136].
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3.3. Cancer. Experimental evidence obtained in recent years
supports the idea that alterations in the neuroendocrine sys-
tem may contribute significantly to the tumorigenic process.
The tachykinins act directly on tumor cells, modulating their
responses in terms of proliferation and survival but also
contribute indirectly by altering the tumor microenviron-
ment and processes related to tumor progression. SP and its
receptor are expressed in a wide variety of tumor cell lines
(WERI-Rb-1 and Y-79 from retinoblastoma, U373 MG and
GAMG from glioma, SNK-BE(2), Kelly and IMR-32 from
neuroblastoma, CAPAN-1 and PA-TU 8902 from pancreatic
cancer, Hep-2 from laryngeal cancer, 23132/87 from gastric
cancer, and SW-403 from colon cancer) [65, 67, 137] and
tumors such as astrocytomas, gliomas, neuroblastomas, pan-
creatic cancer, melanomas, and breast cancer [28, 86, 123, 135,
138, 139].

It has been estimated that the NK-1R antagonist aprepi-
tant is 45000 times more selective than for the NK-2 receptor
and more than 3000 times more selective for the NK-1
receptor than for the NK-3 receptor [140]. This compound
has shown antiproliferative properties in tumoral cell lines
of glioma, neuroblastoma, retinoblastoma, pancreas, larynx,
colon, and gastric carcinoma [62, 64, 141, 142]. A clinical trial
for moderate to severe depression, at a dose of 300mg/day,
found this compound to be safe and well tolerated. No statis-
tically significant differences were found comparing adverse
events with patients treated with placebo [121]. Although
no clinical trials have yet been initiated, there are sufficient
preclinical data to believe that NK-1R antagonists may one
day be assessed as anticancer agents [3, 5, 28, 35, 62, 64, 122,
123, 137, 138, 141–148].

4. Conclusion

The NK-1 receptor is the high affinity receptor of SP, the
major mammalial tachykinin. It belongs to the G protein-
coupled receptors (GPCRs) family. Tachykinins and their
receptors are widely expressed in various human systems.
NK-1 receptors are found in the nervous system and in
peripheral tissues. Specifically, the NK-1 receptor is involved
in cellular responses such as pain transmission, endocrine
and paracrine secretion, vasodilation, and modulation of cell
proliferation. Also it acts as a neuromodulator contributing
to brain homeostasis and sensory neuronal transmission
associated with depression, stress, anxiety, and emesis.

NK-1R and SP are present in brain regions involved in
the vomiting reflex (nucleus tractus solitarius and in the
area postrema). This anatomical localization has led to the
successful clinical development of antagonist against NK-
1R in the treatment of CINV. Aprepitant is the first NK1R
antagonist of this new antiemetic family. Two other NK-1R
antagonists have finished clinical trials and it is expected that
they will be commercialized in the near future.
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by Redes Temáticas de Investigación en Cáncer (RTICC,
RD12/0036/0055) (http://www.rticc.org/). This study was
supported by grants from the Fondo de Investigación San-
itaria (PI08022), Instituto de Salud Carlos III-Subdireción
General de Evaluación y Fomento de Investigación, Fondo
Europeo de Desarrollo Regional, Unión Europea, Una man-
era de hacer Europa, the Fundación Cellex, and Redes
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[37] V. Almendro, S. Garćıa-Recio, and P. Gascón, “Tyrosine kinase
receptor transactivation associated to G protein-coupled recep-
tors,” Current Drug Targets, vol. 11, no. 9, pp. 1169–1180, 2010.

[38] E. J. Neer, “Heterotrimeric G proteins: organizers of transmem-
brane signals,” Cell, vol. 80, no. 2, pp. 249–257, 1995.

[39] V. L. Lowes, N. Y. Ip, and Y. H. Wong, “Integration of signals
from receptor tyrosine kinases and G protein-coupled recep-
tors,” NeuroSignals, vol. 11, no. 1, pp. 5–19, 2002.

[40] E. J. Neer, “Gproteins: critical control points for transmembrane
signals,” Protein Science, vol. 3, no. 1, pp. 3–14, 1994.

[41] J. E. Smotrys and M. E. Linder, “Palmitoylation of intracellular
signaling proteins: regulation and function,” Annual Review of
Biochemistry, vol. 73, pp. 559–587, 2004.

[42] C. C. Malbon, “G proteins in development,” Nature Reviews
Molecular Cell Biology, vol. 6, no. 9, pp. 689–701, 2005.

[43] S. Guard, A. T. McKnight, K. J. Watling, and S. P. Watson,
“Evidence for two types of tachykinin receptors on cholinergic
neurons of the guinea pig ileummyenteric plexus,”Annals of the
New York Academy of Sciences, vol. 632, pp. 400–403, 1991.

[44] S. Guard, K. J. Watling, and S. P. Watson, “Neurokinin3-
receptors are linked to inositol phospholipid hydrolysis in
the guinea-pig ileum longitudinal muscle-myenteric plexus
preparation,” British Journal of Pharmacology, vol. 94, no. 1, pp.
148–154, 1988.

[45] S. Guard and S. P. Watson, “Tachykinin receptor types: classifi-
cation and membrane signalling mechanisms,” Neurochemistry
International, vol. 18, no. 2, pp. 149–165, 1991.



BioMed Research International 11

[46] M.M.Kwatra, D.A. Schwinn, J. Schreurs et al., “The substance P
receptor, which couples to Gq/11, is a substrate of 𝛽-adrenergic
receptor kinase 1 and 2,”The Journal of Biological Chemistry, vol.
268, no. 13, pp. 9161–9164, 1993.

[47] R. Raddatz, C. L. Crankshaw, R. M. Snider, and J. E. Krause,
“Similar rates of phosphatidylinositol hydrolysis following acti-
vation of wild-type and truncated rat neurokinin-1 receptors,”
Journal of Neurochemistry, vol. 64, no. 3, pp. 1183–1191, 1995.

[48] A. Laniyonu, E. Sliwinski-Lis, and N. Fleming, “Different
tachykinin receptor subtypes are coupled to the phospho-
inositide or cyclic AMP signal transduction pathways in rat
submandibular cells,” FEBS Letters, vol. 240, no. 1-2, pp. 186–
190, 1988.

[49] R. D. Ye, “Regulation of nuclear factor 𝜅B activation by G-
protein-coupled receptors,” Journal of Leukocyte Biology, vol. 70,
no. 6, pp. 839–848, 2001.

[50] Y. Nakajima, K. Tsuchida, M. Negishi, S. Ito, and S. Nakanishi,
“Direct linkage of three tachykinin receptors to stimulation of
both phosphatidylinositol hydrolysis and cyclic AMP cascades
in transfected Chinese hamster ovary cells,” The Journal of
Biological Chemistry, vol. 267, no. 4, pp. 2437–2442, 1992.

[51] N. Wettschureck and S. Offermanns, “Mammalian G proteins
and their cell type specific functions,” Physiological Reviews, vol.
85, no. 4, pp. 1159–1204, 2005.

[52] J. Meshki, S. D. Douglas, J.-P. Lai, L. Schwartz, L. E. Kilpatrick,
and F. Tuluc, “Neurokinin 1 receptor mediates membrane
blebbing inHEK293 cells through aRho/Rho-associated coiled-
coil kinase-dependent mechanism,” The Journal of Biological
Chemistry, vol. 284, no. 14, pp. 9280–9289, 2009.

[53] A. J. Morris and C. C. Malbon, “Physiological regulation of G
protein-linked signaling,” Physiological Reviews, vol. 79, no. 4,
pp. 1373–1430, 1999.

[54] K. Nishimura, J. Frederick, and M. M. Kwatra, “Human sub-
stance P receptor expressed in Sf9 cells couples with multiple
endogenous G proteins,” Journal of Receptor and Signal Trans-
duction Research, vol. 18, no. 1, pp. 51–65, 1998.

[55] I.-H. Pang and P. C. Sternweis, “Isolation of the 𝛼 subunits of
GTP-binding regulatory proteins by affinity chromatography
with immobilized 𝛽𝛾 subunits,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 86, no.
20, pp. 7814–7818, 1989.

[56] R. Williams, X. Zou, and G. W. Hoyle, “Tachykinin-1 receptor
stimulates proinflammatory gene expression in lung epithelial
cells through activation of NF-kappaB via a Gq-dependent
pathway,” The American Journal of Physiology—Lung Cellular
and Molecular Physiology, vol. 292, no. 2, pp. L430–L437, 2007.

[57] H. Satake and T. Kawada, “Overview of the primary structure,
tissue-distribution, and functions of tachykinins and their
receptors,”Current Drug Targets, vol. 7, no. 8, pp. 963–974, 2006.

[58] K. L. Bost, “Tachykinin-mediated modulation of the immune
response,” Frontiers in Bioscience, vol. 9, pp. 3331–3332, 2004.

[59] S. G. Macdonald, J. J. Dumas, and N. D. Boyd, “Chemical cross-
linking of the substance P (NK-1) receptor to the 𝛼 subunits
of the G proteins Gq and G11,” Biochemistry, vol. 35, no. 9, pp.
2909–2916, 1996.

[60] A. Kavelaars, D. Broeke, F. Jeurissen et al., “Activation of human
monocytes via a non-neurokinin substance P receptor that is
coupled to Gi protein, calcium, phospholipase D, MAP kinase,
and IL-6 production,” The Journal of Immunology, vol. 153, no.
8, pp. 3691–3699, 1994.

[61] A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine
receptors in breast cancermetastasis,”Nature, vol. 410, no. 6824,
pp. 50–56, 2001.
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