
Supplementary Information

Supplementary Note 1: Re-processing and re-analyzing

raw data yields results which are generally consis-

tent with previously published results

Our re-analyses of the 29 studies were largely consistent with the originally reported

results, with the same taxonomic groups showing similar trends despite differences

in data-processing methodologies. We usually found fewer significant (q < 0.05)

differences between control and diseased groups, which is likely due to our choice of

a non-parametric statistical test (Kruskall-Wallis) paired with a multi-test correction

(FDR). Thus, our results are more conservative. We also collapsed to genus level in

order to compare results across disparate studies, which prevented us from identifying

species- or strain-specific associations which the original authors may have identified.

A major advantage of our re-analysis is that each data set was processed and analyzed

in the same way, which allowed us to more directly compare results across studies

and diseases.

1.1 Clostridium difficile infection and enteric diarrhea are

characterized by large-scale shifts in the microbiome (CDI; 4

studies)

Schubert et al. (2014) looked at how the gut microbiota differed between CDI patients

with diarrhea (n = 94), non-CDI patients with diarrhea (n = 89), and non-diarrheal

controls (n = 155).1 Similar to other CDI studies, the authors found a significant

reduction in alpha diversity in patients with diarrhea (Dunns multiple-comparison



test on AMOVA, p < 0.0001). They found that OTUs from the Ruminococcaceae,

Lachnospiraceae, Bacteroides, Prevotellaceae, and Porphyromonadaceae families were

enriched in healthy subjects relative to patients with CDI and non-CDI diarrhea.

They also showed that OTUs from the Enterococcus genus and the Enterobacteri-

aceae and Erysipelotrichaceae families were more prevalent in patients with diarrhea.

In our analysis of the data, we also observed a significant reduction in alpha diversity

in patients with diarrhea (q <= 0.05, KW test). Similarly, we found that Enterobac-

teriaceae, Enterococcus, and Erysipelotrichaceae were enriched in CDI patients, in

addition to Fusobacterium, Parvimonas, Veillonella, Carnobacterium, Streptococcus,

Tetragenococcus, Lactobacillus, Pediococcus, Gemella, Staphylococcus, Butyricicoccus,

Robinsoniella, Clostridium XlVa, Clostridium XlVb, Ruminococcus2, Flavonifractor,

Gemmiger, Mogibacterium, Peptostreptococcus, Clostridium XI, Eggerthella, Atopo-

bium, Actinomyces, Arthrobacter, Aggregatibacter, Pseudomonas, and Dysgonomonas.

As in the original study, we found that Bacteroides, Alistipes, Anaerovorax, Ox-

alobacter, Bordetella, Prevotellaceae, Porphyromonadaceae, Lachnospiraceae, and Ru-

minococcaceae were more abundant in the healthy controls. We also found Turicibac-

ter, Dialister, Eubacterium, Asteroleplasma, Cloacibacillus, Bordetella, Oxalobacter,

Sutterella, Parasutterella, Desulfovibrio, Sediminibacterium, and Methanobrevibacter

to be enriched in the controls (q <= 0.05, KW tests). Overall, our analysis closely

matched what was presented in the original manuscript.

Vincent et al. (2013) compared 25 patients with CDI to 25 healthy control pa-

tients.2 The authors found a significant reduction in alpha diversity (p <= 0.05,

Mann-Whitney U test). They also report a reduction in Bacteroidaceae and Clostridi-

ales Incertae Sedis XI in CDI patients relative to controls, and an enrichment in

Enterococcaceae in CDI patients (p < 0.05, logistic regression). After reprocessing

these data and collapsing abundances to the genus level, we observed a similar re-

duction in alpha diversity (q <= 0.05, KW test). We saw that the Enterococcaceae

genera Enterococcus and Proteus were enriched in CDI patients. Healthy controls

showed higher levels of Fusobacterium, Peptoniphilus, Murdochiella, Anaerococcus,

Finegoldia, Odoribacter, Prevotella, and Parabacteroides relative to CDI patients. In

summary, our results are fairly similar to the authors’ original analysis, showing a

depletion in Bacteroidetes and an enrichment in Proteobacteria in CDI patients.

Youngster et al. (2014) applied fecal microbiota transplants (FMTs) with materi-



als collected from 5 healthy donors to 20 patients with recurrent Clostridium difficile

infections (CDIs).3 The goal of this study was to determine whether nasal-gastric tube

or colonoscopy administration of FMTs was most effective for treating CDIs (i.e. half

of the CDI patients received one or the other treatment). The authors reported a

significant reduction in alpha diversity in CDI patients vs. the healthy donors (p

< 0.001, Mann-Whitney test). They did not assess whether there were significant

differences in microbial community composition between CDI patients and donors,

although they show that composition becomes more similar to donors following FMT.

In our analysis, we also found a significant reduction in alpha diversity (p <= 0.05,

KW test). Enterococcus was enriched in CDI patients relative to healthy stool donors

(q <= 0.05, KW tests) and 15 genera were depleted in CDI patients relative to

healthy controls. Healthy donors were enriched in genera from Ruminococcaceae and

Lachnospiraceae families, in addition to the genera Dialister and Anaerosporobacter.

Singh et al. (2015) examined differences in the gut microbiome between individ-

uals with enteric infections (n=200) and healthy controls (n=75).4 The authors re-

port a significant drop in alpha diversity in diseased patients relative to the controls

(unknown test). They also report a general reduction in the dominance of Firmi-

cutes and Bacteroidetes phyla and an increase in the prevalence of Proteobacteria in

diseased patients. Specifically, they report an increase in the abundance of Enter-

obacteriaceae, Lactobacillaceae, Pasteurellaceae, Streptococcus, Bacilli, Escherichia,

Haemophilus, and certain Ruminococcus species in patients with diarrhea. In healthy

people, they report a significant enrichment in Verrucomicrobia, Dorea, Blautia, Hol-

dermania, Ruminococcaceae, Lachnospiraceae, Butyricimonas, Faecalibacterium, Bac-

teroidaceae, and Bifidobacterium, Sutterella, Parabacteroides, Rikenellaceae, and Os-

cillospira. After re-processing the data, we found very similar results to those origi-

nally reported. We found that alpha diversity was significantly lower in patients with

enteric infections (q <= 0.05, KW test). We saw significant enrichment in Proteobac-

teria families in patients with diarrhea, including Enterobacteriaceae, Pasteurellaceae,

Campylobacteraceae, and Neisseriaceae. We also saw higher levels of Fusobacterium,

Parvimonas, Veillonella, Lactococcus, Streptococcus, Enterococcus, Tetragenococcus,

Gemella, Ruminococcus II, Peptostreptococcus, and Collinsella in diseased patients.

In the healthy controls, we found enrichment of 43 genera, including Sutterella, Verru-

comicrobia (Akkermansia), Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, and



Bifidobacterium. In addition, we saw higher levels of several members of Rumminococ-

caceae, Lachnospiraceae, and Bacteroidales in healthy controls (q <= 0.05, KW tests).

Overall, our results largely overlap with those presented, but we identify a number of

significant taxa that were not originally reported.

Taken together, we see large-scale shifts in the microbiome associated with both

CDI and non-CDI diarrhea. The dysbiosis of enteric infection and diarrhea is quite

consistent across studies. In general, Proteobacteria increase in prevalence in patients

with diarrhea, with a concomitant decrease in Bacteroidetes and Firmicutes. In par-

ticular, we see a reduction in butyrate-producing Clostridia, including genera within

Ruminococcaceae and Lachnospiraceae families, which have been associated with a

healthy gut. We also see in increase in prevalence of organisms often associated with

lower pH and higher oxygen levels of the upper-gut, like Lactobacillaceae and En-

terobacteriaceae,5 in patients with diarrhea. Thus, diarrhea leads to consistent and

large-scale rearrangements in the composition of the gut microbiome.

1.2 Colorectal cancer has a consistent, potentially pathogenic

microbial signature (CRC; 4 studies)

Baxter et al. (2016) looked at differences in the microbiomes of 120 colorectal can-

cer (CRC) patients, 198 patients with non-cancerous adenomas, and 172 healthy

controls.6 Similar to prior work, the authors found that Porphyromonas, Peptostrep-

tococcus, Parvimonas, and Fusobacterium were positively associated with CRC (ran-

dom forest classifiers). Furthermore, they found that the absence of certain Lach-

nospiraceae species was associated with the presence of adenomas. We found similar

patterns in our re-analysis of these data, with Fusobacterium, Peptostreptococcus,

Parvimonas, and Porphyromonas enriched in CRC patients (q <= 0.05, KW tests).

We also found higher levels of Victivallis, Peptoniphilus, Anaerococcus, Catenibac-

terium, Staphylococcus, Collinsella, Enterobacter, and Alloprevotella in CRC patients

(q <= 0.05, KW tests). We found that healthy controls were enriched in Lach-

nobacterium (genus within Lachnospiraceae), Gemmiger (within Rumminococcaceae),

Clostridium XVIII, and Haemophilus (q <= 0.05, KW tests). Overall, these results

match what has been reported previously for CRC.7

Zeller et al. (2014) collected microbiome data from 41 CRC patients and 75



control patients.8 At the phylum level, they found that Proteobacteria, Fusobacte-

ria, and Bacteroidetes, were more abundant in CRC patients, while Firmicutes and

Actinobacteria were enriched in control patients. At the genus level, the authors

report higher levels of Fusobacterium, Pseudoflavonifractor, Peptostreptococcus, Lep-

totrichia, Porphyromonas, Desulfovibrio, Parvimonas, Selenomonas, and Bilophila in

CRC patients (q <= 0.1, FDR-corrected Wilcoxon tests). Healthy controls were en-

riched in Bifidobacterium, Acinetobacter, Campylobacter, Ruminococcus, and Eubac-

terium genera (q <= 0.1, FDR-corrected Wilcoxon tests). In our re-analysis we found

enrichment of Fusobacterium, Parvimonas, Flavonifractor, Anaerotruncus, Anaerovo-

rax, Peptostreptococcus, Comamonas, Eikenella, Butyricimonas, and Porphyromonas

genera in CRC patients (q <= 0.05, KW tests). In healthy patients, we found higher

levels of Anaerostipes (within Lachnospiraceae; q <= 0.05, KW tests).

Wang et al. (2011) analyzed a cohort of 46 CRC patients and 56 healthy controls.9

The authors found no difference in alpha diversity between CRC and control patients.

CRC patients had higher abundances of Porphyromonas, Escherichia-Shigella, Ente-

rococcus, Streptococcus, and Peptostreptococcus genera (p <= 0.05, Mann-Whitney).

The authors report that healthy controls were enriched Bacteroides, Roseburia, Al-

istipes, Eubacterium, and Parasutterella genera (p <= 0.05, Mann-Whitney). We

found very similar results in our re-analysis of these data. We saw greater levels of

Enterococcus, Peptostreptococcus, Enterobacter, Klebsiella, Escherichia-Shigella, and

Porphyromonas genera in CRC patients (q <= 0.05, KW tests). And we observed

significantly higher levels of Bacteroides, and several genera within Lachnospiraceae

in healthy controls (q <= 0.05, KW tests). Furthermore, we also did not detect any

significant differences in alpha diversity between CRC and healthy patients.

Chen et al. (2012) analyzed stool from 22 healthy patients and 21 CRC patients.10

The authors found that Paraprevotella, Eubacterium, Desulfovibrio, Mogibacterium,

Collinsella, Anaerotruncus, Slackia, Anaerococcus, Porphyromonas, Fusobacterium,

and Peptostreptococcus genera were significantly enriched in CRC patients relative to

controls, while Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC

patients (p <= 0.05, Mann-Whitney). In our re-analysis of this data set, we found no

significant differences between CRC and control patients. Again, this is likely due to

the small number of replicates and our implementation of multiple-test corrections.

However, non-significant trends were largely in agreement with the original results.



Across these four colorectal cancer studies, we find significant agreement. Dysbio-

sis associated with CRC is generally characterized by increased prevalence of Fusobac-

terium, Porphyromonas, Peptostreptococcus, Parvimonas, Leptotrichia, Desulfovibrio,

and Anaerococcus genera (i.e. these genera were higher in CRC patients in 2 or more

studies). In addition, there is a consistent decrease in the abundances of Faecalibac-

terium, Blautia, Bacteroides genera and organisms from the Lachnospiraceae family

in CRC patients. CRC appears to have a smaller impact on overall community

structure than diahrrea. Indeed, we saw no significant differences in alpha diversity

between healthy controls and CRC patients. In summary, CRC is characterized by a

consistent enrichment of disease-associated bacteria.

1.3 Inflammatory bowel disease is characterized by a deple-

tion of health-associated bacteria (IBD - ulcerative colitis and

Crohn’s disease; 4 studies)

Gevers et al. (2014) looked for microbial signatures of Crohn’s disease (CD) samples

across 447 CD patients and 221 non-IBD controls.11 Non-IBD controls were patients

with non-inflammatory conditions such as abdominal pain and diarrhea. The authors

report increased abundance of Enterobacteriaceae, Pasteurellaceae, Veillonellaceae,

and Fusobacteriaceae in CD patients. CD patients also showed a drop in the abun-

dances of Erysipelotrichales, Bacteroidales, and Clostridiales (Ruminococcaceae and

Lachnospiraceae) taxa. These results were based on a mixture of 16S amplicon and

shotgun metagenomic sequencing. In our re-analysis of the 16S stool data, we found

significant enrichment in Anaerosporobacter, Roseburia, Hespellia, Ruminococcus II,

Eubacterium, Pseudoflavonifractor, Sporobacter, Ruminococcus, Subdoligranulum, Pa-

pillibacter, Collinsella, and Methanobrevibacter in healthy patients (q <= 0.05, KW

tests). The only genera that we saw significantly enriched in CD patients were Lac-

tobacillus and Acetanaerobacterium (q <= 0.05, KW tests). We found a similar set

of taxa enriched in the controls, but did not detect as many significant CD-enriched

genera as the authors reported. This is likely due to the fact that we restricted our

analysis to the 16S stool data. However, we saw non-significant trends in Enter-

obacteriaceae and Veillonellaceae consistent with the results reported in the original

paper.



Morgan et al. (2012) studied a cohort of 119 CD patients, 74 UC patients, and

27 healthy controls.12 The authors found that healthy patients gut microbiomes were

significantly enriched in Roseburia, Phascolarctobacterium, and an unclassified genus

in the family Veillonellaceae (multivariate linear model, q <= 0.25). Patients with

UC showed significantly higher levels of Clostridiaceae (multivariate linear model,

q <= 0.25). In our re-analysis, we did not find any genera that were significantly

enriched in IBD patients. We found that healthy patients had significantly greater

abundances of Ruminococcus, and Gemmiger relative to both UC and CD patients

(q <= 0.05, KW tests). Additionally, CD patients were depleted in Clostridium IV

relative to healthy controls (q <= 0.05, KW tests).

Papa et al. (2012) studied a cohort of 23 CD patients, 43 UC patients, and 24

non-IBD controls.13 Non-IBD controls were patients with symptoms such as: consti-

pation, abdominal pain, gastroesophageal reflux, poor weight gain, diarrhea, blood in

stool and oropharyngeal dysphagia. At the genus level, they found that controls were

enriched in Alistipes, Subdoligranulum, Anaerovorax, Oscillibacter, Parabacteroides,

Odoribacter, Ruminococcus, Butyricicoccus, Akkermansia, Anaerotruncus, Sporobac-

ter, Phascolarctobacterium, Lawsonia, Ethanoligenens, Peptococcus relative to IBD

patients (KW, q < 0.01). The only genus that was found to be enriched in IBD

patients was Escherichia-Shigella. In our re-analysis, we also found Escherichia-

Shigella and Cronobacter to be enriched in patients with IBD (q <= 0.05, KW

tests). When comparing healthy controls with UC patients, we also found an en-

richment of Haemophilus in the UC patients. Control patients showed higher abun-

dances of Phascolarctobacterium, Butyricicoccus, Ruminococcus II, Oscillibacter, Ru-

minococcus, Gemmiger, Subdoligranulum, Clostridium IV, Odoribacter, Alistipes, and

Parabacteroides relative to all IBD patients (q <= 0.05, KW tests). Additionally,

control patients were enriched in Clostridium XIVa, Flavonifractor, and Akkermansia

relative to UC patients. Overall, our results match very closely what was found in

the original paper.

Willing et al. (2010) compared 29 CD patients and 16 UC patients to 35 healthy

controls.14 The authors reported variable, and sometimes opposing shifts in the mi-

crobiomes of patients with UC, ileal CD and colonic CD at different taxonomic res-

olutions. We found no significant differences between IBD and healthy patients in

our re-analysis. When comparing healthy controls with CD cases only, we found an



enrichment of Butyricicoccus and Oscillibacter in the control patients (q <= 0.05,

KW tests).

In summary, there are certain consistencies across IBD studies. IBD patients tend

to be depleted in butyrate-producing clostridia: Ruminococcus and Lachnospiraceae.

The organisms the are enriched in CD and UC patients tend to vary across studies.

One consistency is organisms associated with the upper gut, like Lactobacillus and

Enterobacteriaceae appear to be enriched in IBD patients.5 This result fits with the

reduced stool transit times associated with IBD (i.e. diarrhea).

1.4 Obesity shows a somewhat inconsistent microbial signa-

ture (OB; 5 studies)

Goodrich et al. (2014) studied a cohort of 416 twin pairs: 422 normal BMI, 322

overweight, and 185 obese.15 The authors report higher levels of Lactobacillaceae,

Eggerthella, and Lachnospiraceae (Blautia and Dorea) in obese individuals (q < 0.05,

FDR-corrected T-test). They showed enrichment for Christensenellaceae, Dehalobac-

terium, Lachnospira, Mogibacteriaceae, Rikenellaceae, Methanobre, Coriobacteriaceae,

Peptococcaceae, Oscillospira, Ruminococcaceae, and Sarcina in healthy BMI individ-

uals (q < 0.05, FDR-corrected T-test). In our re-analysis, we found higher levels of

Streptococcus, Weissella, Roseburia, Blautia, Clostridium XlVb, and Mogibacterium

in obese individuals, while Robinsoniella, Ruminococcaceae (Oscillibacter, Pseud-

oflavonifractor, Sporobacter, and Anaerofilum), and Anaerovorax were more abun-

dant in low-BMI individuals (q <= 0.05, KW tests). Our results only partially agree

with the authors’ original findings, which may be due to the fact that we used a

different statistical test and OTU-calling method and that we binned the data at the

genus level.

Zupancic et al. (2012) analyzed 310 individuals from an Amish population with

varying BMIs.16 They found a significant positive correlation between the abundance

of Collinsella and BMI (i.e. enriched in obese individuals), while Lachnobacterium,

Anaerotruncus, Faecalibacterium, and Clostridium were negatively correlated with

BMI (i.e. enriched lean individuals) (p ¡ 0.001, Spearman correlation). We found no

significant differences in the proportion of genera between lean and obese individuals

in our re-analysis.



Turnbaugh et al. (2008) looked differences in gut microbial community structure

between 31 monozygotic and 23 dizygotic twin pairs concordant for leanness or obe-

sity.17 The authors report a reduction in alpha diversity in obese individuals. They

also report a significant decrease in Bacteroidetes and an increase in Actinobacteria in

obese twins. In our re-analysis of these data, we did not see a significant reduction in

alpha diversity (Supplementary Figure 6). We found significant increases in Cateni-

bacterium, Acidaminococcus, Megasphaera, Lactobacillus, Roseburia, and Collinsella

in obese twins (q <= 0.05, KW tests). Coprobacillus, Clostridium XVIII, Phasco-

larctobacterium, Clostridium XlVb, Oscillibacter, Flavonifractor, Pseudoflavonifrac-

tor, Ruminococcus, Clostridium IV, Gordonibacter, Alistipes, and Barnesiella were

significantly enriched in lean twins (q <= 0.05, KW tests).

Ross et al. (2015) looked at 63 Mexican American patients with varying BMIs.18

They found no significant differences between patients with high and low BMIs within

their 63 patient cohort, but identified several significant differences between their

patient population and the HMP data set. However, it is unclear whether these

differences were related to obesity, so we do not discuss them here. Our re-analysis

of these results also found no significant differences in the relative abundances of

bacterial genera between high- and low-BMI subjects.

Zhu et al. (2013) compared across a cohort of 16 healthy and 25 obese patients,

in addition to 22 patients with Nonalcoholic steatohepatitis (see below).19 For obe-

sity, the authors found that Prevotella was enriched in high-BMI patients, while

healthy controls showed significantly greater relative abundances of Bifidobacterium,

Blautia, and Faecalibacterium (p <= 0.05, ANOVA with post-hoc Tukey’s tests).

In our re-analysis of these data, we found a significant enrichment of Peptoniphilus,

Anaerococcus, Finegoldia, Leuconostoc, Mogibacterium, Varibaculum, Campylobacter,

Prevotella, and Porphyromonas in obese patients (q <= 0.05). Healthy patients were

significantly enriched in Akkermansia, Murdochiella, Blautia, Lachnospiracea incertae

sedis, and Clostridium IV, Anaerovorax (q <= 0.05, KW tests).

Overall, we found several differences between lean and obese patients that were

consistent across at least two studies. Roseburia and Mogibacterium were enriched

in obese individuals in more than one study. Pseudoflavonifractor, Oscillobacter,

Anaerovorax and Clostridium IV were enriched in the controls across more than one

study. However, no genera showed consistent differences across three or more studies.



Our results are largely consistent with a recent meta-analysis of obesity studies, which

found no universal signature of human obesity.20

1.5 Human immunodeficiency virus microbial signature is

confounded with patient cohorts (HIV; 3 studies)

Dinh et al. (2015) compared the gut microbiome from 16 healthy patients to 22

patients with chronic HIV infections.21 The authors report an general enrichment

in Proteobacteria in HIV-infected patients. At the genus level, they found a signifi-

cant enrichment in Barnesiella and a depletion in Alistipes in HIV-infected patients

(LEfSe, p < 0.05). In our re-analysis of these data we found no significant differences

in the relative abundances of genera between healthy and HIV-infected patients.

Lozupone et al. (2013) looked at 22 HIV-positive patients and 13 healthy con-

trols.22 The authors reported enrichment of Prevotella, Catenibacterium, Dialister,

Allisonella, and Megasphera genera in HIV-positive patients, while Bacteroides and

Alistipes were more abundant in controls (p < 0.05, ANOVA). We found all the as-

sociations reported above in our re-analysis. Additionally, we saw higher relative

abundances of Erysipelotrichaceae incertae sedis, Peptococcus, Mogibacterium, Pep-

tostreptococcus, Desulfovibrio, Hallella, and Alloprevotella in HIV-positive patients.

And healthy patients were also enriched in Oridibacter, Anaerostipes, and Parasut-

terella. Many of the significant genera from the Lozupone study were shown to be

strongly associated with sexual behavior in the Noguera-Julian study (i.e. these gen-

era were significantly different in men who have sex with men versus other subjects;

see below) and may not necessarily be related to HIV status.

Noguera-Julian et al. (2016) studied a cohort of 293 HIV-infected patients and 57

healthy controls. The authors found that many putative associations between HIV

and the microbiome were driven by sexual preference (i.e. Prevotella, along with

several other genera, were enriched in men who have sex with men (MSM)). After

controlling for this demographic confounder, the authors reported that they were

not able to classify HIV positive and negative patients MSM patients. Due to the

large size of their study, the authors were able to separate the influences of sexual

behavior and HIV-status from one another and found that the majority of reported

HIV-associations are likely confounded with sexual behavior.



Overall, there is not yet a strong consensus on the impacts of HIV on the human

gut microbiome. Differences between patient cohorts may have obscured any putative

HIV signal across studies. For example, all the patients in the Dinh et al. (2015)

study were on antiretroviral therapy (ART), while only some of the patients in the

other two studies were on ART. Noguera-Julian et al. (2016) found that patients who

initiated ART within the first 6 months of HIV infection were able to maintain gut

microbial community richness, unlike patients that were not on ART. In addition,

the Noguera-Julian et al. (2016) paper was able to show that prior results showing

enrichment of Prevotella in HIV-positive patients was an artifact due to this genera

being enriched in men who have sex with men.

1.6 Autism spectrum disorder (ASD; 2 studies)

Kang et al. (2013) reported a reduced prevalence of Prevotella and other fermentative

organisms in the guts of ASD children.23 In particular, the authors showed significant

(q <= 0.05, Mann-Whitney) depletion in unclassified Prevotella and Veillonellaceae

genera in autistic children (n = 20 treatment and 20 controls). The authors also note

a reduced alpha diversity in autistic children. After reprocessing these data, we found

no significant differences in alpha diversity or genera abundances between autistic and

control children (Figure 1; q > 0.05, Kruskal-Wallis). The original conclusion that

Prevotella and Veillonellaceae were different was based on q-values of 0.04, which is

only moderately convincing evidence against the null-hypothesis. Therefore, the loss

of this marginal significance (for q <= 0.05) is unsurprising when using a different

statistical test.

In a more recent study, Son et al. (2015) found no significant differences in micro-

bial community diversity or composition between autistic and neurotypical children

(n = 59 ASD and 44 neurotypical).24 One genus, representing chloroplast sequences,

was associated with ASD children with functional constipation, but this signal ap-

peared to be due to dietary intake of chia seeds. Similar to the authors findings, we

did not detect any significant differences in genera abundances between ASD children

and neurotypical children in the reprocessed data (q > 0.05, Kruskal-Wallis).

Taken together, we find no evidence for changes in the composition or diversity of

the gut microbiome in response to ASD. However, we cannot discount subtle dysbiosis

(i.e. small effect size) in response to ASD due to the small number of patients in each



study.

1.7 Type 1 Diabetes (T1D; 2 studies)

Alkanani et al. (2015) compared 23 healthy patients to 35 early-onset T1D patients

and 21 seropositive T1D patients.25 The authors report higher relative abundances

of Lactobacillus, Prevotella and Staphylococcus genera in healthy patients (p < 0.05,

Wilcoxon). T1D patients showed higher levels of Bacteroides (p< 0.05, Wilcoxon). In

our re-analysis, we found no significant differences in bacterial genera across healthy

and diseased patients.

Mejia-Leon et al. (2014) compared 8 healthy patients to 8 early-onset T1D pa-

tients and 13 T1D patients who had received 2 years of treatment.26 Similar to

Alkanani et al. (2015), they found controls to be significantly enriched in Prevotella

and T1D patients enriched in Bacteroides (p < 0.05, ANOVA, Tukey-Kramer test).

They also found higher levels of Acidaminococcus and Megamonas genera (in the

Veillonellaceae family) in the controls (p < 0.05, ANOVA, Tukey-Kramer test). We

saw no significant differences in our re-analysis of these data.

Overall, the original authors report a consistent increase in Bacteroides and de-

pletion in Prevotella genera associated with T1D. However, our re-analysis found

that these differences did not pass our significance threshold. Thus, we cannot yet

conclude that there is a consistent dysbiosis associated with T1D.

1.8 Nonalcoholic steatohepatitis (NASH; 2 studies)

Zhu et al. (2013) compared the microbiomes from 16 healthy individuals to 22

patients with NASH.19 They found significantly lower relative abundances of Bifi-

dobacterium, Blautia, and Faecalibacterium genera in NASH patients (p <= 0.05,

ANOVA with post-hoc Tukey’s tests). NASH patients were enriched in Escherichia,

compared to controls, and tended to show increased levels of Proteobacteria (p <=

0.05, ANOVA with post-hoc Tukey’s tests). In our re-analysis, we found that NASH

patients showed significantly higher levels of Fusobacterium, Peptoniphilus, Anaero-

coccus, Finegoldia, Gallicola, Negativicoccus, Leuconostoc, Weissella, Lactobacillus,

Peptococcus, Moryella, Syntrophococcus, Mogibacterium, Olsenella, Varibaculum, Mo-

biluncus, Pyramidobacter, Escherichia/Shigella, Campylobacter, Hallella, Prevotella,



and Porphyromonas genera (q < 0.05, KW test). Conversely, control patients were

significantly enriched in Akkermansia, Murdochiella, Coprococcus, Anaerostipes, Blau-

tia, Lachnospiracea incertae sedis, Faecalibacterium, Ruminococcus, Gemmiger, Clostrid-

ium IV, Anaerovorax, Clostridium XI, Corynebacterium, Bifidobacterium, Alistipes,

and Barnesiella genera (q < 0.05, KW test).

Wong et al. (2013) investigated a cohort of 16 healthy and 22 NASH patients.27

They found that control patients were enriched in Faecalibacterium and Anaerosporobac-

ter genera, while NASH patients showed significantly higher levels of Parabacteroides

and Alisonella genera (p < 0.05, t-test). In our re-analysis of these data, we saw no

significant differences.

In summary, there were not many consistencies between the two NASH studies

analyzed here. The original studies consistently report a depletion in Faecalibacterium

in NASH patients. Thus, the overall influence of NASH on the microbiome is difficult

to assess without further study.

1.9 Minimal hepatic encephalopathy and liver cirrhosis (LIV;

1 study)

Zhang et al. (2013) looked at the microbiomes of 26 healthy patients, 26 patients

with MHE, and 25 patients with CIRR.28 The original paper reported several gen-

era that differed between diseased and control patients. Odoribacter, Flavonifractor,

and Coprobacillus were all enriched in MHE patients relative to controls, while Eu-

bacterium, Lachnospira, Parasutteralla, and an unclassified Erysipelotrichaceae genus

were enriched in healthy patients (p < 0.01, Mann-Whitney). The authors also re-

ported depletion in Prevotella in non-MHE patients with cirrhosis (CIRR), relative

to controls. When we re-processed and re-analyzed these data, the only difference

we found was an enrichment in Veillonella in case (MHE and CIRR) patients (q <

0.05, KW test). When comparing controls with MHE patients alone, we also saw an

enrichment of Faecalibacterium in healthy controls relative to MHE cases.

1.10 Rheumatoid and psoriatic arthritis (ART; 1 study)

Scher et al. (2013) investigated the impacts of arthritis on a cohort of 86 arthritic

and 28 healthy patients.29 The authors report that greater abundances of Prevotella



copri can predict susceptibility to arthritis. There were three types of arthritic con-

ditions studied, but only new-onset untreated rheumatoid arthritis (NORA) showed

a strong association with multiple Prevotella OTUs among others (q < 0.01, LEfSe).

The other RA groups were not easily distinguishable from controls. Indeed, when

grouping all arthritis patients together for our re-analysis as well as comparing RA

and psoriatic arthritis patients separately, we did not find any genera that were sig-

nificantly different between arthritic patients and controls.

1.11 Parkinson’s disease (PAR; 1 study)

Scheperjans et al. (2014) looked for differences in the gut microbiome between 72 neu-

rotypical patients and 72 Parkinson’s (PAR) patients.30 They found a small handful

of significant differences at the family level. Control patients showed higher relative

abundances of Prevotellaceae, while PAR patients were enriched in Lactobacillaceae,

Verrucomicrobiaceae, Bradyrhizobiaceae, and Clostridiales Incertae Sedis (q < 0.05,

Mann-Whitney). In our re-analysis, we found significantly higher relative abundances

of Lactobacillus (within Lactobacillaceae) and Alistipes (within Rikenellaceae) in PAR

patients (q < 0.05, KW tests).

Supplementary Note 2: Stratifying heterogenous

case groups shows consistent disease-specific signals

In our main analyses, we combined Crohn’s disease (CD) and ulcerative colitis (UC)

patients together as IBD cases. We also performed separate analyses on these indi-

vidual patient groups. All four IBD studies included CD cases and three included UC

cases (all except Gevers et al. (2014)11). We performed the same analysis as in Figure

1 for these stratified groups, and found that both CD and UC patients are charac-

terized by depletion of similar health-associated microbes (Supplementary Figures 4

and 5). Interestingly, neither UC nor CD seemed to have a larger microbiome shift:

only one dataset for each type of comparison had more than 10 significant genera

(Gevers et al. (2014), 14 CD-associated genera; Papa et al. (2012), 17 UC-associated

genera). Additional studies comparing UC- and CD-specific microbiome alterations

will be needed to tease out whether and how these IBD subtypes differentially impact



the gut microbiome.

We also performed stratified analyses on the arthritis (ART) and liver (LIV) pa-

tients in the Scher et al. (2013) and Zhang et al. (2013) datasets, respectively28,29

(Supplementary Figure 4). The random forest classifiers performed similarly well on

the stratified patient groups than on the combined cases. As in the combined analy-

ses, neither type of arthritis (rheumatoid arthritis (RA) or psoriatic arthritis (PSA))

had any significant genus-level associations. In the Zhang et al. (2013) dataset,

1 genus was significantly associated with the liver cirrhosis (CIRR) patients and 2

with the minimal hepatic encelopathy (MHE) patients. As in the original combined

analysis, Veillonella was associated with both groups of patients. In our stratified

analysis, Faecalibacterium was additionally significantly associated with non-MHE

healthy controls. However, the lack of other arthritis or liver datasets in this analysis

prevents us from drawing more generalized conclusions from these stratified analyses.

Supplementary Note 3: Healthy vs. disease clas-

sifier identifies general microbiome shifts

To further address the question of whether we could find a robust, generalized sig-

nal for diseased microbiomes regardless of the disease type, we built two classifiers

to distinguish healthy patients from any type of case patients. In these classifiers,

we excluded the two datasets which did not have healthy controls (Gevers et al.

(2014)11 and Papa et al. (2012),13 which used non-IBD patients as controls) and CDI

Youngster (2014),3 which had only 4 distinct controls. First, we performed leave-

one-dataset-out cross-validation to determine whether a general healthy vs. disease

classifier trained on the other datasets could still classify cases from controls in a test

dataset. These AUCs correlated well with the single-dataset classifiers, though usu-

ally performed slightly less well than the single-dataset classifiers (Pearson ρ = 0.56, p

= 0.003; Supplementary Figure 9). We also built a more stringent leave-one-disease-

out classifier to ensure that the diarrhea datasets and others with strong microbiome

signals were not driving the classification ability of all other diseases. Surprisingly,

this classifier performed similarly to the leave-one-dataset-out classifier (Supplemen-

tary Figure 9). The positive correlation with the original single-dataset classification

results (Pearson ρ = 0.47, p = 0.02) indicates that there is a generalizable healthy vs.



disease microbiome signal that is being identified even across different diseases. These

results also indicate that models for each disease group are predictive of cases and

controls for other datasets within that group, since the leave-one-dataset-out classi-

fier, which included datasets of the test disease group in the training set, performed

better than the leave-one-disease-out classifier, which did not.

Supplementary Note 4: Shared microbial response

is robust to different definitions

Our simple heuristic defined non-specific microbes as those which were significantly

enriched or depleted in two diseases. To ensure that this definition was not being

dominated by the diarrhea datasets and that we were indeed identifying microbes

which respond non-specifically to multiple diseases, we re-defined the non-specific

genera as those which were significantly enriched or depleted in two diseases, excluding

datasets with diarrhea cases (Schubert et al. (2014),1 Singh et al. (2015),4 Vincent

et al. (2013),2 and Youngster et al. (2014)3). We found that 27 out of the 51 original

non-specific genera were recovered, with all health- and disease-associated effects in

matching directions (Supplementary Figure 10). Thus, the majority of the shared

microbial response is robust to the exclusion of diarrhea datasets.

We also re-defined non-specific microbes using Stouffer’s method to combine p-

values across all datasets (except Papa et al. (2012),13 Gevers et al. (2014),11 and

Lozupone et. al (2013)22).31 We combined each dataset’s FDR-corrected q-values

with scipy.stats.combine pvalues(method=‘stouffer’), using the square root

of each study’s sample size as the weights. Genera with a combined q-value less than

0.05 were considered non-specific responders. Overall, these results did not conflict

with the heuristic definition (i.e. only two genera, Porphyromonas and Gemmiger,

were “health-associated” with one method and “disease-associated” with the other;

Supplementary Figure 10). Stouffer’s method is less conservative than the heuristic

definition, identifying 111 genera in the non-specific response (60 health-associated

and 51 disease-associated). In addition, using Stouffer’s method does not allow for

the identification of mixed genera (i.e. those which respond in both health- and

disease-associated directions across multiple diseases). Finally, combining q-values

with Stouffer’s method does not ensure that identified microbes are responding non-



specifically to multiple diseases: one highly significant genus in a large study can

dominate other q-values and be flagged as a non-specific responder, despite only

being associated with one disease. Thus, the heuristic definition is more conservative

and more directly related to the biological question of identifying shared microbial

responses to disease.

We tested whether the overall number of non-specific responders we observed

was greater than we would expect to see due to chance. We built an empirical

null distribution of the number of each type of non-specific responder. We shuffled

q-values within each dataset, re-defined non-specific responders, and counted how

many health-associated, disease-associated, and mixed genera were found, repeat-

ing this process 1000 times. When we considered significance in two diseases as the

threshold for our heuristic (as presented in the main text), we did not find a signif-

icantly larger number of non-specific responses than would be expected by chance

(Supplementary Figure 11). When we raised the heuristic threshold to three diseases

our results became more significant, but there was a large reduction in the number

of identified non-specific genera. Thus, there is currently not enough information to

fully distinguish between microbes that are sporadically detected across multiple dis-

eases from those that may be consistently associated with general health or disease.

Future meta-analyses that include many more datasets for each of many conditions

might be able to distinguish microbes that are consistently associated with health or

disease from those that are sporadically associated with different conditions.

Despite the fact that the number of non-specific microbes did not reach statistical

significance, we identified multiple lines of evidence for a coherent microbial response

to health and disease. First, the healthy vs. disease classifiers successfully classified

case patients across a variety of diseases even when the disease being tested was not

in the training set, indicating that some aspects of disease-associated microbiome

shifts can generalize across diseases (Supplementary Figure 9). Second, the statis-

tical significance of the number of non-specific responders increased as we increased

the number of diseases threshold (Supplementary Figure 11). Thus, future meta-

analyses which include many more studies and disease states may be able to more

robustly identify bacteria which respond across a broader variety of disease states.

Third, we saw a coherent phylogenetic signal in the non-specific response (e.g. Pro-

teobacteria and Lactobacillaceae associated with disease and Rumminococcaceae and



Lachnospiraceae associated with health), which points to potential mechanisms (e.g.

shorter stool transit time or inflammation) for a shared response to health or disease

(Figure 3A). Thus, we expect that future meta-analyses that include more studies

and diseases will identify a consistent set of bacteria that form a general microbial

response to health and disease in the gut.



Dataset ID Year Controls N (controls) Cases N (cases)

Median

reads per

sample

Sequencer 16S Region Ref.

Scher 2013, ART 2013 H 28 PSA, RA 86 2194.0 454 V1-V2 29

Kang 2013, ASD 2013 H 20 ASD 19 1345.0 454 V2-V3 23

Son 2015, ASD 2015 H 44 ASD 59 4777.0 Miseq V1-V2 24

Schubert 2014, CDI 2014 H 154 CDI 93 4897.0 454 V3-V5 1

Schubert 2014, nonCDI 2014 H 154 nonCDI 89 4903.0 454 V3-V5 1

Singh 2015, EDD 2015 H 82 EDD 201 2585.0 454 V3-V5 4

Vincent 2013, CDI 2013 H 25 CDI 25 2526.5 454 V3-V5 2

Youngster 2014, CDI 2014 H 4 CDI 19 15081.0 Miseq V4 3

Baxter 2016, CRC 2016 H 172 CRC 120 9913.5 Miseq V4 6

Chen 2012, CRC 2012 H 22 CRC 21 1152.0 454 V1-V3 10

Wang 2012, CRC 2012 H 54 CRC 44 161.0 454 V3 9

Zeller 2014, CRC 2014 H 75 CRC 41 120989.0 MiSeq V4 8

Dinh 2015, HIV 2015 H 15 HIV 21 3248.5 454 V3-V5 21

Lozupone 2013, HIV 2013 H 13 HIV 23 3262.0 MiSeq V4 22

Noguera-Julian 2016, HIV 2016 H 34 HIV 205 16506.0 MiSeq V3-V4 32

Gevers 2014, IBD 2014 nonIBD 16 CD 146 9773.5 Miseq V4 11

Morgan 2012, IBD 2012 H 18 UC, CD 108 1022.5 454 V3-V5 12

Papa 2012, IBD 2012 nonIBD 24 UC, CD 66 1323.5 454 V3-V5 13

Willing 2010, IBD 2009 H 35 UC, CD 45 1118.5 454 V5-V6 14

Zhang 2013, LIV 2013 H 25 CIRR, MHE 46 487.0 454 V1-V2 28

Wong 2013, NASH 2013 H 22 NASH 16 1980.0 454 V1-V2 27

Zhu 2013, NASH 2013 H 16 NASH 22 10863.0 454 V4 19

Goodrich 2014, OB 2014 H 428 OB 185 27077.0 Miseq V4 15

Ross 2015, OB 2015 H 26 OB 37 4562.0 454 V1-V3 18

Turnbaugh 2009, OB 2009 H 61 OB 195 1556.5 454 V2 17

Zhu 2013, OB 2013 H 16 OB 25 9778.0 454 V4 19

Zupancic 2012, OB 2012 H 96 OB 101 1645.0 454 V1-V3 16

Scheperjans 2015, PAR 2015 H 74 PAR 74 2351.5 454 V1-V3 30

Alkanani 2015, T1D 2015 H 55 T1D 57 9117.0 MiSeq V4 25

Mejia-Leon 2014, T1D 2014 H 8 T1D 21 4702.0 454 V4 26

Supplementary Table 1: Datasets collected and processed through standardized pipeline. Disease la-

bels: ART = arthritis, ASD = austism spectrum disorder, CD = Crohn’s disease, CDI = Clostridium

difficile infection, CIRR = liver cirrhosis, CRC = colorectal cancer, EDD = enteric diarrheal disease,

H = healthy, HIV = human immunodeficiency virus, LIV = liver diseases, MHE = minimal hepatic

encephalopathy, NASH = non-alcoholic steatohepatitis, OB = obesity, PAR = Parkinson’s disease,

PSA = psoriatic arthritis, RA = rheumatoid arthritis, T1D = type I diabetes, UC = ulcerative coli-

tis. nonCDI controls are patients with diarrhea who tested negative for C. difficile infection. nonIBD

controls are patients with gastrointestinal symptoms but no intestinal inflammation. Datasets are

ordered alphabetically by disease and within disease by first author.



Dataset ID Data type Barcodes Primers Quality filtering Quality cutoff Length trim

Scher 2013, ART fastq No Yes -fastq truncqual 25 200

Kang 2013, ASD fastq No Yes -fastq truncqual 25 200

Son 2015, ASD fastq No Yes -fastq truncqual 25 200

Schubert 2014, CDI fastq No Yes -fastq truncqual 25 150

Vincent 2013, CDI fastq No Yes -fastq truncqual 20 101

Youngster 2014, CDI fastq No No -fastq truncqual 25 200

Baxter 2016, CRC fastq No No -fastq truncqual 25 250

Chen 2012, CRC fastq Yes Yes -fastq truncqual 25 200

Wang 2012, CRC fastq Yes Yes -fastq truncqual 25 150

Zeller 2014, CRC fastq No No -fastq truncqual 25 200

Singh 2015, EDD fasta n/a n/a n/a n/a 200

Dinh 2015, HIV fastq No No -fastq truncqual 25 200

Lozupone 2013, HIV fastq No No -fastq truncqual 25 150

Noguera-Julian 2016, HIV fastq No Yes -fastq truncqual 25 200

Gevers 2014, IBD fastq No No -fastq truncqual 25 200

Morgan 2012, IBD fastq No Yes -fastq truncqual 25 200

Papa 2012, IBD fasta n/a n/a n/a n/a 200

Willing 2010, IBD fastq No Yes -fastq maxee 2 200

Zhang 2013, LIV fastq No Yes -fastq truncqual 25 200

Wong 2013, NASH fastq No No -fastq truncqual 25 200

Zhu 2013, NASH fasta n/a n/a n/a n/a 200

Schubert 2014, nonCDI fastq No Yes -fastq truncqual 25 150

Goodrich 2014, OB fastq No No -fastq truncqual 25 200

Ross 2015, OB fastq No No -fastq truncqual 25 150

Turnbaugh 2009, OB fasta n/a n/a n/a n/a 200

Zhu 2013, OB fasta n/a n/a n/a n/a 200

Zupancic 2012, OB fastq No No -fastq truncqual 25 200

Scheperjans 2015, PAR fastq No Yes -fastq truncqual 25 200

Alkanani 2015, T1D fastq No No -fastq maxee 2 200

Mejia-Leon 2014, T1D fastq Yes Yes -fastq truncqual 25 150

Supplementary Table 2: Processing parameters for all datasets. Barcodes column indicates whether

we assigned reads to samples by their barcodes (Yes) or if the files were already de-multiplexed (No).

Primers column indicates whether we removed the primers from sequences. Quality filtering

and Quality cutoff columns indicate the type of quality filtering we performed on the data. Length

trim is the length to which all sequences were truncated before clustering into OTUs. In the case of

-fastq truncqual quality filtering, reads were length trimmed after quality truncation. In the case

of -fastq maxee quality filtering, reads were length trimmed before quality filtering. Datasets are

ordered alphabetically by disease and within disease by first author. ART = arthritis, ASD = autism

spectrum disorder, CDI = Clostridium difficile infection, CRC = colorectal cancer, EDD = enteric

diarrheal disease, HIV = human immunodeficient virus, IBD = inflammatory bowel disease, LIV =

liver disease, NASH = non-alcoholic steatohepatitis, nonCDI = non-Clostridium difficile infection,

OB = obesity, PAR = Parkinson’s disease, T1D = type I diabetes.



Dataset ID Raw data Metadata

Scher 2013, ART SRA study SRP023463 SRA

Kang 2013, ASD SRA study SRP017161 SRA

Son 2015, ASD SRA study SRP057700 SRA

Schubert 2014, CDI mothur.org/CDI MicrobiomeModeling mothur.org/CDI MicrobiomeModeling

Vincent 2013, CDI email authors email authors

Youngster 2014, CDI SRA study SRP040146 email authors

Baxter 2016, CRC SRA study SRP062005 SRA

Chen 2012, CRC SRA study SRP009633 SRA sample description

Wang 2012, CRC SRA study SRP005150 SRA study description

Zeller 2014, CRC ENA study PRJEB6070 Table S1 and S2

Singh 2015, EDD http://dx.doi.org/10.6084/m9.figshare.1447256 Additional File 4

Dinh 2015, HIV SRA study SRP039076 SRA

Lozupone 2013, HIV ENA study PRJEB4335 Qiita study 1700

Noguera-Julian 2016, HIV SRA study SRP068240 SRA

Gevers 2014, IBD SRA study SRP040765 Table S2

Morgan 2012, IBD SRA study SRP015953 http://huttenhower.sph.harvard.edu/ibd2012

Papa 2012, IBD email authors email authors

Willing 2010, IBD email authors email authors

Zhang 2013, LIV SRA study SRP015698 SRA

Wong 2013, NASH SRA study SRP011160 SRA

Zhu 2013, NASH MG-RAST, study mgp1195 MG-RAST

Schubert 2014, nonCDI mothur.org/CDI MicrobiomeModeling mothur.org/CDI MicrobiomeModeling

Goodrich 2014, OB ENA studies PRJEB6702 and PRJEB6705 ENA

Ross 2015, OB SRA study SRP053023 SRA

Turnbaugh 2009, OB https://gordonlab.wustl.edu/NatureTwins 2008/TurnbaughNature 11 30 08.html Table S1

Zhu 2013, OB MG-RAST, study mgp1195 (same data as nash zhu) MG-RAST

Zupancic 2012, OB SRA study SRP002465 SRA

Scheperjans 2015, PAR ENA study PRJEB4927 sample names

Alkanani 2015, T1D email authors email authors

Mejia-Leon 2014, T1D email authors email authors

Supplementary Table 3: Locations of raw data and associated metadata for each dataset used in

these analyses. Datasets are ordered alphabetically by disease and within disease by first author.

ART = arthritis, ASD = autism spectrum disorder, CDI = Clostridium difficile infection, CRC =

colorectal cancer, EDD = enteric diarrheal disease, HIV = human immunodeficient virus, IBD =

inflammatory bowel disease, LIV = liver disease, NASH = non-alcoholic steatohepatitis, nonCDI

= non-Clostridium difficile infection, OB = obesity, PAR = Parkinson’s disease, T1D = type I

diabetes.



Dataset ID AUC Fisher’s p Kappa score

Singh 2015, EDD 0.96 7.9e-31 0.7

Schubert 2014, CDI 0.99 8.7e-49 0.88

Schubert 2014, nonCDI 0.98 6.3e-38 0.79

Vincent 2013, CDI 0.91 1.6e-06 0.68

Goodrich 2014, OB 0.67 0.00014 0.11

Turnbaugh 2009, OB 0.84 1.7e-06 0.28

Zupancic 2012, OB 0.44 0.16 -0.11

Ross 2015, OB 0.49 0.75 -0.068

Zhu 2013, OB 0.86 1.3e-05 0.69

Baxter 2016, CRC 0.77 5.4e-16 0.43

Zeller 2014, CRC 0.82 3.4e-06 0.41

Wang 2012, CRC 0.9 2.6e-11 0.67

Chen 2012, CRC 0.78 0.034 0.35

Gevers 2014, IBD 0.71 1 0

Morgan 2012, IBD 0.81 0.0025 0.26

Papa 2012, IBD 0.84 0.0019 0.34

Willing 2010, IBD 0.66 0.81 0.026

Noguera-Julian 2016, HIV 0.67 1 0

Lozupone 2013, HIV 0.92 8.7e-06 0.76

Dinh 2015, HIV 0.22 0.062 -0.26

Son 2015, ASD 0.39 0.12 -0.16

Kang 2013, ASD 0.76 0.056 0.33

Alkanani 2015, T1D 0.71 0.0078 0.27

Mejia-Leon 2014, T1D 0.77 0.18 0.25

Wong 2013, NASH 0.68 0.098 0.28

Zhu 2013, NASH 0.93 1.3e-07 0.84

Scher 2013, ART 0.62 1 -0.034

Zhang 2013, LIV 0.8 0.016 0.29

Scheperjans 2015, PAR 0.67 0.0083 0.23

Supplementary Table 4: Area under the ROC curve (AUC), Fisher’s p-values, and Kappa score for

each case vs. control classifier. Metrics were calculated from the predictions on each test set in

five-fold cross-validation. Datasets are ordered as in Figure 1. ART = arthritis, ASD = autism

spectrum disorder, CDI = Clostridium difficile infection, CRC = colorectal cancer, EDD = enteric

diarrheal disease, HIV = human immunodeficient virus, IBD = inflammatory bowel disease, LIV =

liver disease, NASH = non-alcoholic steatohepatitis, nonCDI = non-Clostridium difficile infection,

OB = obesity, PAR = Parkinson’s disease, T1D = type I diabetes.



Supplementary Figure 1: ROC curves for each of the classifiers in Figure 1. Datasets are ordered

alphabetically by disease and within disease by first author. FPR = false positive rate, TPR =

true positive rate. ART = arthritis, ASD = autism spectrum disorder, CDI = Clostridium difficile

infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV = human immunodeficient

virus, IBD = inflammatory bowel disease, LIV = liver disease, NASH = non-alcoholic steatohepatitis,

nonCDI = non-Clostridium difficile infection, OB = obesity, PAR = Parkinson’s disease, T1D =

type I diabetes.
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Supplementary Figure 2: Same heatmaps as in Figure 2, with rows labeled by family and genus taxonomy. Heatmaps show log10(q-values) for each disease (Kruskal-Wallis (KW) test, Benjamini-

Hochberg FDR correction). Rows include all genera which were significant in at least one dataset within each disease, columns are datasets. Q-values are colored by direction of the effect, where red

indicates higher mean abundance in disease patients and blue indicates higher mean abundance in controls. Opacity ranges from q = 0.05 to 1, where q values less than 0.05 are the most opaque

and q values close to 1 are gray. White indicates that the genus was not present in that dataset. Within each heatmap, rows are ordered from most disease-associated (top) to most health-associated

(bottom) (i.e. by the sum across rows of the log10(q-values), signed according to directionality of the effect).
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Supplementary Figure 3: Panel A from Figure 3, with genus labels. Non-specific and disease-

associated genera. Genera are in rows, arranged phylogenetically according to a PhyloT tree built

from genus-level NCBI IDs (http://phylot.biobyte.de). Non-specific genera are associated with

health (or disease) in at least two different diseases (q < 0.05, Kruskal-Wallis (KW) test, Benjamini-

Hochberg FDR correction). Disease-specific genera are significant in the same direction in at least

two studies of the same disease (q < 0.05, FDR KW test). As in Figure 2, blue indicates higher mean

abundance in controls and red indicates higher mean abundance in patients. Black bars indicate

mixed genera which were associated with health in two diseases and also associated with disease in

two diseases. Disease-specific genera are shown for diseases with at least 3 studies.

http://phylot.biobyte.de
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Supplementary Figure 4: Same analysis as in Figure 1 for stratified patient groups. (A) Left:

Total sample size for each comparison. Right: Area under the ROC curve (AUC) for genus-level

random forest classifiers. (B) Left: Number of genera with q < 0.05 (Kruskal-Wallis (KW) test,

Benjamini-Hochberg FDR correction) for each type of patient group comparison. Right: Direction of

microbiome shift,i.e. the percent of total associated genera which were enriched in diseased patients.

In comparisons on the leftmost blue line, 100% of associated (q < 0.05, FDR KW test) genera are

health-associated (i.e. depleted in patients relative to controls). In comparisons on the rightmost

red line, 100% of associated (q < 0.05, FDR KW test) genera are disease-associated (i.e. enriched

in patients relative to controls).
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Supplementary Figure 5: Same results as presented in Figure 2 for ulcerative colitis (UC) and

Crohn’s disease (CD) IBD patients separately. Heatmaps show log10(q-values) for each comparison,

with studies in columns and genera in rows (Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR

correction). Q-values are colored by direction of the effect, where red indicates higher mean abun-

dance in disease patients and blue indicates higher mean abundance in controls. Opacity ranges

from q = 0.05 to 1, where q values less than 0.05 are the most opaque and q values close to 1 are

gray. White indicates that the genus was not present in that dataset. Within each heatmap, rows

are ordered from most disease-associated (top) to most health-associated (bottom) (i.e. by the sum

across rows of the log10(q-values), signed according to directionality of the effect).
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Supplementary Figure 6: Reduction in alpha diversity is not a reliable indicator of “dysbiosis.”

Shannon alpha diversity index across all patient groups in all studies, calculated on OTUs (i.e. not

collapsed to genus level, and including unannotated OTUs). Diarrheal patients consistently have

lower alpha diversity than non-diarrheal controls (green box). Crohn’s disease (CD) patients also

show a slight reduction of alpha diversity relative to controls in three out of four IBD studies and

ulcerative colitis (UC) patients in two studies (purple box). Obese patients have inconsistent and

small reductions in alpha diversity, consistent with a previous meta-analysis.20 ∗ : 0.01 < p <

0.05, ∗∗ : 10−4 < p < 0.01, ∗ ∗ ∗ : p < 10−4. P values are calculated from a two-sided T-test (using

scipy.stats.ttest ind) and are not corrected for multiple tests. Note that the datasets with

multiple case groups (Zhu et al. (OB/NASH, 2013) and Schubert et al. (CDI/non-CDI, 2014))

are presented only once in this plot. ART = arthritis, ASD = austism spectrum disorder, CD =

Crohn’s disease, CDI = Clostridium difficile infection, CIRR = liver cirrhosis, CRC = colorectal

cancer, EDD = enteric diarrheal disease, H = healthy, HIV = human immunodeficiency virus, LIV =

liver diseases, MHE = minimal hepatic encephalopathy, NASH = non-alcoholic steatohepatitis, OB

= obesity, PAR = Parkinson’s disease, PSA = psoriatic arthritis, RA = rheumatoid arthritis, T1D

= type I diabetes, UC = ulcerative colitis. nonCDI controls are patients with diarrhea who tested

negative for C. difficile infection. nonIBD controls are patients with gastrointestinal symptoms but

no intestinal inflammation.
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Supplementary Figure 7: Chao1 alpha diversity across all patient groups in all studies, calculated

on OTUs (i.e. not collapsed to genus level, and including unannotated OTUs). ∗ : 0.01 < p <

0.05, ∗∗ : 10−4 < p < 0.01, ∗ ∗ ∗ : p < 10−4. P values are calculated from a two-sided T-test (using

scipy.stats.ttest ind) and are not corrected for multiple tests. Note that the datasets with

multiple case groups (Zhu et al. (OB/NASH, 2013) and Schubert et al. (CDI/non-CDI, 2014))

are presented only once in this plot. ART = arthritis, ASD = austism spectrum disorder, CD =

Crohn’s disease, CDI = Clostridium difficile infection, CIRR = liver cirrhosis, CRC = colorectal

cancer, EDD = enteric diarrheal disease, H = healthy, HIV = human immunodeficiency virus, LIV =

liver diseases, MHE = minimal hepatic encephalopathy, NASH = non-alcoholic steatohepatitis, OB

= obesity, PAR = Parkinson’s disease, PSA = psoriatic arthritis, RA = rheumatoid arthritis, T1D

= type I diabetes, UC = ulcerative colitis. nonCDI controls are patients with diarrhea who tested

negative for C. difficile infection. nonIBD controls are patients with gastrointestinal symptoms but

no intestinal inflammation.
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Supplementary Figure 8: Simpson alpha diversity across all patient groups in all studies, calculated

on OTUs (i.e. not collapsed to genus level, and including unannotated OTUs). ∗ : 0.01 < p <

0.05, ∗∗ : 10−4 < p < 0.01, ∗ ∗ ∗ : p < 10−4. P values are calculated from a two-sided T-test (using

scipy.stats.ttest ind) and are not corrected for multiple tests. Note that the datasets with

multiple case groups (Zhu et al. (OB/NASH, 2013) and Schubert et al. (CDI/non-CDI, 2014))

are presented only once in this plot. ART = arthritis, ASD = austism spectrum disorder, CD =

Crohn’s disease, CDI = Clostridium difficile infection, CIRR = liver cirrhosis, CRC = colorectal

cancer, EDD = enteric diarrheal disease, H = healthy, HIV = human immunodeficiency virus, LIV =

liver diseases, MHE = minimal hepatic encephalopathy, NASH = non-alcoholic steatohepatitis, OB

= obesity, PAR = Parkinson’s disease, PSA = psoriatic arthritis, RA = rheumatoid arthritis, T1D

= type I diabetes, UC = ulcerative colitis. nonCDI controls are patients with diarrhea who tested

negative for C. difficile infection. nonIBD controls are patients with gastrointestinal symptoms but

no intestinal inflammation.



Supplementary Figure 9: Both x-axes: the area under the ROC curve (AUC) from each datasets

single classifier. Left: leave-one-dataset-out classifier. y-axis: the AUC of a classifier trained on all

other datasets to distinguish healthy from unhealthy patients, tested on the left out dataset. Right:

leave-one-disease-out classifier. y-axis: AUC from a classifier trained to distinguish healthy from

unhealthy patients on all datasets except those of the tested disease. AUCs for each dataset were

built from the classification probabilities on each test sample.



Supplementary Figure 10: The majority of non-specific microbes are robust to the exclusion of

diarrhea datasets from consideration. The right-most bar shows order-level phylogeny, colored as in

Figure 3A of the main paper. The left bar of the heatmap shows the original non-specific microbes,

including all datasets. The middle bar shows the re-defined non-specific responders after excluding

all diarrhea datasets. The right bar of the heatmap shows the non-specific microbes defined using

Stouffers method, combining one-tailed q-values across datasets and weighting by the square root of

sample size (Stouffer combined q < 0.05).



Supplementary Figure 11: Empirical null distribution of the number of non-specific responders (col-

ored points, x-axis indicates directionality of response), overlayed with the actual observed number

of non-specific responders (black diamonds) for different defining heuristics (axis titles, i.e. “3 dis-

eases“ means that a genus needed to be significant (q < 0.05, Kruskal-Wallis (KW) test, Benjamini-

Hochberg FDR correction) in three diseases in the same direction to be considered a non-specific

responder). Empirical one-tailed p-values are printed above each distribution.



Supplementary Figure 12: Varying Random Forest parameters does not significantly affect area

under the ROC curve in classifying cases from controls (Gini criteria). Random Forest classifiers built

by using the Gini impurity (“gini”) split criteria (“scikit-learn RandomForestClassifier”). Upward-

pointing triangles are classifiers built with 10000 estimators; downward-pointing triangles are built

with 1000 estimators. Colors indicate the value of min samples leaf (the minimum number of

samples required to be at a leaf node): red = 1, blue = 2, green = 3. X-axes are the value of

min samples split (the minimum number of samples required to split an internal node).33 All

Random Forests were built using the random state seed 12345.



Supplementary Figure 13: Varying Random Forest parameters does not significantly affect area

under the ROC curve in classifying cases from controls (entropy criteria). Random Forest classi-

fiers built by using the entropy (“entropy”) split criteria (“scikit-learn RandomForestClassifier”).

Upward-pointing triangles are classifiers built with 10000 estimators; downward-pointing triangles

are built with 1000 estimators. Colors indicate the value of min samples leaf (the minimum num-

ber of samples required to be at a leaf node): red = 1, blue = 2, green = 3. X-axes are the value

of min samples split (the minimum number of samples required to split an internal node).33 All

Random Forests were built using the random state seed 12345.
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Supplementary Figure 14: Heatmap of log10(q values) for all genera which were significant (q < 0.05, Kruskal-Wallis (KW) test, Benjamini-Hochberg FDR correction) in at least one dataset,

across all studies. Rows are genera, ordered phylogenetically (as in Figure 3A). Columns are datasets, grouped by disease and ordered according to total sample size (decreasing from left

to right). The first and second heatmap panels from the left are the same as in Figure 3A. Q-values are colored according to directionality of the effect, where red indicates higher mean

abundance in patients relative to controls and blue indicates higher mean abundance in controls. Opacity indicates significance and ranges from 0.05 to 1, where q-values less than 0.05 are

the darkest colors and q-values close to 1 are gray. White indicates that the genus was not present in that dataset. ART = arthritis, ASD = autism spectrum disorder, CDI = Clostridium

difficile infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV = human immunodeficient virus, IBD = inflammatory bowel disease, LIV = liver disease, NASH =

non-alcoholic steatohepatitis, nonCDI = non-Clostridium difficile infection, OB = obesity, PAR = Parkinson’s disease, T1D = type I diabetes.
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Supplementary Figure 15: Heatmap of log-fold change between cases and controls (i.e. log2( mean abundance in cases
mean abundance in controls) for all genera which were significant (q < 0.05) in at least one dataset,

across all studies. Rows are genera, ordered phylogenetically (as in Figure 3A). Columns are datasets, grouped by disease and ordered according to total sample size (decreasing from left

to right). The first and second heatmap panels from the left are the same as in Figure 3A. Values are colored according to directionality of the effect, where red indicates higher mean

abundance in patients relative to controls and blue indicates higher mean abundance in controls. Opacity indicates fold change and ranges from 1300 to 0, where fold changes greater than

1300 are the darkest colors and fold changes close to 0 are gray. White indicates that the genus was not present in that dataset. ART = arthritis, ASD = autism spectrum disorder, CDI =

Clostridium difficile infection, CRC = colorectal cancer, EDD = enteric diarrheal disease, HIV = human immunodeficient virus, IBD = inflammatory bowel disease, LIV = liver disease,

NASH = non-alcoholic steatohepatitis, nonCDI = non-Clostridium difficile infection, OB = obesity, PAR = Parkinson’s disease, T1D = type I diabetes.
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