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Global fish production fromaquaculture has rapidly grownover the past decades, and grass carp shares the largest portion.However,
hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella)
industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant
advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune
system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches onGCRV;
viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors
(TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated
signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the
potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies
(vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp
hemorrhagic disease.

1. Introduction

Over the past three decades, aquaculture industry has made
impressive progress and constituted high quality protein
for much of the world’s population. In China, aquaculture
industry has become a major power to promote sustainable,
rapid, and stable development of China’s fishery [1]. Grass
carp (Ctenopharyngodon idella) is an important freshwater
economic fish in China, and its production accounts for
18.10% of total freshwater fishery in 2013, which is also the
largest production of fish in theworld.However, hemorrhagic
disease caused by grass carp reovirus (GCRV) seriously
affects the grass carp cultivation industry.

Fish innate immunity plays an essential role in protecting
host against invading pathogens [2]. Similar tomammals, fish
possess evolutionary conserved pattern recognition receptors
(PRRs) that are responsible for sensing the presence of
pathogen-associated molecular patterns (PAMPs) which are

structurally conserved among many microorganisms [2, 3].
PRRs can be divided into four different classes: Toll-like
receptors (TLRs), retinoic acid-inducible gene (RIG) I-like
receptors (RLRs), NOD-like receptors (NLRs), and C-type
lectin receptors (CLRs) [3]. Among these PRRs, TLRs and
RLRs play important role in recognition of viruses or viral
PAMPs [3, 4]. Upon activation by viral components, TLRs or
RLRs transmit signals to the downstream adaptor molecules,
which induce a large scale amplification of signaling cascade
to activate interferons (IFNs) or nuclear factor-𝜅B (NF-𝜅B)
pathways via IFN regulatory factors (IRFs) [5, 6]. Subse-
quently, IFN-I along with IFN-stimulated genes (ISGs)medi-
ated the first antiviral defense [7].

Over the past decades, to propose the effective prevention
or therapeutic strategy for hemorrhagic disease, a great
attempt focused on the understanding of the pathogenesis
of GCRV, pathogen recognition, and revealing the regulation
mechanism of antiviral immune network in teleosts. This
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review summarizes the recent progresses on GCRV, antiviral
signaling pathway in teleosts and the achievement in preven-
tion of hemorrhagic disease. We highlight the importance
of molecular breeding based on the understanding of innate
immunity in the developing of disease theoretical strategies.

2. Pathogen

GCRV, a member of genus Aquareovirus in the family
Reoviridae, was the first viral pathogen to be identified from
aquatic animals in China in 1983 [8]. The virus is a nonen-
veloped icosahedral spherical in appearance with 5 : 3 : 2
three-dimensional symmetry, which is comprising 11 double-
stranded RNA genome segments surrounded by multiple
concentric protein capsids. The 11 genome segments encode
seven structural proteins (VP1–VP7) and five nonstructural
proteins. The core layer is composed of 5 proteins (including
VP1–VP4 andVP6), while the outer capsid of GCRV contains
200 trimers formed by VP5-VP7 heterodimers [9, 10]. So far,
more than 20 strains of GCRV have been reported, and ten
GCRV strains have complete genome sequences (Table 1),
which are GCRV-873, AGCRV [11], GCRV-HZ08 [8], GCRV-
HuNan794, GCRV-106, GCRV-GD108 [12], GCRV-918,
GCRV-HeNan988, HGDRV (formerly GCRV-104) [13], and
GCReV-109 [14]. Based on VP6 sequences, the known GCRV
stains (isolated in China) can be clustered into three groups,
with representative isolates GCRV-873 (group I), GCRV-
HZ08 (group II), and HGDRV (group III) [8]. However,
Pei et al. classified GCRV-HZ08 into group I, GCRV-873
into group II, and HGDRV (GCRV104) into group III [14].
When AGCRV is introduced to the cluster, the GCRV strains
are divided into four groups [15]. However, there is subtle
difference of the phylogenetic relationships of GCRV when
VP4, VP6, andVP7 are used for the clusters, respectively [15].
Although different people have different views on the cluster,
one point that GCRV-873, GCRV-HZ08, andHGDRV are the
representative strains of three different groups is consistent
[8, 14, 15]. With the sequence distinctions among the strains,
the cell culture characteristic, virulence, pathogenesis, and
antigenicity of each strain are diverse. For instance, GCRV-
097 strain can induce significant cytopathic effects (CPE) of
C. idella kidney (CIK) cells, massive abdominal hemolysis
and obvious haemorrhage in muscle, skin, intestine, and gill
of grass carp, resulting in a high mortality rate of grass carp
[16–19]. As a novel fish reovirus, HGDRV can proliferate and
induce significant apoptosis or CPE in CIK cells [13, 20].
Similarly, GCRV096 can also cause the CPE in CIK when
the cells are infected [15]. GCRV-873, the first strain isolated
from hemorrhagic grass carp in China, can form CPE in
CIK cells but lose the ability to infect grass carp [21, 22]. In
contrast, GCRV-861 infection causes high mortality rate of
grass carp and rare gudgeon (Gobiocypris rarus) but fails to
cause CPE in CIK cells [23]. GCRV-991 which shows much
similarity with GCRV-873 in protein molecular weights and
antigen properties possesses strong pathogenicity to grass
carp and causes obvious CPE in CIK cells [22, 24]. However,
GCReV-109, CGRV-HZ08, and GCRV-GD108 cannot induce
CEP [14, 25]. Both GCRV-JX01 and GCRV-JX02, isolated
from the same diseased grass carp sample, can produce
progeny in CIK cells, but only GCRV-JX01 induced CPE in
infected cells [26].

3. Innate Antiviral Immunity

3.1. HMGBs. High-mobility group box proteins (HMGBs),
a newly discovered family of nucleic acid sensors, play
important role in the signal-transducing antiviral immune
response [28–30]. HMGBs are highly conserved chromatin-
associated proteins from invertebrate to vertebrate [19, 31–
37]. In mammals, HMGBs contain four family members:
HMGB1, HMGB2, HMGB3, and HMGB4 [38]. However, the
members of HMGBs in some low vertebrates or inverte-
brates are various. For example, two paralogs of mammalian
HMGB1, HMGB2, and HMGB3 are present in some teleosts:
zebrafish (Danio rerio), salmon (Oncorhynchus), carp (Cypri-
nus carpio), and grass carp [30, 34]; but noHMGB3 subfamily
is present in Tetraodon, stickleback, medaka (Oryzias latipes),
and fugu (Takifugu rubripes), even though two paralogous
of HMGB1 and HMGB2 were detected [34]; in Litopenaeus
vannamei, HMGBs have twomember: HMGBa and HMGBb
[39].

Evidences have highlighted that HMGBs function as
universal sentinels of nucleic-acid-mediated innate immune
responses [28]. On one hand, they promiscuously recog-
nize immunogenic nucleic acids and then initiate immune
response by transducing signals to PRRs, such as TLRs,
RLRs, and other cytosolic receptors [29]. On the other hand,
they suppress the innate immune responses by binding non-
immunogenic nucleotides [40]. In mammals, HMGB1 and
HMGB3 bind both DNA and RNA, but HMGB2 only binds
to immunogenic DNA, not RNA [28]. In grass carp, all the
HMGBs family members can respond to synthetic dsRNA
(poly(I:C)) and GCRV challenge. Overexpression of grass
carp HMGBs significantly delays the GCRV-induced CPE in
CIK cells [19, 31, 32]. Meanwhile, the replication of GCRV
in HMGBs-overexpressing CIK cells is remarkably inhibited
[19, 31]. In all the HMGBs overexpression cells, transcription
levels of some vital downstream molecules of TLRs and
RLRs are notably modulated, especially for some adaptor
molecules: Toll/interleukin-1 receptor (TIR) domain contain-
ing adapter inducing IFN-𝛽 (TRIF, also known as TICAM1),
IFN-𝛽 promoter stimulator-1 (IPS-1), and myeloid differenti-
ation factor 88 (MyD88). HMGBs overexpressions induce the
upregulation of these genes. It is well known that MyD88 and
TRIF are two important adaptor proteins of TLRs pathway
and IPS-1 is responsible for the signal translation of RIG-I and
MDA5 [5, 41, 42]. So signals of HMGBs may transmit to the
downstream proteins via TLRs and RLRs.

Generally, HMGBs are typical nuclear proteins, while
pathogeny challenge can induce the proteins shuttling from
nucleus to cytoplasm and further secreting to the extra-
cellular medium [43–45]. Like mammalian HMGBs (1–3),
teleosts HMGBs compose of two basic HMG box domains
and an acidic tail [30, 34, 36, 46]. Nuclear localization signals
(NLSs) in the HMG box determine the nuclear localization
of the proteins and the acidic tail contributes to nuclear
localization [38, 47, 48]. Under basal conditions, all the six
grass carp HMGBs exclusively localized to the nucleus in
CIK cells, while virus invasion or pathogenic stimuli induce
the nucleocytoplasmic translocation of HMGBs to various
degrees [30]. Truncated and chimeric domain experiments
demonstrated that the N-terminal domain confers nuclear
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Table 1: The known GCRV strains, sequences, and the corresponding GenBank accession numbers.

GCRV Segments or
genes GenBank numbers

GCRV-873 S1–S11 AF260511, AF260512, AF260513, AF403390, AF403391, AF403392, AF403393, AF403394,
AF403395, AF403396, AF403397

AGCRV S1–S11 NC 010584, NC 010585, NC 010586, NC 010587, NC 010588, NC 010589, NC 010590,
NC 010591, NC 010592, NC 010593, NC 010594

GCRV-HZ08 S1–S11 GQ896334, GQ896335, GQ896336, GQ896337, GU350742, GU350743, GU350744, GU350745,
GU350746, GU350747, GU350748

GCRV-HuNan794 S1–S11 KC238676, KC238677, KC238678, KC238679, KC238680, KC238681, KC238682, KC238683,
KC238684, KC238685, KC238686

GCRV106 S1–S11 KC201166, KC201167, KC201168, KC201169, KC201170, KC201171, KC201172, KC201173, KC201174,
KC201175, KC201176

GCRV-GD108
L1, L2, L3, M4,
M5, M6, S7, S8,
S9, S10, S11

HQ231198, HQ231199, HQ231200, HQ231201, HQ231202, HQ231208, HQ231203, HQ231204,
HQ231205, HQ231206, HQ231207

GCRV918 S1–S11 KC201177, KC201178, KC201179, KC201180, KC201181, KC201182, KC201183, KC201184, KC201185,
KC201186, KC201187

HGDRV
(GCRV104) S1–S11 JN967629, JN967630, JN967631, JN967632, JN967633, JN967634, JN967635, JN967636, JN967637,

JN967638, JN967639

GCReV-109 S1–S11 KF712475, KF712476, KF712477, KF712478, KF712479, KF712480, KF712481, KF712482, KF712483,
KF712484, KF712485

GCRV-HeNan988 S1–S11 KC847320, KC847321, KC847322, KC847323, KC847324, KC847325, KC847326, KC847327,
KC847328, KC847329, KC847330

GCRV096 S6, S10 JN206664 [27], JN206665

GCRV 097

S3 (VP3), S5
(VP5), S6
(VP4), S8
(VP41)

JQ782741, JQ782742, JQ782743, GQ469997

GCRV-991 S8 (VP6), S10
(VP7) AF403414, AF403411

GCRV-875 S8 (VP6), S10
(VP7) AF403412, AF403409

GCRV876 S8 (VP6), S10
(VP7) AF403413, AF403410

GCRV-JX01 VP4, NS38, VP7 JQ042805, JQ042807, JQ042806

GCRV-JX02 S10, VP11 JX263303, JQ042808

GCRV-ZS11 S9 (VP6) KC130082

GCRV-YX11 S9 (VP6) KC130081

GCRV-JS12 S9 (VP6) KC130077

GCRV-NC11 S9 (VP6) KC130078

GCRV-QC11 S9 (VP6) KC130079

GCRV-QY12 S9 (VP6) KC130080

GCRV-HS11 S9 (VP6) KC130076

GCRV-HN12 S9 (VP6) KC130075

localization, but the nucleocytoplasmicmigration of HMGBs
attributes to the dynamic balance or intercellular interaction
between the HMG box domain and acidic tail domain. For
the six HMGBs of grass carp, CiHMGB2a and CiHMGB3b
rarely shuttle from nucleus to cytoplasm in response to

GCRV, poly(I:C), and LPS challenge. The ratio ranking of
other members nucleocytoplasmic translocation in response
to GCRV infection was CiHMGB2b > CiHMGB1a > CiH-
MGB3a > CiHMGB1b; poly(I:C) also induces the reloca-
tions of CiHMGB1a, CiHMGB1b, and CiHMGB3a; LPS
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Figure 1: Antiviral immune response ofHMGBs induced byGCRV infection inCIK cells. GCRV infection induces diverse nucleocytoplasmic
shuttling of grass carp HMGBs via two main methods: (1) upon GCRV infection, some HMGBs such as HMGB1a, HMGB1b, HMGB2b, and
HMGB3a shuttle from nucleus to cytoplasm. Subsequently, a huge member of cells subject to apoptosis or karyotheca rupture, which result
in cells death and passive release of HMGBs. On the other hand, some live cells can also actively secrete HMGBs to extracellular space; (2)
even though GCRV fail to evoke nuclear exports of some HMGBs such as HMGB2a and HMGB3b, but the cells will undergo necrosis or
damage. So those HMGBs are released to the extracellular matrix. Afterwards, the extracellular HMGBs initiate activation of TLRs- and
RLRs-mediated antiviral immunity of neighboring cells.

stimulation only notably evokes the robustly nucleocytoplas-
mic shuttling of CiHMGB1b [30].These results imply various
roles of HMGBs in response to pathogenic challenges.

HMGBs can be actively secreted from innate immune
cells or passively released from dead or injured cells [29,
45]. GCRV infection evokes active secretion of some HMGB
members that are easy to shuttle from nucleus and pas-
sive release which is associated with necrosis and death of
all HMGBs (Figure 1); extracellular presence of all the six
HMGBs is detected by western blotting [30]. In infected cells,
GCRV replicates and assembles in cytoplasm, where they
form specific structures termed virus inclusion bodies (VIBs)
that separate viral particles from the adjacent cytoplasm
[9]. Hence, cytoplasmic occurrence of HMGBs may be
responsible for recognition of virus-derived nucleic acid and
transmit signal to cytoplasmic antiviral receptors. Extracellu-
larHMGBsmay exert their cytokine-like or proinflammatory
function via interaction with the cell surface receptors of
neighboring cells (Figure 1). To date, with the regression
of antibodies production in fish, especially for commercial
fishes, the researchesmainly rest on transcription levels.More
studies are urgent to uncover the regulation mechanism of
these viral nucleotide sensors in the signal transduction.

3.2. TLRs Signaling Pathway. Typically, the innate immune
system recognizes pathogen invasion via a variety of PRRs.
During the past decades, study on PRRs has expanded
rapidly, and massive amounts of scientific evidence attest to
their importance in innate immunity. TLRs are the earliest
characterized and the most extensively studied PRRs in both
vertebrates and invertebrates [49]. Up to now, thirteen TLRs
(TLR1–13) have been identified in mammals. In teleost, at
least 19 TLR types (1, 2, 3, 4, 5, 7, 8, 9, 11, 14, 18, 19, 20, 21, 22,
23, 25, 26, and 27) were discovered, except for the paralogous

or duplicated members of TLRs; TLR6 and TLR10 are absent
from all fish genomes sequences to date [2, 6, 49, 50].

In teleosts and mammals, TLRs are characterized by
three domains: the N-terminal leucine-rich repeat (LRR)
domain, a Toll/interleukin-I receptor domain (TIR), and a
transmembrane domain (TM). LRR domain is the functional
domains to play an important role in the recognition of
PAMPs [2]; TIR domains are responsible for activating
downstream signaling by interaction and recruitment of
various adaptor proteins [41, 51]. Unlike the cytoplasmic
receptors, TLRs mainly locate at cell surface and endosomal
compartments [42]. Mammalian TLR1, TLR2, TLR4, TLR5,
TLR6, and TLR11 are expressed exclusively on the cell surface
and recognizemolecules derived frommicrobes, while TLR3,
TLR7, TLR8, and TLR9 are expressed in some intracellular
vesicles such as endoplasmic reticulum (ER), endosomes,
multivesicular bodies, and lysosomes [41, 42, 52]. Under
normal conditions, the intercellular TLRs are ER resident
whereas they translocate to the endosome via the common
secretory pathway by traversing the Golgi upon activation,
and some chaperone proteins are required for this efficient
translocation [42].

So far, more TLRs have been discovered in teleost fish and
the viral PAMPs induced signaling pathways are preliminary
revealed (Figure 2). Upon activation by viral PAMPs, TLRs
transmit signals to their adaptor molecules which initiate the
activation of NF-𝜅B and IFN-I pathways [4, 51, 53]. There
are five TIR domain-containing adaptors including MyD88,
TRIF, TIRAP/Mal, TRIF-related adaptor molecule (TRAM),
and Sterile-alpha and Armadillo motif-containing protein
(SARM) [3]. Mammalian MyD88 is required by all TLRs
except for TLR3, and TRIF is used by TLR3 and TLR4 to
activate NF-𝜅B, IRF3, and the production of IFN-I; TIRAP
acts as an additional adaptor of TLR2 and TLR4 to recruit
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Figure 2: Schematic overview of intracellular antiviral immune signaling in teleosts. Fishes have conserved intercellular PRRs to sense virus
or viral PAMPs. TLR3 and TLR22 sense dsRNA and transmit signals to the downstream adaptor IRIF; endosome localized TLR7/8 and TLR9
recognize ssRNA and CpGDNA, respectively, and then deliver signal toMyD88. Like mammalian RLRs, RIG-I andMDA5 recognize dsRNA
or ssRNA in different length and activate mitochondrion IPS-1. With no CARD domain, LGP2 is thought to fail to interact with IPS-1 but can
transmit signal to TBK1. Studies also indicate that LGP2 can mediate signals of RIG-I andMDA5. Fish MITA localizes in ER, but it is in close
vicinity with IPS-1 in mitochondrial-ER contact regions. MITA participates in antiviral activation of IFN or ISGs downstream of RIG-I and
MDA5 through MITA-TBK1-IRF3 pathway. TRIF and IPS-1 transfer signal through NF-𝜅B and TBK1-IRF3/7-IFN-I pathway. MyD88 signal
activates IRF3/7 and NF-𝜅B, not TBK1. Upon phosphorylation, IRF3 and IRF7 transmit to nucleus and induce the production of IFN-I which
induces antiviral immune response along with the activated ISGs. The activated NF-𝜅B also transmits to nucleus initiating the activation
of proinflammatory cytokines. Cytoplasmic HMGBs can promiscuously sense immunogenic nucleic acid and delivery to the discriminative
sensors: TLRs and RLRs.

MyD88; TRAM serves as a bridge between TRIF and TLR4;
SARM is believed to negatively regulate signaling of TRIF-
dependent signaling of TLR3 and TLR4 [3, 54], while all the
TLRs transmit adaptor signals roughly through two main
pathways depending on the adaptorsMyD88 andTRIF [2, 51].
In teleost, TRIF is required for the signaling cascade of TLR3
and TLR22, while MyD88 is essential for the downstream

signaling of various TLRs, with exception of TLR3 andTLR22
(Figure 2) [51, 55].

3.2.1. TRIF-Dependent Pathway. Mammalian TLR3 recog-
nizes extracellular and intracellular viral dsRNA and initiates
signaling cascades leading to NF-𝜅B activation and IFN
production [3, 56]. However, both fish TLR3 and TLR22 are
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the receptors to sense viral dsRNA. Fugu TLR3 recognizes
short dsRNA in ER and TLR22 recognizes long dsRNA on
the cell surface. Both TLR3 and TLR22 induce the activation
of IFN via TRIF (Figure 2) [55]. Probably, fish TLR22 may
be a functional substitute for human cells surface TLR3 for
detecting dsRNA virus infection [57]. Expression of grass
carp TLR3 and TLR22 is also induced by poly(I:C) or GCRV
challenge [58, 59]. GCRV infection increases the expression
of rareminnow (Gobiocypris rarus) TLR3 alongwith its splice
variant [60]. In Japanese flounder (Paralichthys olivaceus),
TLR3 is upregulated by poly(I:C) and viral hemorrhagic
septicemia virus (VHSV) (ssRNA virus) challenge, and intra-
cellular poly(I:C) induces the expression of ISG and activity
of NF-𝜅B [56]. Zebrafish TLR3 is proposed to activate NF-
𝜅B and its expression level is upregulated by snakehead
rhabdovirus (SHRV) infection [61]. Further studies indicate
that TRIF also participates in the activation of IFN and
NF-𝜅B signal pathways: zebrafish TRIF activates IFN by the
interaction of TRIF with TLR3 and TANK-binding kinase
1 (TBK1), and the NF-𝜅B activation is dependent upon its
interactionwith receptor-interacting protein 1 (RIP1) [62, 63].
Crucian carp TBK1 interacts with IRF3 which activates IFN
promoter [64]. In grass carp, TRIF overexpression induces
the upregulation of IRF7 and IFN-I and significant antiviral
response to GCRV infection [65].

3.2.2. MyD88-Dependent Pathway. Among the teleost TLRs,
TLR1 has been cloned in some fish species such as orange-
spotted grouper (Epinephelus coioides), zebrafish, and large
yellow croaker (Pseudosciaena crocea), and its expression
is increased upon LPS and poly(I:C) stimulation or Vibrio
alginolyticus and Mycobacterium marinum infection [66–
68]. In mammals, TLR2 and TLR4 sense bacterial com-
ponents. For example, TLR2 recognizes PGN, LAM, and
triacyl lipopeptides; and TLR4 senses LPS [41]. However,
the function of these two TLRs in teleost differs from that
of mammals: TLR2 is proposed to recognize viral rather
than bacterial ligands; and TLR4 does sense bacterial LPS
[69–71]. Many fish species express two TLR5: a membrane
TLR5 (mTLR5) and a soluble TLR5 (sTLR5), and they sense
bacterial flagellin [69, 72–74]. Fish TLR9 senses viral and
bacterial DNA. The LRR sites in TLR9 molecule of teleost
can sense a variety of CpG-oligodeoxynucleotides (CpG
ODNs) motifs present in different bacteria [75]; Atlantic
salmon (Salmo salar) TLR9 interacts with synthetic ODN
via a CpG-independent but pH-dependent mechanism [76];
recent study highlights that TLR9 and TLR21 cooperatively
mediate activity of CpG-ODNs in zebrafish [77].

TLR7 and TLR8 recognize ssRNA and also the response
to dsRNA or poly(I:C) [4, 69]. Upon GCRV infection,
expression of grass carp TLR7 is upregulated in spleen but
inhibited in hepatopancreas; poly(I:C) also increases the
mRNA level of TLR7 in CIK cells [78]. Grass carp TLR8 is
upregulated in spleen and head kidney by GCRV infection,
while the transcription level is downregulated by poly(I:C)
stimulation; meanwhile, in TLR8 knockdown CIK cells, the
replication of GCRV is significantly inhibited [79]. Mammal-
ian TLR7, TLR8, and TLR9 transmit signals throughMyD88-
dependent pathway: TLR7/8/9-mediated IFN𝛼 production

requires the interaction between MyD88 and IRF7, which
results in the activation of IFN𝛼-dependent promoters.
Meanwhile, the activated IRF7 translocates to nucleus and
activates IFN𝛼 and ISGs (Figure 2) [80]. Full-length MyD88
has been cloned from grass carp and the expression level
is upregulated by GCRV infection or poly(I:C) stimulation
[81]. Zebrafish MyD88 transfers the signal from TLRs to
downstreammolecules, inducing the activation ofNF-𝜅B and
human IFN𝛽 promoters [82]. SalmonidMyD88 is also found
to activate NF-𝜅B [83]. Further study indicates that MyD88
interacts with IRF3 and IRF7 modulating the IRF-induced
IFN response in Atlantic salmon [84]. Recently, SARM1 and
its two splice variants were identified in grass carp, and they
were proved to inhibit GCRV-triggered IFN-I response by
affecting the expression of TRIF, MyD88 or IPS-1, or the
downstream genes [85], which indicates that SARM may
function as an important inhibitor in TLR or RLR pathways.

3.3. RLRs Signaling Pathway

3.3.1. Activation of RLRs. RLRs are a family of cytoplasmic
PRRs that sense viral PAMPs in both teleost and mammals
[3–5, 52]. RLR family consists of three members: RIG-I
(also called DDX58), melanoma differentiation-associated
gene 5 (MDA5 or IFIN1), and laboratory of genetic and
physiology 2 (LGP2, also named DHX5) [2]. Similar to the
mammals, teleost RIG-I, MDA5, and LGP2 contain three
domains: two tandem caspase-associated and recruitment
domains (CARDs) which present in the N-terminal of RIG-
I and MDA5 but not in LGP2; a central DExD box heli-
case/ATPase domain (DExD/H) (consisting of two RecA-
like helicase domains, Hel1 and Hel2, and an insert domain,
Hel2i); a C-terminal repressor domain (RD, also called C-
terminal domain (CTD)) [2, 3, 18, 86]. The CARDs of RIG-
I and MDA5 physically interact with the CARD of IFN-
𝛽 promoter stimulator-1 (IPS-1, alternatively called MAVS,
VISA, or Cardif), the adaptor protein of RLRs, to activate the
downstream signaling cascade [87]. Besides the N-terminal
CARDdomain, IPS-1 also possesses a proline-rich region and
a C-terminal mitochondrial TM domain [88]. Lacking the N-
terminal CARDs, LGP2 is unable to interact with the CARD
of IPS-1 [2, 87, 89]. However, the interaction between LGP2
and IPS-1 is demonstrated in HEK 293T cells, which requires
the C-terminal TM domain and the intermediate domain
(residues between 300 and 444) of IPS-1 [90].

Viral infection in the cytoplasm is primarily detected by
the RLRs. Studies indicate that RIG-I preferentially binds
to relatively short 5-phosphorylated dsRNA, while MDA5
binds to long dsRNA [86, 91]. Several crystal structures unveil
themechanism of RIG-I andMDA5 in the regulation of RNA
recognition and triggering downstream signaling: under
resting state, RIG-I exists an autoinhibited conformation:
both the CARDs link to one another in a head-to-tailmanner,
and CARD2 form contacts with the Hel2i domain, which
shields the CARDs-CARDs interaction between RIG-I and
IPS-1, thereby interdicting the signal transduction [86, 92].
Upon viral infection, a structural zinc ion and a positively
charged cleft-like structure within the CTD domain recog-
nize the 5-PPP extremity of the blunt-end base-paired RNA;
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the helicase domain binds to the sugar-phosphate backbone
of duplexed-RNA, which results in the release of CARDs
[5, 93]. AlthoughMDA5 has a similar domain architecture as
RIG-I, it recognizes dsRNA in a different manner with RIG-I.
In the absence of ligand,MDA5 adopts an open conformation
rather than forming interaction betweenCARDs and helicase
domains [94]. By dsRNA stimulation, the helicase domain
of MDA5 wraps around the phosphate backbone of dsRNA.
Instead of the closed O-ring-like structure as in RIG-I, the
MDA5 CTD is rotated by 20∘ to form a C-shaped ring [95].
As for LGP2, it senses signaling in response to viral stimuli by
modulating the RIG-I and MDA5 signals [96–98]. Although
evidences have unveiled the negative or positive role of LGP2
in the regulating of antiviral immunity, the mechanism of
LGP2 mediated opposing roles is currently unclear [87, 99].

3.3.2. Modulation of RLRs Signaling in Teleosts. RLRs are
structural conserved proteins from mammal to teleost
species, while the sequence identities within the three mem-
bers are not very high [2]. Up to now, RIG-I, MDA5, and
LGP2 have been identified in numerous fish species, in which
LGP2 and MDA5 are common to all fish genomes, but RIG-
I appears to be lost in some species [2, 87]. In grass carp,
genome of RIG-I,MDA5, and LGP2 has been identified [100–
102], and the expression levels of these genes were signifi-
cantly upregulated in spleen and liver after GCRV infection
[103–105]. By GCRV and poly(I:C) challenge, transcription
level of RIG-I is upregulated in CIK cells [104]. CPE assay and
viral titter reveal the significant antiviral activity of full-length
RIG-I in response to GCRV infection, in which CARDs
domains play a positive role but the RD domain exhibits a
negative effect in the signaling channel [18]. In channel catfish
ovarian cells, channel catfish virus infection significantly
increases the expression of RIG-I, MDA5, and LGP2 [106].
In Japanese flounder, both MDA5 and LGP2 but not RIG-
I, existed [2]; overexpression of MDA5 and LGP2 along
with their adaptor IPS-1 displays remarkably antiviral activity
against ssRNA (HIRRV, VHSV) or dsRNA virus (IPNV) and
significantly enhances the expression of IFN, Mx, and ISG15
[89, 107, 108]. Rainbow trout (Oncorhynchus mykiss) MDA5
and the full-length LGP2 can protect rainbow trout gonad
2 (RTG-2) cells against VHSV; however, the LGP2 variant
exerts a negative role [109]. Crucian carp LGP2 is also found
as a negative regulator of both RIG-I and MDA5 in cytosolic
dsRNA-induced signaling [64]. But grass carp LGP2 may act
as a positive role molecule in anti-GCRV innate immune
[110].

Activations of RIG-I and MDA5 induce downstream
signaling by binding to IPS-1 that subsequently recruits and
activates cytosolic kinases TBK1 and I𝜅B kinase complex
(IKK𝛼/𝛽/𝛾), which are responsible for the activation of
IRF3/7 andNF-𝜅B (Figure 2); then these transcription factors
translocate to the nucleus and coordinate the expression of
IFN-𝛼 and IFN-𝛽 [5, 51, 111]. Mammalian IPS-1 mediates
the activation of NF-𝜅B and IRF3 inducing the expression
of IFN-I [88]. In teleosts, zebrafish MDA5 and its two
spliced shorter forms (MDA5a and MDA5b) significantly
induced the activation of IFN-I promoter in response to
spring viraemia of carp virus (SVCV) infection; meanwhile,

the spliced form MDA5b can enhance IPS-1-induced IFN-
I promoter activity [112]. Study also reveals the cooperative
effects of zebrafish IPS-1 variants and RIG-I in inducing
of downstream antiviral genes [113]. Atlantic salmon IPS-
1 participates in the activation of IFN and NF-𝜅B upon
recognition of viral dsRNA [114]; overexpression of Japanese
flounder IPS-1 delays the appearance of CPE in response
to HIRRV and VHSV and induces the increase of IRF3,
Myxovirus resistance 1 (Mx1), and ISG15 [108]; mRNA level
of IPS-1 is upregulated by GCRV infection in grass carp [115].
TBK1, a member of I𝜅B kinase (IKK) family, which associates
with TRIF and IPS-1, then induces the phosphorylation of
IRF3/7 [5, 116]. In grass carp, overexpression of TBK1 induces
the expression of IRF7, IFN-I, and Mx1 and inhibits the
replication of GCRV in CIK cells [117].

Besides IPS-1, other junction adaptor molecule, mediator
of IRF3 activation (MITA, also known as STING, ERIS and
MYPS), is also involved in the activation of RLRs signaling
[51, 118]. Mammalian MITA interacts with IPS-1 triggering
IFN-I induction via recruited TBK1 and IRF3 [119, 120]. Fish
MITA localizes in ER, and MITA activates antiviral IFN or
ISGs response downstream of RIG-I and MDA5 through
MITA-TBK1-IRF3 pathway [64, 118]. Overexpression of grass
carp MITA can upregulate the mRNA level of TBK1, IRF3,
and IRF7 [121]. Studies also indicate that MITA and IPS-1
closely localize in mitochondrial-ER contact regions, but no
evidence certifies whether MITA can interact with IPS-1 and
RIG-I-IPS-1 complex [118].

3.4. NLRs. NLRs are a family of cytoplasmic PRR, which are
characterized by three domains, an N-terminal protein inter-
action domain, a central nucleotide-binding domain (NOD,
also known as NACHT domain), and a C-terminal LRR [52,
122].TheNACHT domain is responsible for nucleotide bind-
ing and self-oligomerization; the LRRs mediate pathogen
sensing; and the N-terminal domain is required for the
protein-protein interactions for initiating downstream sig-
naling, by which NLRs are categorized into five subfamilies:
NLRA (containing an acidic transactivation domain), NLRB
(containing a baculovirus inhibitor apoptosis protein repeat),
NLRC (containing CARD domains), NLRP (containing a
Pyrin domain), andNLRX (containing an unknown domain)
[52, 123]. Generally, NLRs recognize bacterial PAMPs such
as PGN, LPS, LTAs, and MDP [52]. However, further studies
imply that some NLRs participate in the regulation of
antiviral immunity pathways. The mitochondria localized
NLRX1 interacts with IPS-1 to modulate virus-induced INF-
𝛽 production, which indicates that NLRX1 is a therapeutic
target for enhancing antiviral responses [124].

Teleosts have conservative and abundant NLR molecules
[125]. NLRs have been reported in some fish species, some of
which have been proposed to certify the antiviral involvement
of NLRs [122, 126]. In grass carp, GCRV infection or poly(I:C)
challenge significantly unregulated expression of NOD1 and
NOD2 in spleen and trunk kidney [126, 127]. Class II, major
histocompatibility complex, transactivator (CIITA), a mem-
ber ofNLR family, was upregulated in catfish head kidney and
liver but reduced in spleen post channel catfish hemorrhage
reovirus (CCRV) infection [122]. All these results imply that
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some fish NLRs may also function as cytoplasmic PRRs in
sensing virus or viral PAMPs challenge.

3.5. IRFs. IRFs are a large family of transcription factors
involved in host immune response and regulation of IFN or
ISG induction. All IRFs possess a unique “tryptophan cluster”
DNA-binding domain (DBD), which is responsible for bind-
ing to the IFN promoter [128]. IRFs include 9 members in
mammals, 10 members in birds, and 11 members in fish, and
many IRF members are essential regulators in PRR-mediated
signaling [116, 129]. Among all the IRFs, IRF3 and IRF7 are
the key regulators of IFN-I expression upon viral infection.
By virus infection, activations of some certain PRRs such as
TLR3, RIG-I and MDA5 result in the phosphorylation and
nuclear translocation of IRF3 and IRF7 [129]. In fish, antiviral
effects of IRF1 has been indicated in Atlantic salmon and
Japanese flounder [130], IRF3 and IRF7 in rainbow trout,
large yellow croaker, crucian carp, and carp [116, 131–133],
IRF5 in zebrafish [134], and IRF10 in Japanese flounder [135].
Meanwhile, zebrafish IRF10 is found to be a negative regulator
to balance the innate antiviral immune response [136]. After
GCRV infection, IRF5 was upregulated in spleen and head
kidney, and IRF3 and IRF7 were upregulated in TBK1 and
MITA overexpressed CIK cells [117, 121, 137].

3.6. Host Antiviral State Induced by IFN Signals

3.6.1. IFN Signal in Teleosts. IFN response, the key compo-
nents of innate immune, is the first line of host defense against
virus infection. Mammalian IFNs have been designated into
three groups: type I IFNs, type II IFNs, and type III IFNs [138].
Study indicates that fish IFNs belong to the IFN-I [51, 139].
In grass carp, transcripts of IFN-I is significantly upregulated
by GCRV infection in head kidney, spleen, and gill tissues
[140]. Similar to mammals, fish IFN antiviral response is
initiated through the pattern recognition of virus component
by TLRs and RLRs [141]. Signaling from TLRs and RLRs
pathways is transmitted to IRFs and induces phosphorylation
of IRFs, which translocate from cytoplasm to nucleus where
they turn on IFN gene transcription by binding to ISRE/IRF-
E motifs present in IFN promoters [2, 51]. In crucian carp,
this early phase of IFN expression induces the expression of
ISGs via JAK-STAT signaling pathway which also triggers the
expression of IFN-I in turn [51]. Recently, a magnitude of
ISGs has been identified in fish such as Mx, ISGs, PKR, PKZ,
Gig, viperin, Drel, and TRIMs [141, 142].

3.6.2. Antiviral Activation of ISGs in Teleosts

(1) Mx.Mx proteins that belong to the dynamin superfamily
of GTPases exhibit essential antiviral activity against a wide
range of viruses. Mx is composed of three domains: an N-
terminal dynamin domain (containing dynamin family sig-
nature and tripartite GTP-binding motifs, DYNc); a central
interactive domain (CID) mediating self-assembly; and a C-
terminal GTPase effector domain (GED) (containing leucine
zipper motif (LZ)) [143]. In recent decades, antiviral activity
of Mx against a wide range of viruses has been largely
reported in several fish species [144].The first isolation of fish

Mx was in perch (Perca fluviatilis), and the cDNA of Mx was
elevated by poly(I:C) stimulation in liver [145]. In Atlantic
halibut (Hippoglossus hippoglossus), transcription of Mx is
strongly induced in vivo by poly(I:C) and IPNV [146]. The
expression of rainbow trout Mx1, Mx2, and Mx3 is induced
by poly(I:C) but fails to inhibit the replication of IHNV [147].
In grass carp, all the three Mx genes are induced in head
kidney, spleen tissues, and CIK cells after GCRV infection;
overexpression of Mxs significantly inhibits the replication
of GCRV and delay the CPE induced by GCRV infection
[140]. All these results demonstrate that Mx proteins are
important effect molecules in host antiviral innate immunity.
Interestingly, in some fish species, expression of Mx is not
tightly regulated by IFN-I, although Mx is known as IFN-
inducible genes. In Atlantic salmon, salmon anemia virus
induces the expression of Mx through both IFN-dependent
and IFN-independent ways [148]. Japanese flounder Mx
induction is mediated by an IFN-independent pathway [107].
In grass carp, overexpression of Mx genes is proposed to
feedback suppress expression of IFN-I [140]. Hence, the
regulation of fish IFN-Mx may be more complex than that
in mammals.

(2) ISG15. IFNs exert their antiviral effects via the induction
of hundreds of ISGs. ISG15, a 15-kDa ubiquitin-like protein,
is reported to be induced by IFN or viral infection. In teleost,
antiviral effects of ISG15 have been reported in Atlantic
salmon [149], Atlantic cod (Gadus morhua) [150, 151], tongue
sole (Cynoglossus semilaevis) [152], orange-spotted grouper
[153]. Particularly, in cyprinid fish, ISG15 was proposed to
exert antiviral activity against both RNA and DNA viruses in
zebrafish [154]; crucian carp ISG15 have two homologues and
both of themwere induced byGCHVand poly(I:C) challenge
[155].

(3) PKR and PKZ. dsRNA dependent protein kinase (PKR)
and Z-DNA binding protein kinase (PKZ) play an important
role in the innate immune response against viral infection.
Fish PKR has a dsRNA binding domain (dsRBD) (containing
two dsRNA binding motifs) and an eIF2𝛼 kinase domain at
the N- and C-terminal, respectively. Serving as orthologs of
PKR, PKZ contains two left-handed deoxyribonucleic acid
(Z-DNA) binding domians (ZBDs) instead of dsRBD of
PKR [156]. Fish PKR and PKZ genes show similar genomic
organization [157]. In cyprinid fish, both grass carp PKR and
PKR and rare minnow PKZ are expressed ubiquitously at a
low-level in various tissues [158–160]. Upon GCRV infection,
rareminnowPKZ and grass carp PKR are significantly upreg-
ulated; the expression of grass carp PKZ is also increased by
poly(I:C) stimulation [158–160]. These results may provide
evidence that fish PKR and PKZ is involved in antiviral
immune response to dsRNA infection.

(4) Gigs. GCRV-induced genes 1 and 2 (Gig1 and Gig2) are
first identified as novel fish ISG from UV-inactivated GCRV-
infected crucian carp blastulae embryonic (CAB) cells [161].
GCRV infection induces expression of both Gig1 and Gig2
via newly synthesizedCBA IFN [161]. Further studies indicate
that crucian carp Gig1 can be induced by poly(I:C) through



Journal of Immunology Research 9

RIG-I-triggered IFN signaling pathway; and the expression of
Gig2 is dependent of IRF7 upon poly(I:C) or IFN stimulation
[162, 163]. Overexpression of zebrafish Gig2 can protect
cultured fish cells from virus infection [164]. However, in
grass carp, both Gig1 and Gig2 expression can be induced by
GCRV but not by recombinant grass carp IFN [165]. So grass
carp Gigs induction may be in an IFN-independent pathway.

(5) Viperin.Viperin is a typical IFN-induced antiviral protein
in mammals. Fish viperin has been identified in many
species and proposed to establish an antiviral state in early
antiviral response [7]. Overexpression of crucian carp viperin
confers significant protection against GCRV infection, which
is through RLR-triggered IFN signaling pathway [141].

(6) ADAR1. Adenosine deaminase acting on RNA (ADAR)
is an RNA editing enzyme that targets both coding and
noncoding dsRNA. Three ADARs (ADAR1, ADAR2, and
ADAR3) are present in mammals, and there are two protein
size forms (p110, p150) of ADAR1, and ADAR1 p150 is IFN-
inducible protein [166, 167]. Evidence indicates that ADAR
is capable of both antiviral and proviral dependent on the
type of viruses [166]. In grass carp, transcript of ADAR was
upregulated by GCRV and poly(I:C) in vivo or in vitro [168].

3.6.3. TRIMs. The tripartite motif (TRIM) proteins recently
emerged as novel mediators in antiviral immunity [169]. The
TRIM proteins are characterized by a tripartite motif that
consists of a N-terminal RING zinc finger domain, one or
two B-box domains, and a C-terminal coiled coil domain
[170].TheRINGdomains of TRIMs confer E3 ubiquitin ligase
activity which allows TRIM to mediate ubiquitylation event;
the B-box domains have been shown to contribute to innate
resistance to HIV; and the C-terminal domains are involved
in specific interactions and cellular localization [170, 171]. To
date, more than 77 TRIMs have been identified in human
[171]. Additionally, alternative splicing from a TRIM gene
forms multiple TRIM transcripts [169]. Fish TRIM family
has been subjected to a quick, extensive diversification by
duplication and specialization. Report describes 84 fish novel
TRIM proteins named finTRIMs in zebrafish [172].

Recently, studies highlight the positive or negative roles
of TRIM in innate immune response preventing or curtail-
ing pathogen invasion [170, 173]. Multiple TRIM members
involve in antiviral immunity at various levels of the IFN sig-
naling cascade [170, 174]: some TRIMs are IFN inducible and
restrict viral infection such as TRIM5, TRIM8, and TRIM22
[175–177], while some TRIMs expressions mediate the pro-
duction of IFN such as TRIM25, TRIM21, and TRIM68 [174,
178–180]. This is why researchers classify TRIMs into ISG
families [7, 142]. However, recent studies reveal multifaceted
feature of TRIMs in innate system. Evidences propose that
TRIM proteins are involved in the regulation of PRRs path-
ways. TRIM25 RING finger E3 ubiquitin ligase that induces
robust ubiquitination of CARD of RIG-I is essential for RIG-
I-mediated antiviral activity [178]. Like TRIM25, TRIM4
interacts with the CARD of RIG-I and targets the K63-
linked ubiquitination and regulates the virus-induced IFN
induction [181]. TRIM59 suppresses RLR-induced activation

of IRFs and NF-𝜅B via interaction with evolutionarily con-
served signaling intermediate in Toll pathways (ECSIT) [182].
TRIM32 modulates IFN-I induction and cellular antiviral
response by targeting MITA for K63-linked ubiquitination
[183]. TRIM38 negatively regulates TLR3-mediated IFN-I
signaling by targeting TRIF for degradation [184]. Studies
also indicate that TRIM38 negatively mediates TLR3/4- and
RIG-I-mediated IFN-𝛽 production and antiviral response by
interacting with NF-𝜅B-activating kinase associated protein 1
(NAP1) and inhibits TLR-induced activation of NF-𝜅B and
MAPK by targeting TRAF6 [185, 186]. TRIM27 negatively
regulatesNOD2-mediated signaling by degradation ofNOD2
[187].

At present,more andmore evidences underline themech-
anisms of TRIM family proteins in restricting viral infection.
However, the diversity, splicing variants, and differences
in tissue expression and subcellular localization decide the
versatility and complexity of TRIMs. In fish, the biological
function of TRIMs is rarely understood. By deep sequencing,
a large number of TRIMs were upregulated in adult rainbow
trout upon viral stimulation, which suggests TRIMs are
involved in antiviral immunity [169].

3.6.4. Other Immune Genes Involved in GCRV Infection.
Besides classical PRRs network and ISGs, some other genes
are also participating in immune defense against GCRV, such
as GCRV receptor junction adhesion molecule A (JAM-
A) [188], voltage-dependent anion-selective channel pro-
teins (VDACs) [189], ubiquitination pathway-related Nedd4
binding protein 1 (N4BP1) [190], lipopolysaccharide-induced
TNF-𝛼 factor (LITAF) [191], T-bet, and GATA-3 [192].

4. Molecular Genetic Markers

Genetic markers evolve from phenotype marker to molecule
marker with the development of the biotechnology. Molecule
markers based on PCR technique which provides precise
and rapid varietal identification are widely used in geno-
typing, breeding, and genetic studies [193, 194]. Up to date,
some molecular marker technologies have been used in fish
species. The markers include restriction fragment length
polymorphism (RFLP), amplified fragment length polymor-
phism (AFLP), sequence-related amplified polymorphism
(SRAP), random amplified polymorphism DNA (RAPD),
simple sequence repeats (SSR, also known as microsatel-
lite), single nucleotide polymorphism (SNP), and mtDNA
and insertion/deletion (InDel) [17, 195–197]. Among these
markers, SNP and SSR are the two most utilized [198]. The
polymorphisms of SNP and SSR are generated by different
mechanisms: SNPs are single base pair substitutions dis-
tributed throughout the nuclear genome, while SSRs are short
stretches of nuclear DNA composed of a motif repeated 𝑛
times, centered between less repetitive flanking regions [198].

In grass carp, both SNP and SSR techniques were used
[17, 199, 200]. Particularly, some SNPs associated with resis-
tance/susceptibility to GCRV were identified in some impor-
tant antiviral immune genes such as TLR3 [17], TLR22 [58],
RIG-I [101], MDA5 [100], LGP2 [102], and IPS-1 [16]. These
polymorphisms may provide some precious information
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for further research of disease resistance traits and genetic
breeding of grass carp. However, most SNPs are thought to be
biallelic and have lower information content [201]. So more
advanced technology or multiple genetic marker techniques
need to be conjunctively utilized to screen useful molecular
marker.

5. Prevention and Treatment

5.1. GCRV Detection. So far, many methods have been
developed to detect GCRV, such as virus isolation, electron
microscopy observation, antigen-related serological reac-
tions, genome-related nucleic acid hybridization, and RT-
PCR techniques which permit the detection of GCRV in
an easy, fast, and efficient way [202]. Recently, the reverse
transcription loop-mediated isothermal amplification (RT-
LAMP) has been used for GCRV diagnosis, which is rapid,
easy and no complicated instrument required is used for
GCRVdiagnosis [203]. Furthermore, antigenic serodiagnosis
using antibody of grass carp IgM is also employed for GCRV
detection [204–206].

5.2. Preventive and Therapeutic Strategies for
Hemorrhagic Disease Control

5.2.1. Vaccine. Among different disease management strate-
gies, vaccination has proved to be a very effective way of
protecting fish from viral disease [207]. Fish viral vaccines
have gone through three stages: the first stage of inactivated
vaccine and attenuated vaccine; the second stage of recom-
binant subunit vaccine; and the third stage of DNA vaccine
(also known as nucleic acid vaccine or genetic vaccine)
[207, 208]. In China, the first vaccine for grass carp hemor-
rhagic disease “organization plasma inactivated vaccine” was
obtained in 1960s. Subsequently, significant achievements
have been obtained in inactivated vaccine and attenuated live
vaccine through cell culture for hemorrhagic disease of grass
carp [209, 210]. In 2011, a live vaccine for GCRV-892 strain
developed by the “Pearl River Fishery Research Institute,
Chinese Academy of Fishery Sciences” obtained the “State
Medicine Manufacturing Approval Number” awarded by the
pharmaceutical supervisory and administrative department
of the State Council of People’s Republic of China, which is
the first State Medicine Manufacturing Approval Number in
vaccine for aquatic animals in China. This vaccine is widely
applied nowadays. Recombinant subunit vaccine uses recom-
binant specific viral proteins (viral subunits) as antigens.
Research has reported that antibodies against GCRV outer-
capsid proteins VP5 and VP7 expressed in E. coli can neutral-
ize viral infectivity [211]. Recombinant VP4 of GCRV-GD108
can also induce strong immune response [212]. However, this
vaccine is easily degraded during processing, delivery or in
the animals [207]. To data, study of recombinant subunit
vaccine is still only experimental.

DNA vaccine is an organism with naked DNA represent-
ing a viral encoded protein which is under the control of
a strong promoter. By intramuscular injection or gene gun
bombardment of the epidermis, the naked DNA expresses
recombinant viral antigen protein using the host encoding
system, which further induces the host immune defense

[207]. For aquatic organisms, DNA vaccines offer several
advantages over the classical antigen vaccines, such as inex-
pensive, stable, and easy to produce, modify, and store [208,
213]. These advantages catch widespread attention of scien-
tists. Recent years, DNA vaccines of grass carp hemorrhage
have achieved gratifying progress. Studies have demonstrated
the immunogenicity of GCRV structural proteins such as
VP4 [206], VP6 [214], and VP7 [204, 215]. DNA vaccine
of GCRV VP6 gene has been provided with significantly
protective effect against hemorrhagic disease [216]. It is
believed that in the coming years DNA vaccines will play a
vital role in the prevention of grass carp hemorrhagic disease.

5.2.2. RNAi. RNAi is a highly conserved gene-silencing
mechanism caused by dsRNA in both plants and animals
[217]. RNAi-mediated virus suppression is dependent on
Dicer, an RNAse III type endonuclease, which inhibits viral
replication via recognition of viral dsRNA or structured
RNA, and initiation of RNA-based viral immunity [218].
Grass carp Dicer has been identified and can be induced
by GCRV infection both in vitro and in vivo [219]. The
genomic dsRNA of GCRV is sensitive to the cellular RNAi
pathway, which sheds light on the interaction between RNAi
antiviral pathway and aquareovirus infection [220]. Previous
study has demonstrated that RNAi technique can suppress
the replication of GCRV [221].

5.2.3. Preventive Medicines. With the deficiency of tradi-
tional therapy, novel antireovirus strategies have been devel-
oped according to the pathogenesis of GCRV. (1) Protease
inhibitor: protease inhibitor can prevent viral nucleic acid
decladding from GCRV outer capsid, which can inhibit
GCRV infection in host cells; (2) IFN inducer: IFN-mediated
immune response is the main pathway against GCRV infec-
tion. IFN inducer can facilitate IFN production that activates
some kinases and induces antiviral immune response. (3)
GCRV interfering particles: adding virus interfering particles
can reduce the infectivity of progeny virus, which further
suppress virus proliferation [218]. (4) Medicines such as
mycophenolic acid, chestnut, and quebracho woods are
proposed to specifically inhibit GCRV [222, 223].

6. Perspective

Recently, great progresses on antiviral immunity have been
achieved in teleosts. Many mammalian antiviral genes have
been characterized, and the functions are investigated in
some model or economic fish species. Some fish specific
immune genes were also identified. However, studies on the
regulation mechanisms of fish antiviral immune signaling
pathways remain far behind those ofmammals.The abundant
alternative splicing and gene duplication present in fish
make fish innate immunity more complicated. With species
diversity, differences in research methods and unbalanced
development between different species and contradictory
or confused results often come from different studies on
the same genes. Fortunately, the wide application of high-
throughput sequencing allows the finding of novel antiviral-
related genesmore rapidly and precisely. However, researches
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on translation level are urgent to investigate the precise
regulation mechanism of immune pathway such as ligand
recognition or protein interaction. As for GCRV, complete
genome sequence anatomy and functional investigation of
capsid proteins lay a foundation for the development of
antireovirus strategies. Application of existing vaccine tech-
nology and other therapeutic methods effectively prevent
virus infection. However, more effort is needed to achieve
large-scale factory application. For animal disease, preven-
tion is better than cure.Our short-termgoal is to exploit novel
preventive medicines and vaccines. However, in the long run,
uncovering the gene regulation network relative to virus dis-
ease resistance, identifying functional genes and molecular
markers, and developing novelmaterials and technologies for
molecular breeding are the main issues for us.
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