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Introduction
Aging is characterized by a gradual functional decline. In mam-
mals, aging occurs heterogeneously across multiple organ sys-
tems, causing a progressive deterioration that eventually results 
in tissue dysfunction. Consequently, age is a risk factor for 
many diseases (Niccoli and Partridge, 2012), such as cardiovas-
cular disease (North and Sinclair, 2012), dementia (Querfurth 
and LaFerla, 2010), osteoporosis (Raisz, 1988), osteoarthritis 
(Raisz, 1988), cancer (de Magalhães, 2013), type 2 diabetes 
(Gunasekaran and Gannon, 2011), idiopathic pulmonary fibrosis 
(IPF; Nalysnyk et al., 2012), and glaucoma (Kwon et al., 2009). 
Despite these links with human pathology, our understanding 
of the aging process remains limited. Although its biological 
causes remain largely unknown, studies in the past few decades 
have identified common cellular and molecular traits associ-
ated with aging (López-Otín et al., 2013). The identification 
of so-called aging hallmarks has helped to conceptualize aging 
research and has hinted at the tantalizing prospect of delaying 
multiple age-related diseases by targeting the aging process.

Aging hallmarks can be divided into three categories: 
(1) primary, or the causes of age-associated damage; (2) an-
tagonistic, or the responses to the damage; and (3) integrative, 
or the consequences of the responses and culprits of the aging 
phenotype. Senescence, a cellular response that limits the pro-
liferation of aged or damaged cells (Muñoz-Espín et al., 2013; 
Muñoz-Espín and Serrano, 2014), belongs to the antagonistic 
class (Fig.  1). Although senescence plays physiological roles 
during normal development and it is needed for tissue homeo-
stasis, senescence constitutes a stress response triggered by 
insults associated with aging such as genomic instability and 
telomere attrition, which are primary aging hallmarks them-
selves. There is also an intimate link between senescence and 
the other antagonistic hallmarks of aging. For example, senes-
cent cells display decreased mitophagy, resulting in an “old,” 
defective mitochondrial network that may contribute to meta-
bolic dysfunction in age (Sun et al., 2016).

Senescence also influences the integrative aging hall-
marks. Somatic multipotent stem cells facilitate tissue homeo-
stasis; for example, hematopoietic stem cells (HSCs) renew the 
blood system. Stem cell exhaustion occurs with age, and the 
consequent decline in stem cell functionality and their capacity 
for renewal leads to tissue deterioration. For example, HSCs 
display a decreased success rate of transplantation when iso-
lated from elderly patients (Kollman et al., 2001). This decline 
correlates with increased numbers of senescent HSCs (Chang 
et al., 2016) and diminished immunity (Geiger and Van Zant, 
2002), decreased numbers of naive B and T cells (Min et al., 
2005), and reduced natural killer cell activity (Mocchegiani 
and Malavolta, 2004). Somatic stem cell decline is not limited 
to high-turnover tissues. Neural stem cells (NSCs) experience 
reduced functionality, with limited neurogenesis capacity with 
age. This is marked by a twofold reduction in NSC numbers 
and a decreased proliferation, which correlates with increased 
expression of senescence markers in the regions where NSCs 
reside (Molofsky et al., 2006). Mesenchymal stem cells (Raggi 
and Berardi, 2012) and their descendants, satellite cells (Shefer 
et al., 2006; Lavasani et al., 2012; Sousa-Victor et al., 2014), 
chondrocytes (Loeser, 2009), adipocytes (Tchkonia et al., 2010), 
and osteoclasts (Chung et al., 2014), also display a reduced abil-
ity to self-renew with age that correlates with increased levels of 
senescence markers. This may have an impact in age-associated 
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pathologies such as sarcopenia, cachexia, osteoporosis, and os-
teoarthritis (Fried et al., 2001).

Altered intracellular communication is another of the in-
tegrative hallmarks of aging. In particular, chronic low-level in-
flammation is a serious complicating factor for many diseases in 
which risk increases with age (López-Otín et al., 2013; Frances-
chi and Campisi, 2014). This detrimental role of inflammation is 
supported by inflammatory markers such as interleukin-1 (IL-1) 
and IL-6 acting as prognostic markers for diseases such as type 
2 diabetes (Dandona et al., 2004), atherosclerosis (Libby, 2002), 
and breakdown in stem cell function (Doles et al., 2012; Pietras 
et al., 2016). Inflammatory responses are one of the major extrin-
sic effects of senescent cells (Coppé et al., 2010), which suggests 
that there is a link between senescence and altered intracellular 
communication. Aging influences a broad range of disease etiol-
ogies. Therefore, targeting the underlying aging machinery may 
provide broad-spectrum protection against many pathologies.

What is senescence?
Senescence is cellular program that induces a stable growth ar-
rest accompanied by distinct phenotypic alterations, including 
chromatin remodeling, metabolic reprogramming, increased 
autophagy, and the implementation of a complex proinflam-
matory secretome (Kuilman et al., 2010; Salama et al., 2014). 
These complex changes to the cell largely serve to implement 
various aspects of senescence such as growth arrest and the 
senescence secretome. Despite the many facets of senescence, 

stable growth arrest is its defining characteristic. A permanent 
arrest is effective to ensure that damaged or transformed cells 
do not perpetuate their genomes. This growth arrest is imple-
mented by the activation of p16INK4a/Rb and p53/p21CIP1 tumor 
suppressor networks (Fig. 2).

Historically, senescence was first identified by Hayflick 
and Moorhead (1961) during serial passage of human fibro-
blasts. The limit to proliferation that senescence imposes was 
hypothesized as a barrier to cancer initiation. Senescence is in-
deed a powerful mechanism of tumor suppression (Collado et 
al., 2007; Hanahan and Weinberg, 2011). Senescence has also 
physiological roles during normal development (Muñoz-Espín et 
al., 2013; Storer et al., 2013), acting in concert with apoptosis to 
facilitate embryonic morphogenesis. In adult tissues, senescence 
is triggered primarily as a response to damage, allowing for sup-
pression of potentially dysfunctional, transformed, or aged cells. 
The aberrant accumulation of senescent cells with age results in 
potential detrimental effects. In balance, although senescence 
is a biologically necessary process, it may come at a cost. The 
early research of Hayflick and Moorhead (1961) hinted at a re-
lationship between senescence and aging, but the consequent 
discovery that senescent cells accumulate in aged tissues has sub-
stantiated the hypothesis that senescence itself can drive aging.

Factors driving senescence
Telomere damage driving senescence in aging.  In 
adult tissues, senescence is engaged in response to different 

Figure 1. Senescence as a central hallmark of aging. Telomere damage, epigenetic dysregulation, DNA damage, and mitochondrial dysfunction are 
primary drivers of damage in aging. Several of these drivers of damage can induce senescence. Senescence can in turn drive the consequential aging 
hallmarks in response to damage: stem cell exhaustion and chronic inflammation. Other responses to damage, such as proteostatic dysfunction and nutrient 
signaling disruption, are also integrally linked with the senescence response. Adapted from López-Otín et al. (2013).
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types of damage. One of the insults causing senescence is dam-
age of the telomeres, highly repetitive DNA structures located 
at the end of chromosomes. Telomeres are protected by a multi-
protein complex known as shelterin. By coating the telomere, 
shelterin prevents the activation of a DNA damage response, 
thereby preventing end-to-end chromosome fusions that would 
result in a telomere crisis (Palm and de Lange, 2008). More-
over, cells lacking shelterin components, such as POT1 or 
TRF2, suffer an aberrant DNA damage response and premature 
induction of senescence (Denchi and de Lange, 2007). The 
end-replication problem is a consequence of the inability of 
DNA polymerases to synthesize DNA without a template, 
which occurs at telomeres. This results in telomeres that shorten 
progressively with each cell cycle division. Embryonic tissues 
circumvent this erosion by expressing telomerase, a ribonucle-
oprotein complex that serves to concatenate DNA to the ends of 
chromosomes, thus providing a template for DNA synthesis 
(Nandakumar and Cech, 2013). Repeated cell division in adult 
tissues that lack telomerase, however, results in progressive ero-
sion of DNA, reduced shelterin binding, and senescence. As an 
organism ages, cells accumulate more divisions. This results in 
increased telomere erosion and senescence. But the extent to 
which telomere erosion drives senescence during aging and 
contributes to the aging process itself remains unknown.

Supporting the causative role of telomere erosion in aging, 
deletion of telomerase in mice eventually results in premature 
aging (Lee et al., 1998). This phenotype can be rescued by 
transient activation of telomerase reverse transcription expres-
sion in mice using a telomerase reverse transcription estrogen 
receptor construct. Cells isolated from these mice proliferate 
normally in vitro, and deterioration in multiple tissues is re-
duced (Jaskelioff et al., 2011). This evidence correlates with 
studies showing that fibroblasts or T cells derived from cen-
tenarians reset their telomeres, which results in rejuvenation 

and sustained proliferation (Lapasset et al., 2011). Similarly, 
stimulation of T cells derived from serially transplanted HSCs 
results in telomerase expression and rejuvenation (Allsopp et 
al., 2002). Shortened telomeres are associated with many pa-
thologies such as liver cirrhosis (Rudolph, 2000) and correlate 
with an increase in mortality in people older than 60 years 
(Cawthon et al., 2003). Correlative evidence supports telomere 
erosion as a major driver of aging decline, yet this is challenged 
by mammals such as laboratory mice (Mus musculus), whose 
telomeres do not reach a critical limit during normal aging. 
Telomere length is also not predictive of aging deterioration in 
mice (Rudolph et al., 1999), highlighting that alternative factors 
could also drive aging.

Metabolic dysfunction as a driver of senes-
cence.  Several lines of evidence suggest that aging is the result 
of a complex amalgam of damages such as metabolic and pro-
teostatic dysfunction (López-Otín et al., 2013). Metabolic dys-
function relates to aging at the organismal and molecular level. 
Multiple studies have demonstrated that caloric restriction can 
retard the aging decline (Mitchell et al., 2016). Molecularly, 
pathways fine-tuning metabolic regulation, such as the mTOR 
or insulin pathway, have also been linked to increased health 
span and life span (Selman et al., 2008; Harrison et al., 2009). 
mTORC1 integrates inputs from nutrient and growth signals to 
regulate general cellular processes such as protein and lipid 
synthesis, autophagy, and metabolism (Saxton and Sabatini, 
2017). In this regard, mTOR is able to regulate the senes-
cence-associated secretory phenotype (SASP), autophagy, and 
senescent growth arrest (Herranz et al., 2015; Laberge et al., 
2015). The connection between autophagy and senescence is 
complex; although there is an increase in autophagy during se-
nescence that serves to regulate SASP production (Narita et al., 
2011), inhibition of autophagy can induce senescence through 
metabolic and proteostatic dysfunction (García-Prat et al., 

Figure 2. Pathways regulating senes-
cence-mediated arrest. The senescence growth 
arrest is regulated through two main pathways, 
p16INK4a/Rb and p53/p21CIP1, both which con-
verge on repression of CDK4/6. The INK4A/
ARF locus is normally silenced by Polycomb 
repressive complexes (PRCs) and becomes 
activated during senescence. The p53/p21CIP1 
pathway is activated downstream of the DNA 
damage response (DDR) from repair-resistant 
DNA segments with chromatin alterations rein-
forcing senescence (DNA-SCA RS).



JCB • Volume 217 • NumBer 1 • 201868

2016), further emphasizing the intricate connection between 
metabolic stress and senescence in aging.

Sirtuins constitute another molecular link between me-
tabolism and senescence. Sirtuins are ribosyltransferases with 
a wide array of functions, such as metabolism regulation and 
DNA repair (Houtkooper et al., 2012). Their role in senescence 
is antagonistic; SIRT1 deacetylates p53, promotes its degrada-
tion (Solomon et al., 2006), and facilitates senescence bypass, 
whereas SIRT6 deacetylates H3K18 to prevent mitotic errors 
and suppress senescence (Tasselli et al., 2016).

In addition to these forms of damage, general stress is 
sensed by other mechanisms such as activation of MAPK p38 
or induction of p16INK4a. These pathways are up-regulated in 
response to oxidative stress, DNA damage, telomere attrition, 
or oncogene activation. Substantiating their role in aging, acti-
vation of MAPK p38 or induction of p16INK4a limits the prolif-
erative potential of HSCs and yields proaging phenotypes (Ito 
et al., 2006; Baker et al., 2016). Overall, it is likely that the 
accumulation of senescent cells during aging reflects a gradual 
increase of different types of damage in different tissues.

Pathways regulating the senescence 
growth arrest
Despite the multifaceted nature of senescence, the induction 
of stable growth arrest is the defining characteristic of senes-
cence. Moreover, stable arrest is paramount to halt the propa-
gation of dysfunctional cells. Two tumor suppressor pathways, 
p53 and the p16/Rb, are responsible for the implementa-
tion of this growth arrest.

p53 and senescence.  Senescence inducers such as 
telomeric attrition and oncogenic or oxidative stress cause DNA 
damage. DNA damage results in increased deposition of γH2Ax 
and 53BP1 in chromatin that in turn activates a kinase cascade 
involving first ATM and ATR and then CHK1 and CHK2, even-
tually resulting in p53 activation (d’Adda di Fagagna, 2008; 
Fumagalli et al., 2012). p53 induces transcription of the cy-
clin-dependent kinase inhibitor p21CIP1. In turn, p21CIP1 blocks 
CDK4/6 activity, resulting in hypophosphorylated Rb and cell 
cycle exit (d’Adda di Fagagna, 2008). Although transient in-
creases in p53 levels can enact a quiescent state and activate 
DNA repair processes, during senescence, there is a sustained 
induction of p53 (Salama et al., 2014; Kruiswijk et al., 2015). 
This is a result of damage occurring in repair-resistant regions 
of the genome known as DNA segments with chromatin alter-
ations reinforcing senescence, such as telomeres (Rodier et al., 
2011; Fumagalli et al., 2012), that allow for a permanent arrest 
of the cell cycle by persistent induction of p21cip1. Given the key 
roles of p53, additional regulatory layers exist. For example, the 
induction of ARF, a product of the INK4/ARF locus, sequesters 
the ubiquitin ligase MDM2, contributing to increased levels of 
p53. Recently, the interaction between Forkhead box protein O4 
(FOXO4) and p53 has been shown to play an important role in 
modulating p53 localization and transcriptional activity during 
senescence (Baar et al., 2017). Interestingly FOXO transcrip-
tion factors regulate aging, with FOXO activity in Drosophila 
melanogaster leading to delayed aging in response to disrupted 
protein homeostasis and oxidative stress (Demon-
tis and Perrimon, 2010).

The INK4/ARF locus in senescence.  Three tumor 
suppressors reside in the INK4/ARF locus: p16INK4a and ARF, 
which are both encoded by the CDKN2A gene, and p15INK4b, 
which is encoded by CDKN2B. Two of these, p15INK4b and 

p16INK4a, are CDKIs, like p21CIP1, that affect the cell cycle by 
binding and inhibiting CDK4 and CDK6. In contrast, ARF in-
hibits MDM2, thereby allowing cross talk with the p53/p21CIP1 
pathways. Conversely, p53 can regulate expression of ARF 
through a negative feedback loop, as demonstrated by elevated 
ARF expression in p53−/− mouse embryonic fibroblasts 
(Harris and Levine, 2005).

Given this unusual concentration of three tumor suppres-
sors in barely 35 kb, this locus plays a key regulatory role and 
is frequently mutated in cancer (Gil and Peters, 2006; Kim and 
Sharpless, 2006). Genome-wide association studies have also 
identified various genomic variants occurring at the INK4/ARF 
locus as major risk factors for atherosclerosis, stroke, and di-
abetes, among other pathologies (Jeck et al., 2012). However, 
most of these are found in noncoding regions, and the precise 
mechanism of action is unclear. The INK4/ARF locus behaves 
as a senescence sensor. In young, normal cells, the INK4/ARF 
locus is epigenetically silenced through deposition of repres-
sive H3K27me3 marks (Bracken et al., 2007). H3K27 methyl-
ation is controlled by Polycomb repressive complexes (PRC2 
and PRC1). Disrupting PRC1 or PRC2 activity by depleting the 
expression of some of their components, such as BMI1, CBX7, 
or EZH2, derepresses p16INK4a and induces senescence (Jacobs 
et al., 1999; Gil et al., 2004; Bracken et al., 2007). There is 
still debate over how Polycomb is recruited to the INK4/ARF 
locus. It has been proposed that a long noncoding RNA, ANR 
IL, divergently transcribed from the INK4/ARF locus (Yap et 
al., 2010; Kotake et al., 2011), and transcription factors such 
as those of the homeobox family can contribute to recruiting 
PRCs (Martin et al., 2013).

Conversely, during senescence, the H3K27 histone de-
methylase JMJD3 plays a role in removing the repressive marks 
around the INK4/ARF locus, facilitating its induction (Agger 
et al., 2009; Barradas et al., 2009). INK4/ARF induction can 
be observed in tissues during natural aging (Krishnamurthy et 
al., 2004; Burd et al., 2013). In particular, p16INK4a is consid-
ered an aging biomarker. With exceptions (such as during se-
nescence-induced during development), p16INK4a is also one of 
the best markers of senescence. An analysis of the pathways 
regulating p16INK4a shows coincidences with those controlling 
development. This has been argued to formulate the theory that 
aging might be driven by gradual functional decay of develop-
mental pathways (Martin et al., 2014).

The SASP
Besides growth arrest, the production of a complex mixture of 
secreted factors, termed the SASP or senescence-messaging 
secretome, is the most relevant phenotypic program imple-
mented in senescent cells. Senescent cells secrete hundreds 
of factors that include proinflammatory cytokines, chemo-
kines, growth factors, and proteases (Kuilman and Peeper, 
2009; Coppé et al., 2010).

Regulation of the SASP.  The specific combination 
of secreted factors is thought to depend on the cell type and the 
senescent inducer. However, many of the key effectors of the 
SASP and its regulatory mechanism seemed to be shared. Nu-
clear factor κB (NF-κB) and CCA AT/enhancer–binding protein 
beta are the key transcriptional SASP regulators (Acosta et al., 
2008; Kuilman et al., 2008). DNA damage (Rodier et al., 2009), 
p38α MAPK (Freund et al., 2011), mTOR (Herranz et al., 2015; 
Laberge et al., 2015), mixed lineage leukemia 1 (Capell et al., 
2016), and GATA4 (Kang et al., 2015) are also able to regulate 
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the SASP. Recently, sensing of cytoplasmic chromatin by the 
cGAS/STI NG pathway has been suggested as a trigger for 
SASP induction (Dou et al., 2017; Glück et al., 2017). There are 
additional layers of SASP regulation. For example, mTOR con-
trols IL-1α translation to regulate the SASP (Laberge et al., 
2015). In addition, mTOR indirectly regulates the activity of 
ZFP36L1, an RNA-binding protein that binds to AU-rich ele-
ments in the 5′-end of inflammatory transcripts, targeting them 
for degradation (Herranz et al., 2015). There is also a global 
remodeling of enhancers in senescent cells, and the recruitment 
of BRD4 to superenhancers adjacent to SASP genes is needed 
for their induction (Tasdemir et al., 2016).

The complex composition of the SASP means that differ-
ent subsets of the SASP, such as the proinflammatory and TGF-β 
secretomes, can be regulated independently. The proinflamma-
tory arm of the SASP is regulated by IL-1 signaling (Acosta et 
al., 2013). IL-1α partially recapitulates the inflammatory SASP 
in vitro, and inhibiting the NLRP3 inflammasome, which pro-
cesses IL-1β, can blunt the SASP (Acosta et al., 2013). Con-
versely, the juxtacrine Notch signaling pathway promotes the 
secretion of a TGF-β–enriched secretome (Hoare et al., 2016).

Functions of the SASP.  The SASP is responsible 
for many of the positive and negative functions attributed to se-
nescent cells (Fig. 3) (Kuilman and Peeper, 2009). One of the 
major functions of the SASP is to recruit the immune system to 
eliminate senescent cells. The SASP mediates the activation 
and recruitment of both adaptive and innate immune cells (Xue 
et al., 2007; Kang et al., 2011). In general terms, the effects are 
positive. During tumor initiation, SASP-mediated immune re-
cruitment acts as an extrinsic tumor suppressor mechanism 
(Xue et al., 2007; Kang et al., 2011), and the recruitment of 
macrophages is a key step in fibrosis resolution (Krizhanovsky 
et al., 2008). In contrast, SASP-mediated recruitment of imma-
ture myeloid cells has immune suppressive effects on prostate 
and liver cancer (Di Mitri et al., 2014; Eggert et al., 2016). In 
addition, the SASP can stimulate tumorigenesis by promoting 

angiogenesis (e.g., via VEGF and CCL5; Coppé et al., 2006; 
Eyman et al., 2009) or tumor growth (e.g., via GROα and Oste-
opontin; Krtolica et al., 2001; Pazolli et al., 2009), among other 
mechanisms. Specific components of the SASP have other 
physiological functions, such as contributing to fibrotic tissue 
remodeling, whereby matrix metalloproteinases (MMPs) con-
tribute to degrade fibrotic plaques in the ECM that may be ben-
eficial in the context of liver fibrosis and wound healing 
(Krizhanovsky et al., 2008; Demaria et al., 2014).

Recently, it has been postulated that senescent cells ac-
cumulating in response to tissue damage can also promote 
stemness and reprogramming (Ritschka et al., 2017). How-
ever, how this fits with the increased number of senescent 
cells but decreased stemness potential observed during aging 
is unclear. On the other hand, factors secreted by senescent 
cells can reinforce the senescent phenotype, potentially ex-
acerbating senescence during aging. IL-8, GROα, IL-6, and 
IGBP-7 are among the specific SASP components reinforc-
ing senescence (Acosta et al., 2008; Kuilman et al., 2008; 
Wajapeyee et al., 2008). Moreover, senescent cells can also 
induce a so-called paracrine senescence response (Acosta et 
al., 2013). This autocrine reinforcement or paracrine trans-
mission of senescence could potentially explain some of the 
detrimental effects of aberrant accumulation of senescent cells 
during aging. During aging, the SASP is thought to be par-
tially responsible for persistent chronic inflammation, also 
known as inflammaging, that contributes to multiple age-re-
lated phenotypes. This contribution of SASP in inflammaging 
is beginning to be investigated using senolytic models. The 
direct elimination of senescent cells in aged kidney (Baker et 
al., 2016; Baar et al., 2017), heart, spleen, lung, liver (Baker 
et al., 2016), and osteoarthritic knee (Jeon et al., 2017) re-
duced levels of IL-6 and IL-1β (both markers of chronic in-
flammation). It would be pertinent in future aging therapies to 
understand how specific aspects of the SASP contribute to the 
deterioration or protection of tissues.

Figure 3. Functions of the SASP. The SASP mediates many of the cell-extrinsic functions of senescent cells. Among those it reinforces several aspects of 
senescence including growth arrest and the SASP itself via an autocrine loop. The SASP also recruits immune cells, such as macrophages, neutrophils, 
and natural killer (NK) cells to phagocytose and eliminate the senescent cell. Secretion of MMPs and factors such as VEGF can remodel the surrounding 
tissue, inducing angiogenesis and reducing fibrosis. Finally, secretion of molecules such as TGF-β can spread the senescence phenotype in a paracrine 
manner to surrounding cells.
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Senescence: Bystander or participant in 
age-related pathologies?
Although the contribution of senescence to aging has been long 
suspected, only recently has the connection been confirmed. 
This has been made possible by the use of molecular biomark-
ers of senescence and the establishment of novel genetic models 
to study the role of senescent cells in vivo.

Senescence regulatory networks and aging in 
vivo.  Expression of the components of the INK4/ARF locus 
correlates with aging, and p16INK4a can be used as a prognostic 
marker for some age-related diseases, such as IPF and glomer-
ulosclerosis (Melk et al., 2004; Lomas et al., 2012). Further-
more, p16INK4a accumulates during aging. For example, 
p16INK4a expression increases with age in the islet of Langer-
hans (Helman et al., 2016), renal cortex (Melk et al., 2004), 
and fat tissue (Xu et al., 2015; Baker et al., 2016), among 
other areas (Krishnamurthy et al., 2004). Its knockout also 
mitigates functional decline and proliferative exhaustion upon 
HSC transplantation (Janzen et al., 2006). Although these 
studies suggest that p16INK4a accumulation is detrimental 
during aging, increased gene dosage of INK4/ARF in super- 
p16 mice does not result in reduced life span. The possible 
detrimental effects cause by p16INK4a overexpression may be 
outweighed by their clear tumor suppressive benefits, with a 
threefold reduction in tumor incidence (Matheu et al., 2009). 
Similarly, p53−/− can ameliorate some of the effects of severe 
progeria mutants such as Ku80−/−, mTR−/−, and Zmpste24−/− 
(Chin et al., 1999; Lim et al., 2000; Varela et al., 2005), but the 
resulting increase in tumorigenesis obscures potential in-
creases in life span. Mice with extra copies of p53 or p19ARF 
are more resistant to tumors and display delayed aging 
(García-Cao et al., 2002; Matheu et al., 2007).

Visualizing senescence in vivo.  One of the biggest 
hindrances to investigating senescence in vivo has been the lack 
of robust, consistent markers. Most studies of senescence in 
aged tissues have relied on usage of senescence-associated 
β-galactosidase (SA-β-Gal) staining or the lack of proliferative 
markers such as Ki67. However, these may yield mixed results. 
For example, macrophages display elevated levels of SA-β-Gal 
activity. The use of additional senescence markers, such as lipo-
fuscin, which accumulates in the cytoplasm of senescent cells, 
could be applied to bridge this gap (Sharpless and Sherr, 2015).

Another useful tool that has emerged is the use of bio-
luminescent senescence reporters. With the advent of p16IN-

K4a-LUC mice expressing a luciferase reporter under the 
control of a p16INK4a promoter, there is now confirmation that 
multiple tissues show an exponential age-related increase in 
p16INK4a expression that correlates with higher levels of proin-
flammatory factors or SASP components (Yamakoshi et al., 
2009; Burd et al., 2013).

Evaluating the consequences of targeting se-
nescence during aging.  Establishing causality of a gene in 
diseases such as cancer is usually a matter of generating appro-
priate knockout or overexpression mouse models. To evaluate 
the role of senescence in aging that approach gets complicated 
by the tumor suppressive roles of the INK4/ARF locus and p53 
(see Pathways regulating the senescence growth arrest section). 
Seminal studies by Baker et al., first in progeroid BubR1 mice 
(Baker et al., 2011) and later in naturally aged mice (Baker et 
al., 2016), demonstrated that by expressing an inducible suicide 
gene under the control of the p16INK4a promoter it is possible to 
ablate senescent cells and improve health span. The elimination 

of senescent cells improved several age-associated conditions, 
delayed tumor formation, and ameliorated the side effects of 
chemotherapy (Baker et al., 2016; Demaria et al., 2016; Baar et 
al., 2017). The role of p16INK4a-positive senescent cells in 
age-related pathologies has been further confirmed by addi-
tional studies using other p16INK4a-based senescence ablation 
systems such as p16-3MR and INK-NTR mice (Demaria et al., 
2014; Childs et al., 2016). These studies have finally confirmed 
that senescence causes, or at least contributes to, aging.

Senescence, the SASP, and age-related in-
flammation.  There is clear evidence suggesting how the 
SASP participates in the clearance of premalignant cells or con-
tributes to tumor progression (Kang et al., 2011; Eggert et al., 
2016). Although it has been hypothesized that the SASP is re-
sponsible for tissue dysfunction during aging, we still lack di-
rect evidence for the roles that the SASP may play in aging 
(Muñoz-Espín and Serrano, 2014).

IL-1α, IL-6, TNF, and NF-κB activity and other inflam-
matory factors have been found to increase in tissues with age 
and inhibition of NF-κB confers resistance to progeroid con-
ditions (Tilstra et al., 2012). The detrimental role for chronic 
inflammation during aging is further supported by clinical data 
(Libby, 2002; Brunt et al., 2009; Dinarello et al., 2010; Bal-
estro et al., 2016). Aging phenotypes such as frailty (Soysal et 
al., 2016) correlate with increased levels of proinflammatory 
factors. The increased levels of chronic inflammation in these 
instances are collectively termed inflammaging (Franceschi 
and Campisi, 2014). The reason for such increases in levels of 
proinflammatory molecules remains unknown. Although accu-
mulated damage and lifelong antigenic load may undoubtedly 
contribute to this increase in inflammation, senescence may also 
help mediate inflammaging.

This contribution of senescence to inflammaging may be 
via several coalescing effects, the first being through the SASP. 
As damage accumulates in tissues, the number of senescent 
cells and their SASP also increases. This process is usually 
resolved by clearance of the senescent cells by the immune 
system (Kang et al., 2011). In aged individuals, however, senes-
cence also contributes to a decline in immune function termed 
immunosenescence, thereby compromising the clearance of se-
nescent cells and exacerbating inflammation. Emerging studies 
using genetic systems or drugs ablating senescent cells suggest 
that the elimination of senescent cells reduces inflammation 
across tissues (Baker et al., 2016; Jeon et al., 2017). Future 
studies will need to establish the causal link between the SASP, 
chronic inflammation, and tissue dysfunction. These might re-
quire the generation of novel mouse models that take advantage 
of our knowledge on SASP regulation.

Contribution of senescence to age-
related diseases
Now that a general causative role for senescence during aging 
has been established, the next step is to identify how senes-
cence contributes to different age-related pathologies such as 
glaucoma (Liton et al., 2005) or osteoarthitis (Jeon et al., 2017; 
Fig. 4). Thanks to the use of senolytic drugs and genetic models 
for senescence ablation, we are progressing quickly in that task.

Opposing roles for senescence in cancer.  Age 
is a strong prognostic marker of reduced survival across many 
cancers (de Magalhães, 2013). Senescence is a strong tumor 
suppressor mechanism that limits cancer initiation through both 
cell-intrinsic (Collado and Serrano, 2010) and cell-extrinsic 
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mechanisms (Kang et al., 2011). However, there is strong 
evidence suggesting that through the SASP, aged tissues pro-
vide a supportive niche for cancer (Coppé et al., 2010). Senes-
cent cells can contribute to tumor progression by enhancing the 
proliferative potential of cancer cells (Krtolica et al., 2001) or 
contributing to epithelial to mesenchymal transition (Coppé et 
al., 2008). Therefore, the increased numbers of senescent cells 
present in aged tissues could contribute to the increased inci-
dence of cancer with age. Supporting this, a delayed onset in 
tumor formation is observed when senescent cells are elimi-
nated (Baker et al., 2016). Senolytic therapy also reduces the 
incidence of metastasis, the leading cause of cancer-related 
deaths (Demaria et al., 2016).

Renal dysfunction.  Aged individuals often display a 
reduced glomerular filtration rate and cortical volume that can 
result in glomerulosclerosis and nephron atrophy, both of which 
are associated with increased expression of p16INK4a and p53 
(Melk et al., 2003, 2004). Senescence has detrimental effects in 
most renal diseases analyzed (Sturmlechner et al., 2017). Abla-
tion of senescent cells protects against glomerulosclerosis and 
improves kidney function in aged mice (Baker et al., 2016).

Type 2 diabetes.  One of the largest risk factors for the 
development of type 2 diabetes is age. Several genome-wide 
association studies of type 2 diabetes have highlighted variants 
at the INK4/ARF locus, suggesting a possible link between se-
nescence and diabetes (Zeggini et al., 2007; Jeck et al., 2012). 
In addition, senescence markers and IL-1β are elevated in β 
cells from diabetic mice (Sone and Kagawa, 2005; Dinarello et 
al., 2010). Surprisingly, although p16INK4a expression drove a 
decline in β cell regenerative capacity and predisposed mice to 
mild diabetes (Krishnamurthy et al., 2006; Chen et al., 2009), 
senescent β islets increased insulin secretion, making it unclear 

how senescence contributes to maintain glucose homeosta-
sis (Helman et al., 2016).

IPF.  Fibrosis is a pathological condition whereby tissue 
accumulates ECM proteins such as collagen, resulting in tissue 
scarification, usually in response to damage. Senescence ap-
pears to have both beneficial and detrimental roles during fibro-
sis and wound healing. Secretion of MMPs, which occurs as 
part of the SASP, could help in the resolution of fibrotic plaques 
(Craig et al., 2015). Conversely, fibroblasts and tissues isolated 
from IPF patients display increased levels of SA-β-Gal staining 
and p21CIP1, suggesting a link with senescence (Yanai et al., 
2015; Schafer et al., 2017). The detrimental nature of senes-
cence in IPF was recently demonstrated using senolytics. Elim-
ination of senescent fibroblasts in a mouse model of lung 
fibrosis reduced expression of profibrotic SASP components 
and improved pulmonary function (Schafer et al., 2017).

Nonalcoholic fatty liver disease.  Cirrhosis is the 
pathological outcome from liver fibrosis and nonalcoholic fatty 
liver disease, which in turn is a result of hepatic steatosis, the 
abnormal accumulation of lipids in hepatocytes (Pellicoro et al., 
2014; Hardy et al., 2016). Senescence is associated with liver 
fibrosis (Kim et al., 2013) and cirrhosis (Wiemann et al., 2002). 
The risk of developing nonalcoholic fatty liver disease increases 
with age (Hardy et al., 2016) and is predicted by the presence of 
senescent hepatocytes (Pellicoro et al., 2014). The elimination 
of senescent cells using INK-ATTC mice reduces liver fat accu-
mulation (Ogrodnik et al., 2017). The role of senescence in the 
liver is complex, however, because knocking out p53 or p16INK4a 
increases liver fibrosis (Krizhanovsky et al., 2008). Moreover, 
senescent hepatic stellate cells down-regulate collagen and 
up-regulate MMPs and cytokines that could remodel fibrotic 
plaques and recruit macrophages (Krizhanovsky et al., 2008).

Figure 4. Involvement of senescence in disease. Establishment of robust biomarkers of senescence, usage of genetic knockout models and senolytic models 
are expanding our knowledge on the age-related diseases in which senescence plays a role.
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Cardiovascular disease.  The risk of developing ath-
erosclerosis and cardiomyopathy and their respective condi-
tions, coronary heart disease and heart failure, increases with 
age. In the case of atherosclerosis, the role of senescence has 
been confirmed using senolytic models (Childs et al., 2016). 
Ablation of senescent cells improved the stability of plaques 
and reduced both the incidence and progression of plaque for-
mation. Senescent cells were initially identified in atherosclero-
sis in vascular smooth muscle cells at the site of the plaque 
(Uryga and Bennett, 2016). Subsequent studies showed that 
macrophages were the primary senescent cell present with 
higher levels of SA-β-Gal staining and SASP production, sug-
gesting their key contribution to coronary heart disease (Childs 
et al., 2016). Cardiomyocyte atrophy is one of the underlying 
causes of myocardial infarction in the elderly (Niccoli and Par-
tridge, 2012). It is unclear how ablation of senescent cells pro-
tects against cardiomyocyte hypertrophy in aged mice and 
provides resistance to cardiac stress (Baker et al., 2016).

Osteoarthritis.  Lifelong wear and tear on ligaments is 
a significant risk factor for the development of arthritis. Failure 
of chondrocytes to produce cartilage results in degradation of 
joints and immobilization. Expression of p16INK4a in these cells 
correlates with severity and progression of the disease (Price et 
al., 2002). Moreover, when mice were subjected to an acute 
trauma to model osteoarthritis, senescent cells accumulated in 
the site of the injury (Kuyinu et al., 2016). Clearance of these 
senescent cells using senolytics resulted in the increased func-
tionality of the remaining chondrocytes with rejuvenation of 
cartilage soon after (Jeon et al., 2017).

Decline in immune function with age.  One of the 
primary risk factors for complications in end-of life care is in-
fection. The inability of the body to raise a response to immune 
offenses is caused by a functional decline in HSCs. The accu-
mulation of senescent HSCs with age contributes to immune 
decline and senescence bypass allows for stem cell rejuvena-
tion. Interestingly, the removal of these cells restored the func-
tionality of HSCs and increased myeloid, B, and T cell numbers 
in transplant experiments (Chang et al., 2016).

Sarcopenia.  Muscle stem cells (MuSCs) undergo a de-
cline in their ability to differentiate and facilitate repair of mus-
cle tissue, which is hypothesized to be the underlying cause of 
age-dependent muscle wasting or sarcopenia. MuSCs are quies-
cent unless stimulated to repair muscle (Gopinath and Rando, 
2008). However, with age, they become senescent, up-regulating 
p16INK4a (Sousa-Victor et al., 2014). The elimination of senes-
cent MuSCs increases the ability of the remaining MuSCs to 
form muscle cell colonies (Chang et al., 2016). Additionally, 
inhibition of p38 or p16INK4a bypasses MuSC senescence and 
strengthens muscle in geriatric mice (Cosgrove et al., 2014; 
Sousa-Victor et al., 2014).

Age-related cachexia.  Loss of adiposity and loss of 
muscle mass in aged individuals are primary contributors to 
age-dependent wastage or cachexia. White adipose tissue iso-
lated from aged mice display SA-β-Gal activity (Baker et al., 
2016). Removal of senescent cells from mice leads to increased 
adiposity and prevents mass loss in aged mice (Baker et al., 
2016). Recently it has been shown that bypass of senescence or 
senolysis restores adipose beiging and adipogenesis and im-
proves metabolic function in aged mice (Xu et al., 2015; Berry 
et al., 2017). This suggests that senescent cells prevent adipo-
cyte differentiation and contribute to an age-dependent loss of 
adaptive thermogenic capacity and metabolic dysfunction.

Targeting senescence during aging
Because of the detrimental nature of senescence in the etiology 
of numerous diseases, disrupting or preventing senescence can 
delay health decline during aging. Inhibition of p38, disrup-
tion of p53 and p16, or lengthening of telomeres have all been 
shown to benefit aging phenotypes but carry a major caveat, as 
they can increase the incidence of cancer (Sharpless et al., 2001; 
Ito et al., 2006; Janzen et al., 2006; Shay, 2016). The selective 
elimination of senescent cells has revealed to be a safer route to 
target senescence during aging.

ABT-263, otherwise known as navitoclax, is a BH3 mi-
metic that blocks the interaction between antiapoptotic BCL-2 
proteins and their targets, thereby releasing the brakes on the 
cell death machinery, and has been used to treat various can-
cers (Rudin et al., 2012; Chang et al., 2016). Its senolytic ac-
tivity is explained by an overreliance of senescent cells on 
BCL-xL and BCL-w, both of which are up-regulated during 
senescence (Yosef et al., 2016). However, usage of navitoclax 
as a prophylactic senolytic drug is unlikely because of its se-
vere thrombocytopenic and neutropenic effects (Rudin et al., 
2012). Recently, it has been shown that localization of p53 
to the nucleus by FOXO4 protects against p53 engaging the 
p53-mitochondrial signaling axis and apoptosis therein (Baar et 
al., 2017). Treatment of mice with a FOXO4 inhibitor peptide, 
FOXO4 D-retro inverso isoform, can delay different aging phe-
notypes. As with navitoclax, however, special attention must be 
paid to unintended effects of FOXO4 D-retro inverso isoform. 
For example, p21CIP1 expression fell markedly in senescent cells 
treated with the peptide.

Initial studies regarding senolytics are promising, but 
there are still lingering unknowns with regards to their effectiv-
ity as therapies. Senescent cells were observed to reappear after 
cessation of senolytic treatment in a model of osteoarthritis 
(Jeon et al., 2017). This could reflect unresolved damage from 
the anterior cruciate ligament injury surgery used in this study, 
although there is also the possibility that removal of senescent 
cells without targeting the causes that induce their accumulation 
could limit the benefits of senolytics. Another potential problem 
of using senolytics is an acceleration of stem cell exhaustion.

The clinical population in which senolytics could be used 
includes already-infirmed patients whose immune systems might 
be compromised. If senescent cells are eliminated and account 
for ∼1–5% of cells in aged tissues (Sharpless and Sherr, 2015), 
where do they go? Apoptotic cells mark themselves for phago-
cytosis by the immune system with special “find me” and “eat 
me” signals. Can we expect an immune system that was unable 
to clear aberrantly accumulated senescent cells to infiltrate and 
clear apoptotic bodies? Without clearance of apoptotic bodies, 
secondary necrosis could result in the release of proinflamma-
tory, danger-associated molecular patterns, further exacerbating 
systemic chronic inflammation. This could limit the effective 
therapeutic window for senolytic drugs. Although these are 
potential caveats for senolytic therapies, they may be signifi-
cantly outweighed by their benefits. In addition, the senescence 
program varies across tissues, raising the possibility of identi-
fying “tissue-specific” senolytics, which could minimize side 
effects. With these unknowns, it will be critical to validate the 
kinetics of senescent cells clearance using robust markers of se-
nescence and improved methods for identifying senescent cells 
(Evangelou et al., 2017).

Exploring alternative approaches to target the detrimental 
effects of senescence without resorting to senolytics may also be 
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worthwhile. One such approach would be targeting the SASP. 
Candidates to suppress or modulate the SASP include rapamy-
cin, BRD4, NF-κB, or p38 inhibitors (Chien et al., 2011; Freund 
et al., 2011; Herranz et al., 2015; Laberge et al., 2015; Tasdemir 
et al., 2016). Possible side effects of this strategy could include 
blunting the senescent response, exacerbation of the accumula-
tion of senescent cells, or immunosuppression. However, there 
are many potential routes for the development of new SASP 
modulators, which can be helped in no small part by improve-
ments our understanding of how the SASP is regulated.

In summary, the past few years have unveiled a key role 
for senescence in aging. The advent of powerful genetic and 
pharmacological tools to dissect this relation should improve 
our understanding of the mechanisms through which the accu-
mulation of senescence cells leads to age-related physiologi-
cal decline. It should also inform in the development of new 
therapeutic approaches. Moreover, if targeting senescence 
using senolytics or by other strategies such as SASP-modulat-
ing drugs succeeds, it could not only contribute to the treat-
ment of specific diseases but also improve the general health 
span of aged individuals.
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