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Abstract. Alzheimer’s disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic
where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development
of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive
impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has
been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD.
Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial
function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission
in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial
DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking
and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation
of amyloid-� (A�) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction
and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology,
clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of
oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of
the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.
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MOLECULAR HALLMARKS
OF ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) affects more than 5 mil-
lion Americans, with numbers expected to grow as the
population ages [1, 2]. Most AD cases are sporadic
where the origin of the disease is not known but might
be influenced by multiple factors including environ-
mental exposure, genetic risk factors, mitochondrial
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haplotypes, age, and sex [2–4]. About 1% of cases
are associated with familial mutations in the genes
that encode either a transmembrane amyloid-� pro-
tein precursor (A�PP), or proteins presenilin 1 (PS1)
and presenilin 2 (PS2), which are directly involved
in the A�PP processing. While cleavage of A�PP
at the plasma membrane by the α-secretase occurs
without formation of pathologic amyloid-β (A�) pep-
tides, cleavage with �- and �-secretases leads to
the release in the extracellular space of A� pep-
tides with 40 or 42 residues where A�42 is more
prone to aggregation and is the major component
of extracellular amyloid plaques [5, 6]. Along with
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the formation of extracellular aggregates, A� pep-
tides are present in neurons [5, 7]. Multiple studies
conducted in vitro and in vivo using human tissue
and transgenic mice demonstrated that intracellular
A� accumulates prior to the development of extra-
cellular plaques where it specifically affects synaptic
function leading to a profound memory deficit [8–10].
The existence of intraneuronal A� could be explained
by multiple mechanisms. Besides the plasma mem-
brane, A�PP is present at several intracellular sites
including the trans-Golgi network [11], endoplas-
mic reticulum (ER), and endosomal, lysosomal [12],
and mitochondrial membranes [13] where A� could
be generated via �- and γ-secretase cleavage. In
addition, secreted A� peptides could be internalized
via receptor-mediated or/and receptor-independent
endocytosis [14–16]. Extensive studies also support
the notion that soluble A� oligomers represent the
most toxic species that affect multiple early molec-
ular mechanisms leading to synaptic dysfunction in
AD [15].

Intracellular neurofibrillary tangles (NFT) repre-
sent another hallmark of AD. Tau is a microtubule
stabilizing protein. When it becomes hyperphospho-
rylated, it dislocates from the microtubules leading
to their destabilization and a disruption of neuronal
trafficking machinery [17]. A�-induced transloca-
tion of Tau to neuronal spines is associated with
synaptic dysfunction early in AD pathogenesis [18].
The definitive diagnosis of AD can only be done
by examining the postmortem brain tissue based
on the presence of extracellular plaques formed by
A� peptides, intracellular NFTs comprised of hyper-
phosphorylated Tau protein (pTau), A� deposits in
blood vessels, neuronal and synaptic loss, and sig-
nificant atrophy in selective brain regions involved
in cognitive function (hippocampus, entorhinal and
frontal cortices) [19]. The identification of familial
AD mutations in APP, PS1, and PS2 genes gave rise
to the amyloid cascade hypothesis that considered
the formation of A� a culprit of the disease. While
excessive production of A� peptides is observed early
in patients that develop AD and is essential for AD
pathology [20], it is not sufficient. Some aged indi-
viduals have significant A� load, but do not develop
cognitive impairment [21, 22]. Recent studies con-
ducted using positron-emission tomography (PET)
and novel tracers that allow imaging of both amyloid
and Tau distribution in the brain of living individu-
als suggest that there is a relationship between Tau
protein deposition, A� plaques, and neurodegenera-
tion [23]. Based on the pattern distribution and the

manifestation of cognitive symptoms, it appears that
the widespread presence of A� in the brain does not
lead to the development of AD without Tau being
present in the affected areas. These observations sup-
port the idea that the synergistic interaction between
A� and Tau is essential to trigger neurodegeneration
in AD [24, 25]. While this provides important insights
into AD patient’s diagnostic and prognostic criteria,
early molecular mechanisms leading to the accumu-
lation of A� and pTau or driving factors that promote
their spreading in the brain remain poorly understood
hindering the development of efficacious therapeutic
interventions [26–29].

THE ROLE OF OXIDATIVE STRESS
IN ALZHEIMER’S DISEASE

In search for the underlying mechanisms of AD,
the amyloid cascade hypothesis that dominated the
field of AD research for the past decades has
been challenged [30–32]. An alternative explana-
tion of the disease mechanism has emerged from
the observations linking mitochondrial dysfunction
and increased production of reactive oxygen species
(ROS) to the development of AD. The mitochondrial
cascade hypothesis states that in sporadic, late-onset
AD, loss of mitochondrial function associated with
age affects the expression and processing of A�PP
initiating A� accumulation [33]. Mitochondrial dys-
function has been well documented in AD [34, 35].
Abnormal mitochondrial axonal trafficking is already
observed in embryonic neurons from multiple trans-
genic mouse models of familial AD with additional
abnormalities in fission, fusion, and function detected
prior to the development of amyloid plaques or mem-
ory impairment [36–50]. Brain glucose metabolism
measured using fluorodeoxyglucose-positron emis-
sion tomography (FDG-PET) is reduced prior to the
onset of disease in several groups of at-risk individu-
als including patients with mild cognitive impairment
(MCI), a prodromal stage of AD, and in carriers of the
apolipoprotein E epsilon-4 (ApoE4) allele, a strong
genetic risk factor for late-onset AD. However, this
hypometabolism does not correlate with an increase
in brain A� deposition [51–53]. Furthermore, dis-
ruption in glucose metabolism associated with early
mitochondrial dysfunction detected in multiple ani-
mal models and AD patients [38, 41, 43, 48, 54–60]
may also be a direct determinant of oxidative stress
and synaptic dysfunction that contribute to early
disease mechanisms before any evidence of A� or
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Tau pathology [48, 61–63]. In the brain, the free
energy necessary to drive most cellular reactions is
primarily produced in mitochondria from the oxida-
tion of glucose under aerobic conditions (Fig. 1).
Oxidative stress, which is defined as ‘an imbal-
ance in pro-oxidants and antioxidants with associated
disruption of redox circuitry and macromolecular
damage’ [64], is associated with increased production
of ROS and reactive nitrogen species (RNS) including
superoxide radical anion (O2

–), hydrogen perox-
ide (H2O2), hydroxyl radical (HO–), nitric oxide
(NO), and peroxynitrite (ONOO–). While there are
multiple sources of ROS production in the cell includ-
ing ER, peroxisomes, a family of NADH oxidases,
and other enzymes such as monoamine oxidases
[65, 66], mitochondria are the largest contributor
to ROS production (Fig. 1) [67, 68]. During oxida-
tive phosphorylation, H2O2 and O2

– are produced as
byproducts in mitochondria primarily by complexes

I and III [69]. Under normal conditions, the antiox-
idant enzymes acting as free radical scavengers
mediate levels of ROS. These include superoxide
dismutases (SOD), glutathione peroxidase (GPX),
glutaredoxins, thioredoxins, and catalase (Fig. 1).
Additional mechanism of protection against oxida-
tive stress involves the activation of nuclear factor
erythroid-2-related factor 2 (Nrf2). Nrf2 is a tran-
scription factor negatively regulated by its binding
to the cytoplasmic repressor and stress sensor Kelch-
like ECH associated protein 1 (KEAP1), which acts
as a substrate adaptor to mediate ubiquitination and
degradation of Nrf2 by the E3 ubiquitin ligase Cullin-
3 [70]. In the presence of electrophiles and oxidants,
KEAP1 releases Nrf2 with its subsequent transloca-
tion to the nucleus where it activates transcription of
cytoprotective genes via promoter sequences contain-
ing conserved antioxidant response elements (AREs)
[71, 72]. This increases levels of antioxidant enzymes

Fig. 1. ROS production in mitochondria during oxidative phosphorylation and antioxidant mechanisms. Complex I and complex III of the
mitochondrial electron transport chain are the major sites of superoxide anion (O2

–) production during aerobic respiration. O2
– is converted

to H2O2 by MnSOD or CuZnSOD in the intermembrane mitochondrial space. H2O2 is further reduced to water by detoxifying enzymes
glutathione peroxidase (GPX) or catalase. GPX uses reduced glutathione (GSH) as the reductant, and the resulting oxidized glutathione reacts
with another glutathione molecule to form glutathione disulfide (GSSG), which is restored to GSH by the enzyme glutathione reductase
(GR). These reactions occur in mitochondrial matrix.
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and proteins such as glutathione-S-transferase,
NAD(P)H: quinone oxidoreductase-1, SOD, GPX,
heme oxygenase-1 (HO-1), glutamate cysteine lig-
ase, thioredoxin, and catalase, and also promotes
mitochondrial biogenesis ensuring a replacement
of damaged organelles [73, 74]. However, there is
conflicting evidence on whether Nrf2 is activated
in AD. In one study, levels of Nrf2 expression
were found to be decreased in AD patients despite
the presence of oxidative stress [75]. Other stud-
ies reported an increase in the expression of the
ARE-related genes in patients with MCI and AD
[76, 77]. While the exact mechanism is presently
unknown, these discrepancies could be associated
with the variations in the levels of Nrf2 expression
that could be influenced by aging and the disease
mechanisms [78].

The balance between ROS production and the
antioxidant defense is essential for normal cellular
function. However, in AD, the activity of antiox-
idant enzymes is altered, thereby contributing to
the unconstrained accumulation of oxidative damage
[79]. When unbalanced, overproduction of ROS com-
bined with the insufficient antioxidant defense leads
to oxidative stress [80]. There is evidence that mito-
chondrial damage resulting in increased production
of ROS contributes to the early stages of AD prior to
the onset of clinical symptoms and the appearance of
the A� pathology [80]. In support, markers of oxida-
tive stress including high levels of oxidized proteins,
glycosylated products, extensive lipid peroxidation,
formation of alcohols, aldehydes, free carbonyls,
ketones, cholestenone, and oxidative modifications
in RNA and nuclear and mitochondrial DNA were
found in postmortem brain tissue and in peripheral
systems including cells and isolated mitochondria
from people with preclinical or early stages of AD and
ApoE4 carriers (Fig. 2) [58, 81–97]. Mitochondrial
ROS could collapse mitochondrial membrane poten-
tial accelerating ROS production within the same
organelle (Fig. 3). As a result, an increase in ROS
production in a small subset of organelles could be
sufficient to propagate ROS damage to other mito-
chondria eventually affecting the whole cell [66].

Compelling data demonstrate that in addition to
mitochondrial ROS production, abnormal homeosta-
sis of bioactive metals including iron (Fe), copper
(Cu), zinc (Zn), magnesium (Mg), manganese (Mn),
and aluminum (Al) could be involved in free radi-
cal production and oxidative stress influencing A�
and Tau aggregation [35, 98–100]. Increased lev-
els of Fe, Cu, and Zn were detected using proton

Fig. 2. Molecular targets of ROS. While multiple sites in the cell
can contribute to ROS production, uncontrolled ROS generation
in mitochondria could impair a major source of energy in the cell
resulting in detrimental consequences to the whole cellular envi-
ronment. Intermediate levels of ROS can gradually affect multiple
cellular functions including loss of synaptic activity, while criti-
cally damaged mitochondria can trigger a release of cytochrome c
activating apoptosis.

induced X-ray emission, immunohistochemistry, and
synchrotron X-ray fluorescence in close proximity to
the amyloid plaques in the brain tissue of AD patients
and transgenic mouse models of AD [101–108]. The
accumulation of these metals in the first place is
thought to originate from the impaired neuronal metal
homeostasis affected by aging, and exacerbated by
amyloid and Tau pathologies in case of AD [109–111]
There is a tight connection between protein mis-
folding, aggregation, and metal ion homeostasis.
In particular, Zn directly affects A�PP processing
by binding to the protein [112], and Al, Zn, Fe,
and Cu directly bind A� promoting its aggrega-
tion [113–115]. Similarly, the redox metals could
promote Tau phosphorylation, its release from the
microtubules, and formation of NFTs [116, 117].
ROS production is facilitated by the redox-active met-
als including Cu, Fe, and Mn using catalytic reactions
similar to the Fenton reaction where metals convert
O2

– and H2O2 to HO– species that are involved in
lipid peroxidation [118]. Moreover, a direct binding
of A� peptides to Cu or Fe has been shown to generate
H2O2 [119]. Thus, the transition metals and A� could
synergistically contribute to an increase in oxidative
stress and extra-mitochondrial production of ROS.
In agreement with a role of metal ions in pathology,
restoration of metal dyshomeostasis after applica-
tion of metal chelators [120–122] reduced levels of
amyloid plaques and A� aggregation, and improved
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Fig. 3. Genetic and environmental risk factors contribute to the development of late onset sporadic AD. With age, increased mitochondrial
dysfunction and ROS production could initiate a vicious cycle where multiple systems and mechanisms affected by ROS exacerbate ROS
production, accelerating cellular damage, and leading to synaptic dysfunction.

cognitive performance in humans and mouse models
of AD [123].

Another source of ROS production directly medi-
ated by A� involves microglia activated in the brain
during an inflammatory response to the deposi-
tion of extracellular amyloid plaques [124]. Further,
increased levels of A� could accelerate a produc-
tion of ROS by directly binding to mitochondrial
membranes, altering mitochondrial dynamics and
function, ultimately leading to the abnormal energy
metabolism and the loss of synaptic function [35, 37,
39, 46, 62, 125, 126]. Membrane-associated oxida-
tive stress induced by A� peptides perturbs ceramide
and cholesterol metabolism that, in turn, triggers
a neurodegenerative cascade leading to additional
A� accumulation, Tau phosphorylation, and clini-
cal disease (Fig. 3) [127–135]. Furthermore, there
is a direct link between altered membrane lipids
and mitochondrial function, which is detrimental for
brain bioenergetics [136, 137]. Strong data generated
in animal models and humans suggest an intimate

relationship between oxidative stress, A� accumu-
lation, and abnormal Tau phosphorylation, where
pTau specifically affects the activity of complex I
synergistically contributing to the A�-mediated mito-
chondrial dysfunction and ROS production [138].
This could explain why accumulation of both A�
and pTau may be required to initiate neurodegenera-
tion in AD patients [23–25]. Moreover, emerging data
suggest that mitochondria-mediated cellular bioener-
getics could independently affect A�PP processing
and A� production (Fig. 2) [139–145]. However,
the details of causal relationship between oxidative
stress, mitochondrial dysfunction, and A� and pTau
accumulation in AD remain to be elucidated. Taken
together, these data suggest that altered mitochon-
drial function, increased oxidative stress, exhausted
antioxidant defense, production of A� and pTau,
which furthermore affects mitochondrial function
and ROS production, could represent a “vicious
cycle” that with time exacerbates the disease process,
eventually leading to neuronal death [47] (Fig. 3).
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OXIDATIVE STRESS AND SYNAPTIC
DYSFUNCTION IN ALZHEIMER’S
DISEASE

Synapses are structurally specialized regions in
neurons that propagate an electrical or chemical
signal from one cell to another. During neurotrans-
mission, signaling molecules such as glutamate,
acetylcholine, dopamine, and others released from
the active zones of a presynaptic neuron bind to
and activate receptors on a postsynaptic neuron
(Fig. 4) [146]. The strength of synaptic transmis-
sion depends on changes in neuronal activity where
the dynamic nature of synaptic plasticity including
long-term potentiation (LTP) and long-term depres-
sion (LTD) represents the fundamental mechanism
of learning and memory [147, 148]. Neurons have
a unique cellular architecture where formation or
pruning and maintenance of dendritic spines are
essential for neurotransmission and synaptic function

(Fig. 4). Synaptic transmission critically relies on the
fidelity of multiple cellular mechanisms including
biosynthesis of neurotransmitters from amino acids
to ensure their availability; the delivery of neuro-
transmitters to the sites of synapses requiring intact
microtubule tracts and vesicle trafficking machinery;
formation of synaptic vesicles that encapsulate neuro-
transmitters preparing for their release via exocytosis;
binding of the neurotransmitter to the receptor on
the postsynaptic neuron with subsequent activation
of cellular response; and the removal of the neuro-
transmitter from the synaptic cleft after the release
(Fig. 4) [149]. In addition, Ca2+ plays an essential
role in mediating basal synaptic transmission, where
an increase of its conductance through voltage gated
Ca2+-channels clustered in the presynaptic mem-
brane at the active zone triggers the release of synaptic
vesicles [146]. Given the complexity of neurotrans-
mission machinery, factors that affect any step of the
process could have a detrimental effect on synaptic

Fig. 4. Structure of a synapse. Left: synapse between two neurons observed in the brain tissue of a wild type C57/Bl6 mouse using
transmission electron microscopy (generated in Dr. Trushina laboratory [231]). An arrow indicates electron dense plasma membrane at the
synapse. Presynaptic neurons contain a large number of synaptic vesicles (#). Both presynaptic and postsynaptic neurons have mitochondria
at the site of synapse (*), which are delivered along the microtubule tracks (indicated with arrows). Scale bar, 0.5 �m. Right: a simplified
cartoon of a synapse. Glutamate (blue spheres) released from the presynaptic neuron in a voltage dependent manner, activates the NMDA
glutamate receptors present on pre- and postsynaptic neurons. These include AMPA (orange) and NMDA (green) receptors among others.
Glutamate is cleared from the synaptic cleft primarily by the glial cells transporters (GLT-1). It is then recycled to neurons, repackaged into
synaptic vesicles, and used in another synapse. An inadequate glutamate clearance could lead to the spillover and activation of extrasynaptic
NMDA receptors. Memantine is believed to prevent this particular activation. Excessive entry of Ca2+ into presynaptic neuron (red spheres)
could damage synaptic mitochondria leading to ROS production, altered synaptic transmission and neuronal dysfunction. This phenomenon is
called excitotoxicity. Note that mitochondria are delivered to the site of synapse along the Tau-containing microtubule tracks. Destabilization
of microtubules could affect mitochondrial localization and energy supply required for proper synaptic function.
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function in neurons and, ultimately, on cognitive
function.

AD is characterized by progressive memory
impairment, which is associated with the inhibition
of LTP and enhancement of LTD in the hippocam-
pus [150]. Loss of synapses in the affected brain
regions correlates best with cognitive impairment in
AD patients and has been considered as the early
mechanism that precedes neuronal loss [151–157].
Extensive studies conducted in vivo and in vitro sup-
port a direct relationship between oxidative stress
and synaptic dysfunction in AD [39, 126, 158,
159]. In particular, it has been shown that inde-
pendently and synergistically, ROS, A�, and pTau
affect the activity of N-methyl-D-aspartate (NMDA)
receptors. The NMDA receptors belong to the
ionotropic family of glutamate receptors, which in
coordination with α-amino-3-hydroxy-5-methyl-4-
isoxa-zolepropionic acid (AMPA) receptors regulate
the excitatory synaptic transmission and plasticity
in the brain playing an essential role in learn-
ing and memory [160, 161]. Activation of NMDA
receptors allows Ca2+ to enter the postsynaptic
cells initiating a cascade of events that is critically
involved in establishing LTP. The function of NMDA
receptors declines with age, which could explain
memory alterations associated with chronological
aging. However, in AD, in addition to age-related
changes, the expression of neurotoxic A� has been
shown to reduce the amount of surface NMDA recep-
tors in neurons and in brain tissue of AD mice
[162], trigger NMDA-mediated Ca2+ influx inducing
excitotoxicity and stress-related signaling pathways,
exacerbating aging-related increase in oxidative
stress, impaired energy metabolism, defective Ca2+
homeostasis, and altered regulation of transcription of
genes important for neuronal development and plas-
ticity [47, 163]. Memantine, the only FDA-approved
drug for AD that is not an acetyl cholinesterase
inhibitor, is a noncompetitive, low-affinity antago-
nist of NMDA receptors. Importantly, memantine
has greater affinity to non-synaptic NMDA recep-
tors, which are implicated in excitotoxicity associated
with the glutamate spillover and have distinctly dif-
ferent composition of receptor subunits [164, 165].
In addition to the effect on NMDAR, soluble A�
species have been shown to bind to AMPA receptors
promoting their internalization via clathrin-mediated
endocytosis after Ca2+-induced activation of cal-
cineurin [166]. Altered internalization of AMPA
receptors affects synaptic plasticity inducing synaptic
dysfunction and loss of dendritic spines (Fig. 4).

Another type of synapses in the central nervous
system utilizes γ-aminobutyric acid (GABA), which
is a major neurotransmitter that induces inhibitory
effect. In AD, levels of GABA are decreased with
disease progression, and reduced levels of expres-
sion of GABAergic receptors has also been noted
[167]. Degeneration of basal forebrain cholinergic
cells that directly project to the cortex and hip-
pocampus is well-documented in AD [168]. The
cholinergic system is also implicated in cogni-
tive functioning, especially in attention, memory,
and emotion. Extensive data generated in human
tissue and multiple animal models of AD demon-
strated severe deficit in the activity of multiple
acetylcholine synthesizing and degrading enzymes,
acetylcholine transporters and receptors involved in
synaptic signaling, along with reduction of presy-
naptic cholinergic markers. These investigations
provided compelling evidence for the development of
one of the few therapeutic approaches currently FDA-
approved for AD, cholinesterase inhibitors. This
approach allows increasing levels of acetylcholine
at synapses by blocking the activity of acetyl-
cholinesterase and butyrylcholinesterase enzymes,
which are involved in acetylcholine hydrolysis [169].

Among numerous mechanisms that connect neu-
rotoxic A�, Tau, oxidative stress, and synaptic
dysfunction in AD are excitotoxicity, oxidation of
proteins, and lipid peroxidation (Figs. 2, 3). Appli-
cation of Systems Biology approaches including
metabolomics and epigenetics to study early changes
associated with AD progression in plasma, CSF, and
brain tissue from individuals with different severity
of AD and multiple animal models of AD confirmed
that major alterations in metabolic networks identi-
fied early in disease are directly relevant to changes in
neurotransmitter, lipid, and energy metabolism [48,
63, 170, 171]. A�-induced excitotoxicity associated
with an excessive influx of calcium in postsynaptic
neurons can lead to a cascade of events that increases
ROS production, oxidative stress, Tau phosphory-
lation, and lipid peroxidation, ultimately leading
to synaptic dysfunction (Fig. 3) [172–174]. Alter-
ation of structure and fluidity of plasma membrane
associated with lipid peroxidation could affect the
organization and function of dendritic spines, signal-
ing pathways, receptor trafficking, and localization
[175]. Indeed, alterations in lipid trafficking and
metabolism affect membrane fluidity and lipid home-
ostasis early in ApoE4 carriers [92, 137, 176, 177].
Moreover, lipid peroxidation of mitochondrial mem-
branes could directly affect the dynamic and function
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of the organelle leading to reduced energy support
at the sites of synapses, which is detrimental for
brain bioenergetics [136, 137]. Altered mitochon-
drial fission, fusion, axonal motility, and function in
turn could contribute to ROS production exacerbating
synaptic function. As was mentioned earlier, A�-
induced hyperphosphorylation of Tau destabilizes
microtubule tracks, which alters axonal trafficking of
mitochondria and their synaptic docking, and translo-
cation of Tau to dendritic spines also may have a
synergistic effect contributing to NMDA receptor
destabilization, excitotoxicity, and increased oxida-
tive stress with detrimental effect on synaptic function
(Fig. 3). The role of protein oxidation in the mecha-
nism of AD has been recently reviewed in [4].

THERAPEUTIC STRATEGIES
FOR ALZHEIMER’S DISEASE

Currently approved treatments for AD are lim-
ited to three cholinesterase inhibitors, donepezil,
rivastigmine, and galantamine, and a low affinity
NMDA receptor antagonist, memantine. None of
these approaches are disease modifying; they do
not provide a “cure” but rather symptomatic treat-
ment for some individuals [178]. Moreover, failure
of the recent clinical trials focused on production or
clearance of A� peptides emphasizes the urgency to
consider alternative molecular mechanisms in order
to design interventions that will delay or alleviate
the development of AD [179]. While compelling
evidence implicates oxidative stress in the early
molecular mechanisms of AD [180], there is no
FDA-approved antioxidant therapy for AD. More-
over, while antioxidant experimental therapeutics
produced promising results in animal models of AD
[181–183], clinical trials either failed or delivered
inconclusive results [184]. For example, multiple tri-
als assayed the effect of a strong antioxidant vitamin
E (alpha tocopherol) on cognitive function in cogni-
tively normal and generally healthy women 65 years
or older [185], in cognitively normal women with
preexisting cardiovascular disease or cardiovascular
disease risk factors 40 years or older [186], in peo-
ple with MCI [187], in patients with moderate to
severe AD [188], and in individuals with mild to
moderate AD [189]. Positive results where statisti-
cally significant changes in cognitive performance
were achieved after vitamin E administration com-
pared to placebo were found only in people with
mild to moderate AD [189]. Importantly, there were

no significant differences in the groups receiving
memantine alone or memantine plus alpha tocopherol
as a combination therapy. Moreover, meta-analysis of
19 randomized trials with vitamin E demonstrated its
high toxicity and all-cause mortality at high doses
[190]. Inconclusive results were also achieved in an
open clinical trial where AD patients stably taking
a cholinesterase inhibitor were supplemented with
vitamin C and E over 1 year [191]. While oxida-
tion of CSF lipids was significantly reduced after 1
year of the supplementation, the clinical course of
AD did not differ between the vitamin-supplemented
and the control group. Another failed trial involved
the supplementation with vitamin E, C, and α-lipoic
acid in patients with mild to moderate AD [192].
Despite a detection of reduced levels of markers of
oxidative stress in CSF, a rapid cognitive decline
observed in treated group raised significant safety
concerns. Similar results were obtained in clinical
trials with curcumin, a polyphenolic compound that
has been demonstrated to have antioxidant and anti-
inflammatory effects in preclinical studies [193].
Comprehensive update on the outcomes of the antiox-
idant treatments in recent clinical trials was provided
in recent reviews [194, 195].

Multiple challenges associated with the design of
clinical trials in elderly and the lack of a complete
understanding of the molecular mechanism of antiox-
idant therapy may account for such diverse outcomes.
First of all, there is no definitive test to diagnose AD
in living individuals. The conclusive diagnosis of AD
can only be done after the examination of postmortem
brain tissue for the presence of amyloid plaques and
NFTs. This introduces some ambiguity in the etiology
behind cognitive impairment in the subjects recruited
for clinical trials. Next, it is important at what stage of
the disease the treatment is administered since some
of the interactions may be efficacious only at the
early stages. Furthermore, clinical trials in elderly are
associated with the relatively small number of partic-
ipants and short period of treatment, high frequency
of death, inconsistent use of medication, and a lack of
a follow-up data. However, there are clinical trials in
progress that have greater number of participants and
extended periods of treatment that may provide bet-
ter results on the effect of the antioxidant therapy in
AD [196, 197]. Along with the trials designed to test
efficacy of a single compound found beneficial in pre-
clinical trials, combination therapy for AD may hold
a promise [198]. This approach includes treatment
with multiple compounds with diverse properties that
could improve several mechanisms and functions
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altered in AD without adverse side effects. In one
of such trials, the administration of a nutraceutical
formulation that included folate, alpha-tocopherol,
B12, S-adenosyl methioinine, N-acetyl cysteine, and
acetyl-L-carnitine to the AD patients over 1 year
resulted in stabilization of cognitive function [199].
Similar antioxidant cocktails were shown beneficial
in improving memory and cognitive performance
in community-dwelling adults without dementia
[200, 201].

In recent years, it has become apparent that
strategies designed to target total ROS in the organ-
ism might not be productive since ROS have dual
function. On one hand, increased ROS produc-
tion contributes to age-related chronic conditions
and neurodegeneration [47]. On the other, oxidant
species, such as superoxide and hydrogen perox-
ide, can function as signaling molecules in a broad
array of essential redox-dependent signaling path-
ways that are critical for the organismal survival
including epidermal growth factor receptor signal-
ing [202], inactivation of the tumor suppressor
PTEN [203], circadian rhythms [204], the inflam-
matory response [205], and hormetic stress response
[206–209]. Redox homeostasis with tight control
over levels of ROS production is essential to protect
cells from oxidative stress and, at the same time, to
ensure presence of the important signaling molecules
[210]. Thus, understanding how the dual role of ROS
is maintained with age and in the context of different
stages of the disease is important for the development
of therapeutic approaches that target ROS production
and clearance.

Based on the recognized contribution of mito-
chondria to cellular ROS, the development of novel
antioxidants that directly target mitochondria rep-
resent a promising approach to mitigate local ROS
production compared to the reduction of global
levels of ROS. These compounds include coen-
zyme Q10, idebenone, creatine, MitoQ, MitoVitE,
MitoTEMPOL, latrepirdine, methyleneblue, triter-
penoids, series of Szeto-Schiller (SS) peptides,
curcumin, Ginkgo biloba, and omega-3 polyun-
saturated fatty acids. These mitochondria-targeted
compounds have been extensively evaluated in mul-
tiple laboratories using various in vivo and in vitro
models of AD where some of them including a pep-
tide, 6’-dimethyltyrosine-Lys-Phe-NH2 (SS31), have
been shown very efficacious in protecting against A�-
induced oxidative stress, synaptic loss, mitochondrial
dysfunction, and abnormal calcium homeostasis
[62]. Some of these compounds demonstrated

promising results in clinical trials [211, 212].
Moreover, emerging data demonstrate that par-
tial inhibition of OXPHOS with pharmacological
inhibitors is beneficial in preventing obesity and
type II diabetes, another risk factors contributing to
AD [213–216], and promoting longevity in model
organisms and in humans [217–220]. In particular,
modulation of mitochondrial Complex I activity with
small molecules was found efficacious in cognitive
protection in multiple mouse models of AD [221]
and in extending lifespan [222]. However, the details
of molecular mechanism remain to be determined.

While supplementation with antioxidants so far
appears to produce little modifying effect on AD
development, non-pharmacological treatments and
lifestyle interventions including exercise and caloric
restriction have gained significant attention due to
their overall positive effect on health and life span
[223]. Specifically, grounded on a population-based
perspective, the Alzheimer’s Association has identi-
fied regular physical exercise as one of the strategies
to reduce the risk of cognitive decline and the
development of dementia [224]. Indeed, regular phys-
ical activity was associated with reduced oxidative
stress, increased antioxidant capacity, increased anti-
inflammatory effects, reduced levels of ceramides
that are elevated in AD, improved A� clearance asso-
ciated with the upregulating A� transporters, and
induced neurogenesis [223, 225, 226]. The molecu-
lar mechanisms implicated in the beneficial effect of
exercise are not fully understood. One of the expla-
nations is based on the concept of mitohormesis,
which suggests that an exposure to low continuous
or higher intermittent sub-lethal doses of exercise-
associated stress could lead to a mitochondrial
adaptation by inducing changes in gene expression
through exercise-sensitive transcription factors such
as PGC1α, mtTFA, NF-�B, HIF-1, and p53. Down-
stream effects result in increase in mitochondrial
biogenesis and antioxidant response. Potential sig-
naling factors that mediate this mitochondria-nuclear
communication may include ROS, calcium, mito-
chondrial unfolded protein response, mitochondrial
metabolites, and mitokines [66, 227]. In addition
to exercise, modulation of diet, especially caloric
restriction, has been shown not only to extend lifes-
pan, but also to protect against cognitive decline
[228, 229]. However, a recent study demonstrated
that meals rich in saturated fat and foods with
a high glycemic index have differential effect
in adults with and without cognitive impairment
[230]. In individuals without cognitive impairment,
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a consumption of high caloric food worsened cog-
nitive performance, whereas consumption of high
caloric food was beneficial in adults with cognitive
impairment or the ApoE4 carriers. The authors also
found that levels of A� in plasma were affected
by meal type, suggesting a relationship between
metabolic response and amyloid regulation. There-
fore, a better understanding of the effect of diet
modifications and exercise on metabolism, mitochon-
drial function and ROS production during different
stages of disease progression is needed to develop
safe and efficacious therapeutic strategies for AD.

CONCLUSIONS

Multiple lines of evidence provide strong support
for the involvement of oxidative stress in the devel-
opment of AD. At the same time, limited success
of antioxidant therapies achieved to date empha-
sizes the need for better understanding of molecular
mechanisms associated with different stages of AD
development. Moreover, the dual role of ROS in
essential neuroprotective cellular mechanisms ver-
sus detrimental effects of increased uncontrolled
ROS production should be carefully considered while
developing strategies to mitigate oxidative stress in
neurodegenerative diseases.
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E. Tönnies and E. Trushina / Oxidative Stress in Alzheimer’s Disease 1121

[206] Mathers J, Fraser JA, McMahon M, Saunders RD, Hayes
JD, McLellan LI (2004) Antioxidant and cytoprotective
responses to redox stress. Biochem Soc Symp, 157-176.

[207] Mattson MP (2008) Hormesis defined. Ageing Res Rev 7,
1-7.

[208] Ristow M (2014) Unraveling the truth about antioxidants:
Mitohormesis explains ROS-induced health benefits. Nat
Med 20, 709-711.

[209] Schmeisser S, Priebe S, Groth M, Monajembashi S, Hem-
merich P, Guthke R, Platzer M, Ristow M (2013) Neuronal
ROS signaling rather than AMPK/sirtuin-mediated energy
sensing links dietary restriction to lifespan extension. Mol
Metab 2, 92-102.

[210] Droge W (2002) Free radicals in the physiological control
of cell function. Physiol Rev 82, 47-95.

[211] Kumar A, Singh A (2015) A review on mitochondrial
restorative mechanism of antioxidants in Alzheimer’s dis-
ease and other neurological conditions. Front Pharmaco
6, 206.

[212] Feniouk BA, Skulachev VP (2016) Cellular and molecular
mechanisms of action of mitochondria-targeted antioxi-
dants. Curr Aging Sci 9, doi: 10.2174-1874609809666160
921113706

[213] Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M,
Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely
G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin
P, Burcelin R, Penninger JM (2007) Targeted deletion of
AIF decreases mitochondrial oxidative phosphorylation
and protects from obesity and diabetes. Cell 131, 476-491.

[214] Wredenberg A, Freyer C, Sandstrom ME, Katz A, Wibom
R, Westerblad H, Larsson NG (2006) Respiratory chain
dysfunction in skeletal muscle does not cause insulin resis-
tance. Biochem Biophys Res Commun 350, 202-207.

[215] Vernochet C, Mourier A, Bezy O, Macotela Y, Boucher J,
Rardin MJ, An D, Lee KY, Ilkayeva OR, Zingaretti CM,
Emanuelli B, Smyth G, Cinti S, Newgard CB, Gibson BW,
Larsson NG, Kahn CR (2012) Adipose-specific deletion
of TFAM increases mitochondrial oxidation and protects
mice against obesity and insulin resistance. Cell Metab 16,
765-776.

[216] Quintens R, Singh S, Lemaire K, De Bock K, Granvik
M, Schraenen A, Vroegrijk IO, Costa V, Van Noten P,
Lambrechts D, Lehnert S, Van Lommel L, Thorrez L, De
Faudeur G, Romijn JA, Shelton JM, Scorrano L, Lijnen
HR, Voshol PJ, Carmeliet P, Mammen PP, Schuit F (2013)
Mice deficient in the respiratory chain gene Cox6a2 are
protected against high-fat diet-induced obesity and insulin
resistance. PLoS One 8, e56719.

[217] Raule N, Sevini F, Li S, Barbieri A, Tallaro F, Lomar-
tire L, Vianello D, Montesanto A, Moilanen JS, Bezrukov
V, Blanche H, Hervonen A, Christensen K, Deiana L,
Gonos ES, Kirkwood TB, Kristensen P, Leon A, Pelicci
PG, Poulain M, Rea IM, Remacle J, Robine JM, Schreiber
S, Sikora E, Eline Slagboom P, Spazzafumo L, Antonietta
Stazi M, Toussaint O, Vaupel JW, Rose G, Majamaa K,
Perola M, Johnson TE, Bolund L, Yang H, Passarino G,
Franceschi C (2014) The co-occurrence of mtDNA muta-
tions on different oxidative phosphorylation subunits, not
detected by haplogroup analysis, affects human longevity
and is population specific. Aging Cell 13, 401-407.

[218] Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S,
Arabyan T, Rabie J, Soh J, Walker DW (2009) Exten-
sion of Drosophila life span by RNAi of the mitochondrial
respiratory chain. Curr Biol 19, 1591-1598.

[219] Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J,
Ruvkun G (2003) A systematic RNAi screen identifies a
critical role for mitochondria in C. elegans longevity. Nat
Genet 33, 40-48.

[220] Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E,
Hekimi S (2005) Evolutionary conservation of the clk-
1-dependent mechanism of longevity: Loss of mclk1
increases cellular fitness and lifespan in mice. Genes Dev
19, 2424-2434.

[221] Zhang L, Zhang S, Maezawa I, Trushin S, Minhas P, Pinto
M, Jin LW, Prasain K, Nguyen TD, Yamazaki Y, Kanekiyo
T, Bu G, Gateno B, Chang KO, Nath KA, Nemutlu E, Dzeja
P, Pang YP, Hua DH, Trushina E (2015) Modulation of
mitochondrial complex I activity averts cognitive decline
in multiple animal models of familial Alzheimer’s disease.
E Bio Medicine 2, 294-305.

[222] Baumgart M, Priebe S, Groth M, Hartmann N, Menzel
U, Pandolfini L, Koch P, Felder M, Ristow M, Englert
C, Guthke R, Platzer M, Cellerino A (2016) Longitudinal
RNA-Seq analysis of vertebrate aging identifies mitochon-
drial complex i as a small-molecule-sensitive modifier of
lifespan. Cell Syst 2, 122-132.

[223] Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-
Alcocer G (2016) Therapies for prevention and treatment
of Alzheimer’s disease. Biomed Res Int 2016, 2589276.

[224] Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim
H, Johns H (2015) Summary of the evidence on mod-
ifiable risk factors for cognitive decline and dementia:
A population-based perspective. Alzheimers Dement 11,
718-726.

[225] Bertram S, Brixius K, Brinkmann C (2016) Exercise for
the diabetic brain: How physical training may help pre-
vent dementia and Alzheimer’s disease in T2DM patients.
Endocrine 53, 350-363.

[226] Baker LD, Frank LL, Foster-Schubert K, Green PS,
Wilkinson CW, McTiernan A, Cholerton BA, Plymate
SR, Fishel MA, Watson GS, Duncan GE, Mehta PD,
Craft S (2010) Aerobic exercise improves cognition for
older adults with glucose intolerance, a risk factor for
Alzheimer’s disease. J Alzheimers Dis 22, 569-579.

[227] Merry TL, Ristow M (2016) Mitohormesis in exercise
training. Free Radic Biol Med 98, 123-130.

[228] Ntsapi C, Loos B (2016) Caloric restriction and the
precision-control of autophagy: A strategy for delaying
neurodegenerative disease progression. Exp Gerontol 83,
97-111.

[229] Van Cauwenberghe C, Vandendriessche C, Libert C,
Vandenbroucke RE (2016) Caloric restriction: Beneficial
effects on brain aging and Alzheimer’s disease. Mamm
Genome 27, 300-319.

[230] Hanson AJ, Bayer JL, Baker LD, Cholerton B, VanFossen
B, Trittschuh E, Rissman RA, Donohue MC, Moghadam
SH, Plymate SR, Craft S (2015) Differential effects of meal
challenges on cognition, metabolism, and biomarkers for
apolipoprotein E �4 carriers and adults with mild cognitive
impairment. J Alzheimers Dis 48, 205-218.

[231] Zhang L, Trushin S, Christensen TA, Bachmeier BV,
Gateno B, Schroeder A, Yao J, Itoh K, Sesaki H, Poon
WW, Gylys KH, Patterson ER, Parisi JE, Diaz Brinton
R, Salisbury JL, Trushina E (2016) Altered brain ener-
getics induces mitochondrial fission arrest in Alzheimer’s
Disease. Sci Rep 6, 18725.


