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Abstract 26 

Noncommunicable diseases (NCDs) have become globally abundant, yet the therapeutics 27 
we use for them are imprecise. In parallel, identifying new treatments has become more 28 
costly than ever due to the ever-aggravating efficacy crisis drug discovery faces. What unites 29 
these failures is our ontological classification of diseases, primarily based on descriptive 30 
terms.  To achieve precision diagnosis and precision therapy in clinical practice, NCDs need 31 
to be redefined and subdivided based on their causal molecular mechanisms. However, the 32 
inconsistency and incompatibility of the current disease classification systems hinder data 33 
integration and analysis towards the characterization of such mechanisms. Here, we explain 34 
flaws in the current disease definitions and the dispersion among existing ontologies with 35 
the aim of establishing a mechanism-based classification of diseases hence, precision 36 
medicine.  37 
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Introduction 38 

The current imprecision of therapies leads to a high number of individuals being treated to 39 
achieve benefit for at least one patient. Noncommunicable diseases (NCDs) are thus 40 
responsible for three-fourths of deaths globally1. Moreover, most recently approved 41 
compounds that meet regulatory efficacy criteria provide no benefit over existing therapies2. 42 
The main cause for this imprecision is the knowledge gap between how we define diseases 43 
and the mechanisms underlying them. They are often symptom- and organ-based, lacking 44 
molecular causal understanding. However, without a corresponding disease mechanism, 45 
precision diagnosis and precision therapy are impossible.  46 

Systems medicine aims to overcome symptom- and organ-based silos, by integrating 47 
multilevel clinical and omics data and characterising mechanistic relationships between 48 
diseases in, so-called, human diseasome (i.e., a network of disease-disease relationships 49 
where links are formed by shared risk genes,  pleiotropic drugs and clinical comorbidities3. 50 
Diseases that share risk genes, drugs or pathobiological processes underlying their clinical 51 
manifestation across patients cluster together within the diseasome, pointing to common 52 
underlying causal biological mechanisms, which can be leveraged for mechanism-based 53 
diagnosis and precision therapy. However, the integration of such clinical and omics data is 54 
currently prevented by the fact that different biomedical domains, i.e., clinical practice, 55 
genetics, and preclinical research, use different and incompatible symptom-, organ-, 56 
histology- or other phenotype-based disease classifications4,5.  57 

Here, we delve into the extent of this problem and suggest that all medical disciplines 58 
adopt a single disease ontology, which is then gradually transformed from a descriptive 59 
ontology into a mechanistic one. As intriguing as it might sound, the taxonomy of monogenic 60 
rare diseases already demonstrates the viability of having such mechanistic ontology.  61 
Furthermore, proof-of-concept studies have shown that this approach is also feasible for 62 
complex disorders. Revisiting the way we define diseases will enable a conceptually new 63 
era of precision medicine and ideally precision disease prevention. 64 
We surrender to our inability to heal 65 
Since 1900, mortality has drastically declined, predominantly through the prevention and 66 
treatment of infections6. The decline in mortality has not only been stagnating but now it is 67 
also experiencing a reversal, and in the USA7 and UK8 life expectancy has begun to 68 
decrease. Preventive medicine, despite being our sharpest weapon against disease, is 69 
grossly underused9, making drug therapy the most common type of intervention in fighting 70 
complex diseases. However, drug therapy is a quite blunt weapon in this fight. Of those 71 
drugs that make it to the market, two-thirds fail to provide benefits over existing ones or even 72 
induce harm10, increasing mortality11,12. With respect to discovering new drugs, the success 73 
rate of the pharmaceutical industry has been on a constant decline13. These failures have 74 
led the pharma to focus on supposedly easier markets such as immunomodulators and 75 
antiviral drugs creating several abandoned disease areas and ultimately a high number of 76 
insufficiently treated patients13. For a very common indication such as stroke, only a single 77 
drug, tPA, is available with more than 30 contraindications, excluding 85% of patients14.  78 

Moreover, most of the drugs that “work”, do not cure but only alleviate symptoms 79 
turning most diseases into chronic conditions. And then, by classifying diseases as chronic, 80 
we surrender to our inability to heal. Several shortcomings and false incentives in 81 
biomedicine have led to this crisis5,15–17, but above all, stands our conceptual failure in how 82 
we define diseases.  83 
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Our definition of diseases is flawed 84 

Unlike rare and infectious diseases, NCDs are not defined by their underlying causal 85 
mechanisms (Fig. 1). Instead, NCDs are defined by a symptom linked to a specific organ, 86 
such as asthma, hypertension, atherosclerosis, etc., or even, by the name of a clinician, for 87 
instance, Alzheimer’s or Parkinson’s disease. In fact, most diseases are umbrella terms 88 
lumping together different causal mechanisms that share this one name-giving phenotype. 89 
Therefore, the use of such umbrella disease terms in biomedical research and clinical practice generates 90 
an impenetrable mix of molecular mechanisms and clinical comorbidities18–21. Our definitions of 91 
diseases are often oversimplified generalisations of underlying pathophysiology, making it 92 
extremely challenging to develop curative, precise therapies for the entire spectrum of 93 
pathological entities under the umbrella term.22 In some cases, such as syndromes, we 94 
summarise medical conditions by a particular group of signs and symptoms but still do not 95 
incorporate genetic and molecular perturbations underlying the disease. Consequently, 96 
since genetics and clinical medicine seem to live in separate classification systems, 97 
taxonomies, or ontologies, the ever-increasing wealth of genetic information does not lead 98 
to innovation.  99 

The current heterogeneity in disease classifications is a consequence of our intrinsic 100 
desire to bring order to the complexity of clinical medicine. Disease classifications are 101 
supposed to fulfil different purposes based on who proposed them, e.g., for diagnoses, 102 
subtyping, clinical decision-making, and generating disease models to innovate clinical 103 
medicine, etc. As these motives have never been a unified effort, due to historical and 104 
practical considerations, a wide array of disease classifications exists, reflecting how 105 
diseases are perceived in different domains. Therefore existing classifications differ in 106 
various aspects including structure, domain coverage, richness, complexity, community 107 
acceptance, maintenance, licence, and construction methods (Table 1 and, for extended 108 
information and additional ontology examples, Supplementary Table 1).  109 

Lost in translation: Classification, taxonomy, or ontology?  110 
As we go deeper, it is important to understand the differences between disease 111 
classification, taxonomy and ontology, terms that are often confused and used 112 
interchangeably. However, they profoundly differ in their richness of information. A 113 
‘classification’ labels data into categories; a ‘taxonomy’ provides information where a 114 
concept has an is-a-kind-of relationship with a broader term; and an ‘ontology’ enriches data 115 
with information on the relationships of defined terms with each other by using a subclass 116 
hierarchy. An ontology allows the addition of complex features, the application of different 117 
vocabularies on the elements’ definitions, and the introduction of logic-based axioms. All 118 
provide structural concepts, but an ontology provides further information about the concepts 119 
and their relationships23. To avoid confusion between these terms, here, we use 120 
classification and taxonomy inclusively to refer to different means of disease definition and 121 
categorisation systems including ontologies, nomenclatures, dictionaries and vocabularies. 122 
In general, four discernible groups of disease classifications can be identified by purpose:  123 

(i) Clinical such as International Classification of Diseases (ICD)24 and Systematized 124 
Nomenclature of Medicine – Clinical Terms (SNOMED CT)4  125 

(ii) Biomedical research such as Online Mendelian Inheritance in Man (OMIM for 126 
genetic phenotypes)25, and Medical Subject Headings (MeSH)26 127 

(iii) Specific domains such as cardiovascular disease ontology (CVDO)27 and 128 
Orphanet28 for rare diseases  129 

(iv) Consolidation and integration initiatives such as Disease Ontology (DO)29, OBO-130 
Foundry30, DisMaNET31, Mondo4,32, and Experimental Factor Ontology (EFO)33.  131 
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The ICD, the widely accepted standard for diagnosis and inpatient hospital coding in 132 
the USA and some European countries, was initially developed in 1893 and has been 133 
recurrently updated by the World Health Organization24. Its codes help to unify electronic 134 
health records to facilitate medical claims and to enable data aggregation and clinical studies 135 
on specific diseases34. ICD supports the operational structure of medicine in organ-based 136 
departments (i.e., cardiology, neurology) and vocational specialisations (i.e., cardiologist, 137 
neurologist). However, ICD definitions lack specificity induced by variation of code 138 
assignment, which hinders data extraction and analysis35–38. MeSH26 , on the other hand, 139 
indexes and annotates medical literature through standardised terms referring to defined 140 
concepts and hierarchies. Accordingly, it is frequently used in basic and preclinical research 141 
as well as biomedical literature mining via popular resources such as MEDLINE or 142 
clinicaltrials.gov39–41. However, MeSH also presents drawbacks, being inadequate in 143 
coverage as the annotation process is subjective, possibly introducing inconsistencies42,43. 144 
Clinicians and biomedical researchers, all use different disease terms and ontologies, 145 
creating a disconnect between clinical research and clinical practice.  146 
Attempts to harmonise disease definitions have failed 147 

To address shortcomings such as structural organisation, classification specificity, or direct 148 
applicability, an increasing number of general classification systems have been suggested. 149 
DO29 was developed to be less broad than MeSH and focus only on disease concepts, 150 
aiming to harmonise different taxonomies to enable a unified disease annotation. 151 
Consequently, DO has attracted interest in the areas of data integration and annotation, 152 
disease mapping, and computational analysis of disease associations44–47. Although DO 153 
embarks on encapsulating a comprehensive theory of disease48, it still largely relies on non-154 
mechanistic terms based on descriptive symptoms and unknown causes. Besides DO, other 155 
broad or focused harmonisation initiatives run in parallel, i.e., DisMaNET31, Mondo4,32, and 156 
SNOMED CT4. All these platforms aim to overcome the heterogeneity concerning disease 157 
terminology by providing a semantic model for integrating multiple ontologies. However, 158 
none of these efforts is fully comprehensive or sufficient to address the distinct needs of 159 
different stakeholders from academia, clinical centres, and industry. In fact, the existing 160 
classifications of diseases are not only agnostic about the underlying causal molecular 161 
pathology, but they also exacerbate the problem using generic and different labels, focusing 162 
in an alternating manner on organs, histology, time-course, and disease triggers. 163 

Unlike the HUGO Gene Nomenclature Committee (HGNC), which set widely 164 
accepted and adopted guidelines for human genes49, neither a consensus nor a 165 
nomenclature committee for disease classification exists so far. 166 
Three inconsistency examples 167 

To examine and visualise the dichotomy between different classifications together with the 168 
practical and innovation consequences, we focused on the following three common clinical 169 
phenotypes; asthma, stroke, and hypertension, and three resources; DO, MeSH, and ICD-170 
10. In asthma, the current definition has diverged substantially from its historical origin. The 171 
term asthma derives from the ancient Greek ἆσθμα “laborious breathing”, an intrinsically 172 
symptom-based definition. Early clinical classification systems included allergic vs. non-173 
allergic asthma, while recent classification has focused on endotypes (also known as 174 
mechanotypes, endophenotypes, subphenotypes or subtypes) based on the underlying 175 
immunological abnormalities, the impact of the inflammasome, and the epithelial barrier50. 176 
Although cellular and various multi-omic biomarkers for asthma have been proposed51, they 177 
have neither been widely utilised in clinical research nor in care. In fact, for most patients, 178 
asthma treatment is based on the severity of symptoms50. Specifically, for mild to moderate 179 
asthmatics, bronchodilators (ß2 agonists) and/or inhaled corticosteroids are employed. Only 180 
in severe asthmatics, elements of disease subtyping are considered, e.g., with elevated 181 
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circulating eosinophils, anti-IL5 or anti-IL4 compounds52. To show the discrepancies 182 
between different classifications, asthma subtypes were extracted from the three mentioned 183 
resources as shown in (Fig. 2). In total, 23 clinical phenotypes of asthma were listed in the 184 
three resources, while only six jointly appear in two classifications; all others are singular, 185 
hence not matched to any of the other two classifications. 186 

In hypertension, MeSH is more verbose including subtypes such as essential, 187 
malignant, pregnancy-induced, and renal among others (Supplementary Fig. 1). In contrast, 188 
MeSH is less descriptive of different taxonomic categorizations of ischaemic stroke 189 
(Supplementary Fig. 2). ICD, however, provides more granularity in terms of stroke 190 
classification considering cryptogenic, ischaemic, neonatal, perinatal, and postprocedural 191 
ischemia; whereas hypertension is not confined to hypertensive diseases (I10-I15) but is 192 
categorised under multiple disease classes (I, G, H, O, P, R, and Y). Therefore, diseases 193 
that are unified under the same tree branch in DO or MeSH are split up in ICD. 194 

The limited overlap between these three resources warrants extreme caution when 195 
interpreting diagnoses across different clinical data sources, and mapping disease 196 
annotations to each other in research studies. While the highest-level definition (i.e., root 197 
node defining a major disease class) capturing shared symptoms (e.g., asthma, 198 
hypertension) are relatively coherent, the subsequent division of definitions varies greatly 199 
and inconsistently, highlighting the discord in each classification. 200 

Biomedical research overlooks most clinical needs 201 

The inconsistency perpetuates into research definitions and models of these three examples 202 
above; including (i) some clinical phenotypes not having correspondent preclinical disease 203 
models (intrinsic asthma; hypertension and comorbidities; vasospasm and stroke), and (ii) 204 
others overrepresented with a high bias (allergic asthma; renal hypertension; middle 205 
cerebral artery occlusion) (Fig. 2 and Supplementary Fig. 1 & 2). While in acute stroke, one 206 
can assume that the underlying causal mechanisms (although unknown) are most likely 207 
similar, it is unclear whether an animal model of asthma or hypertension also shares causal 208 
disease mechanisms and not just symptoms. Similarly, animal models for Alzheimer’s and 209 
Parkinson’s disease are supposedly mimicking human disease when the underlying 210 
molecular pathomechanisms of both indications have not been fully identified.  211 

Clinicians have made several attempts to subclassify phenotypes such as asthma in 212 
a descriptive manner, ranging from different origins and triggers to different cell populations 213 
in the sputum of asthmatic patients. However, with respect to identifying molecular causes, 214 
geneticists often treat asthma as a single entity with which collaborative genome-wide 215 
associations are designed in order to obtain the large sample sizes required to detect genetic 216 
associations of small effect (the vast majority of complex disease genetic determinants). 217 
However, genetic differences likely contribute to phenotypic heterogeneity53. As a result, 218 
many primary disease-relevant genetic determinants of disease endophenotypes may have 219 
been missed. 220 

Research traditions and unmet medical needs are highly uncoupled5,54. Obviously, 221 
geneticists, pre-clinical researchers and clinical staff are working in silos with hardly any 222 
cross-fertilisation, at least none towards clinically relevant results5.  223 

How big is the problem? 224 
To further quantify the gap between these ontologies beyond the above mentioned three 225 
inconsistency examples, we fully analysed six widely used classification; ICD-10, MeSH, 226 
DO, OMIM, Orphanet, and Mondo. The mapping ratios for each pair of classifications were 227 
calculated and visualised in a heatmap (Fig. 3A and Supplementary Fig. 3). Specifically, 228 
each ratio is a normalised measure of how many unique terms from one ontology are 229 
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mapped to the corresponding terms in the second ontology (and thus, asymmetric). 230 
Moreover, most classifications suffer substantial information loss when mapping to one 231 
another. Translating OMIM to ICD-10 results in the loss of 54% of unique OMIM terms that 232 
have no mapping in ICD-10, while the opposite results in the loss of around 94% of ICD-10 233 
terms. This scenario is indeed not surprising considering the purpose of both classifications, 234 
i.e., ICD-10 describes clinical observations, while OMIM covers phenotypes with genetic 235 
origins. 236 

Out of 28,454 different disease terms in ICD-10, only 8% and 15% can be mapped 237 
to Orphanet and Mondo, respectively (Fig. 3B). Mondo, as an integrative ontology, fully 238 
maps to rare diseases in Orphanet. To further understand the implications of inconsistencies 239 
observed across different disease classifications, we describe various problematic mapping 240 
examples between ICD-10 and OMIM, as shown in Table 2 (Supplementary Table 2 for 241 
extended information). For instance, heart failure exemplifies disease terms that are in ICD-242 
10, while not listed in OMIM. Another cross-mapping limitation arises from the fact that some 243 
diseases are named differently in both classifications. ICD-10 tends to overuse collective 244 
terms such as “other” or “unspecified” which hinders the homogenisation process amongst 245 
disease ontologies. Additionally, many drug-related disorders in OMIM do not exist in the 246 
ICD-10. Similarly, several OMIM diseases use the terms “progression of”, “protection 247 
against”, or “susceptibility to”, while no such terminology is used in ICD-10. This can result 248 
in wrong/imprecise mapping, or even a complete loss of data. Surprisingly, using pre-249 
existing mapping sources, i.e., Mondo, KEGG, MalaCards, or Orphanet, has proven to be 250 
sometimes wrong, imprecise, or too general.  251 

Thus, mapping one disease classification to another ー a task frequently encountered 252 
in today’s data-driven medicine55 and essential between biomedical fields using different 253 
ontologies ー is by no means trivial often leading to inconsistencies in the interpretation of 254 
the data. Proper disease coding is crucial for processes where data need to be entered into 255 
and shared between clinical registries, genotype-phenotype databases, and biobanks4. In 256 
the realm of data sharing and management, the adoption of FAIR principles56 becomes 257 
essential, while all aforementioned disease mapping-related and interoperability issues 258 
present a clear challenge. 259 
Impact of the limitations in classifying diseases on medical innovation 260 

The innovation roadblock is closely coupled to our current disease definitions, some of which 261 
have remained almost intact since the 19th century. In lieu of mechanism-based targets, drug 262 
discovery needs to stop assuming that by modulating a symptom the ultimate therapeutic 263 
goal will be reached, i.e., reducing glucose levels in blood to prevent diabetic complications. 264 
Although such approaches could maximally lead to symptomatic relief, the exact underlying 265 
pathomechanisms of the diseases are not yet elucidated. Even if a consensus would be 266 
reached between all current NCD nomenclatures, it would still be descriptive and none, apart 267 
from monogenic diseases, would allow for a mechanism-based definition and precision 268 
intervention. This is best evidenced by the imprecision of current medications, the most 269 
common interventions in health care.  270 

Rare diseases are a role model to guide us where all other disease definitions need 271 
to move to. In most rare diseases, a precise gene variant has been identified providing at 272 
least a precise diagnosis and uniform ontology across all fields; clinical practice, genetics, 273 
and biomedical research. With the advent of gene editing, such mechanism-based precise 274 
diagnosis then allows increasingly for curative therapy, as opposed to chronically treating 275 
symptoms as we currently do. Of note, most monogenic diseases have symptoms in more 276 
than one organ, which is another argument supporting that an organ-based definition for 277 
more complex, oligogenic diseases makes little sense.  278 
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Thus, at least three knowledge gaps and roadblocks for innovation exist in our 279 
understanding of diseases: 280 

● Organ/symptom- rather than mechanism-based definitions, 281 
● Lack of relevance of pre-clinical disease models, 282 
● Unsuccessful translation of pre-clinical research including genetics into patient 283 

benefit. 284 

Systems medicine, the interactome and network pharmacology 285 
Acknowledging that our current medical taxonomy is not sustainable, what is the alternative? 286 
We here propose to rapidly redefine our entire concept of disease by a purely mechanism-287 
based approach towards identifying a molecular pathology. In the context of clinical trial 288 
design, there are calls for reforming human disease taxonomy, incorporating scientific 289 
advances in molecular and genetic medicine, and moving towards disease definitions based 290 
on molecular mechanisms57,58. The road towards such a mechanism-based disease 291 
ontology will require a systemic view of the human body (systems medicine), using disease-292 
associated genes59 as seeds (initial starting points) within the protein-protein interactome 293 
(PPI) to construct de novo signalling modules. Should these signalling modules be affected 294 
in a patient in a disease-relevant manner, we predict that in most cases lifestyle intervention 295 
will be sufficient to prevent the manifestation of a disease phenotype. However, in other 296 
cases, preventive or therapeutic pharmacological interventions will of course be still 297 
necessary.  298 

Endophenotyping will dissect the current broad disease descriptions into specific PPI 299 
modules that are perturbed in certain individuals. Since these modules are small networks, 300 
they will be best treated with more than one drug in combination, i.e., taking advantage of 301 
network pharmacology60. For some endotypes where genes may not have been discovered, 302 
the molecular mechanisms shall be derived from triangulation through the genes or drugs 303 
of associated comorbidities., a process which is called multiscale modelling and network 304 
medicine.60–63 Eventually all ‘common’, ‘complex’ or ‘chronic’ diseases and ‘syndromes’ will 305 
be endotyped and replaced by more precise mechanistic disease definitions64. 306 

Taking again asthma as an example of how the new classification would materialise, 307 
a fine-grained definition, for example referring to a group of patients with genetic risk factors 308 
and who have been smokers during a certain period of their lives, would be “chronic 309 
obstructive asthma characterised by (i) over-expansion and/or loss of (protein name), (ii) 310 
acquired/inherited mutations on (certain) interleukins, or (iii) high (based on a predefined 311 
threshold) inflammasome activity”. This definition would cover the clinical observations, the 312 
underlying genetic background of the patient, and the activity of genes within the cellular 313 
network such as the inflammasome. In the end, we will need to arrive at mechanistically 314 
defined endotypes which, depending on lifestyle and exposome, result in asthma-like 315 
symptoms, but most likely also other comorbidities. Each of these will be treated differently, 316 
targeting the causal mechanism or ideally by prevention. 317 

As a proof of principle, in hypertension65, we identified a disease module linked also 318 
to a higher risk in stroke66, which is present in about one fourth of all patients with 319 
hypertension and can be fairly easily detected with a blood test. Functionally, it most likely 320 
relates to endothelium-dependent vasodilation (nitric oxide deficiency) and microvascular 321 
perfusion. In ischaemic stroke, the same module is affected, but in a different manner (nitric 322 
oxide overproduction). In this case, the mechanism can be addressed by network 323 
pharmacology14 and appears to be uniform in all patients but confined to a post-stroke time-324 
window. These findings are now in clinical phase II proof-of-concept trials within the 325 
European project REPO-TRIAL (repo-trial.eu) and platform REPO4EU (repo4.eu). 326 
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Thus, the way towards a molecular pathology of disease builds on genetic, omics and 327 
other big data approaches to develop a multi-scale network of all human diseases63. This is 328 
no longer manageable by a single specialist but requires network bioinformatics to analyse 329 
the clustering of different phenotypes due to shared genes, symptoms, drugs, or comorbidity 330 
associations61. These mechanistic definitions can then be captured in a molecular disease 331 
classification system67. For most NCDs, this will mean endo- or subtyping of the current 332 
organ- or symptom-based umbrella terms65. Most likely, such refined terms will be merged 333 
with identical molecular endotypes from other phenotypic umbrella terms60. In the end, there 334 
will be only molecular disease definitions annotated with several possible symptoms in 335 
different organs. At a clinical level, this will provide unprecedented molecular diagnostic and 336 
precision therapeutic opportunities with a substantially greater chance of achieving 337 
individual treatment success or even cure. To achieve this goal of a molecular pathology, 338 
data integration from all medical fields is key, even if the result would only be a transitory 339 
step towards a completely novel ontology. In the transition period, biomedical scientists and 340 
geneticists need to abandon their current independent terminologies in favour of the 341 
clinically used ICD. Only then, basic, genetic, and clinical data would be directly compatible. 342 

Implications for clinical practice, research, and drug discovery 343 
How will a conversion to mechanism-based classification affect clinical practice, patient 344 
benefit, biomedical research, and drug discovery? Systems-based or organ-agnostic 345 
approaches to disease have already started driving innovation in oncology, although, with 346 
the exception of haematologic and lymphoid malignancies68, the true leap forward is still 347 
missing. To modern clinicians, it is obvious that a tumour is better defined and treated based 348 
on its individual mutagenic burden, rather than the primary organ or histology69. Similar 349 
insights have entered into primary immune diseases70, as well as comorbid cardiometabolic 350 
and neurological phenotypes60,61. While the benefit for patients to move from chronic 351 
symptomatic therapy to cure or ideally to early detection and prevention is obvious, the 352 
outlooks for clinicians are more profound. Organ-based specialisation will have to be left 353 
behind, and integrative, general medicine approaches will be needed. This requires of 354 
course substantial support from decision algorithms and support systems such as 355 
Symptoma (symptoma.com) or Ada Health (ada.com) among others. 356 

Medical research will need to move more to the human-centred world and eventually 357 
from disease to prevention. Pharmaceutical research will at first be helped by the new 358 
precise molecular disease definitions and diagnostics for patient inclusion, which de-risk 359 
drug discovery considerably71,72. The earliest example and application of a mechanistic 360 
redefinition of disease and mechanistic drug approval are pembrolizumab (Keytruda®)  and 361 
larotrectinib (Vitrakvi®), two cancer drugs based on gene variants rather than an organ-362 
based or histological tumour definition73,74.  363 

Individual markets will be smaller as compared to the current umbrella term 364 
indications and for many molecular indications, no new drugs may be necessary and existing 365 
ones may be repurposed. The latter is an approach that both the FDA and EMA support and 366 
closely monitor. We may then in the not too far future reach the point where we have in 367 
principle all the drugs we need. Why should we need to eternally look for new drugs, 368 
anyway?  369 
Conclusions 370 

To enter the era of true precision medicine and prevention, our current wild growth of disease 371 
definitions is the biggest roadblock. Medicine urgently needs an international Consensus 372 
Nomenclature Committee for disease classification. This may start off with ICD to ensure 373 
buy-in from as many clinicians as possible. Evidence that complex disease phenotypes will 374 
benefit from molecular definitions and subtypes comes from the 7,000 rare diseases most 375 
of which are named after the responsible gene or protein75, providing both a precise 376 
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diagnosis and options for a curative strategy76. To reduce expert mapping workload, 377 
eventually, automatic ontology curation with similarity-based reasoning may be employed. 378 
To map this to molecular data, geneticists, biomedical and clinical researchers need to 379 
associate their data to as many ontologies as possible with appropriate cross-references, 380 
even if they still include organ- and symptom-based descriptions.77,78 The final outcome, a 381 
mechanism-based reclassification of non-communicable diseases, will define patients 382 
based on molecular endotypes leading to different phenotypes (currently, our disease 383 
definitions; then, just symptoms), which can be diagnosed by genetic or precision diagnostic 384 
tools and treated by precision, network pharmacology, or ideally precision prevention 385 
through early and targeted lifestyle intervention. 386 
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Tables 397 

Table 1. Annotation and classification systems used in clinical practice and 398 
biomedical research*. 399 
Dataset name Full name Number 

of 
disease 
terms 

Ontology 
structure/curation 

Application field 

SNOMED CT Systematized 
Nomenclature of 
Medicine - Clinical 
Terms 

78,213 Tree based, manual 
curation 

Electronic health records 
Natural language processing 
Medical records systems, Computerized 
forms and records control 

Mondo Monarch Disease 
Ontology 

43,804 Graph based, semi-
automatic curation 

Computational biology 
Whole genome sequencing 
Translational medical research 

DO Disease Ontology 17,667 Graph based, manual 
curation 

Computational biology 
Molecular sequence annotation 
Gene expression profiling 

Orphanet Orphanet Rare 
Diseases Ontology 

15,205 Graph based, manual 
curation 

Rare diseases 
Orphan drug production  

MeSH Medical Subject 
Headings 

12,750 Tree based, manual 
curation 

Information storage and retrieval 
Abstracting and indexing 
Natural language processing 

ICD10 
ICD11 

International 
Classification of 
Diseases 

12,542 
36,275 

Tree based, manual 
curation 

Electronic health records 
Clinical coding 
Qualitative research 

OMIM Online Mendelian 
Inheritance in Man 

9,575 Flat list, manual 
curation 

Computational biology 
Genomics 
Genome-wide association study 

* This table provides a comparison between different classification systems including; 400 
Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT), The Mondo 401 
disease ontology (Mondo), Human Phenotype Ontology (HPO), Disease Ontology (DO), 402 
Orphanet, Medical Subject Headings (MeSH), International Classification of Diseases-403 
10/11 (ICD10/11), and Online Mendelian Inheritance in Man (OMIM for genetic 404 
phenotypes). As of 2022-02-08.  405 
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Table 2. Type of problems when mapping ICD10 and OMIM disease terms*. 406 
Mapping problem ICD10 OMIM 

Different related diseases are linked 
to different OMIM codes while only 
one is used in ICD-10 

Congenital cataract (Q12.0) 
  

Cataract, multiple types 
(115650, 611391, 116800, 
115665, 116200, 115700, 
116100, 605749, 613763, 
601885, 611544, 605387, 
615277, 600881, 610202, 
611597) 
Cataract, autosomal recessive 
(614691,610019) 

Several rare diseases and syndromes 
are present in OMIM but are missing 
in ICD-10 

Does not exist in ICD-10 
  

Hyperproinsulinemia (616214) 
  

Several diseases in ICD10 do not 
exist in OMIM 

Heart failure (I50) Does not exist in OMIM 
  

Several entries in OMIM have 
different descriptions than those 
found in ICD-10 

Aneurysm of heart (I25.3) Aneurysm of interventricular 
septum (105805) 

Indications present in ICD-10 are not 
specified and frequently use collective 
terms, while OMIM entries are highly 
specific 

Other specified diabetes 
mellitus (E13) 
  

Diabetes mellitus, insulin-
resistant, with acanthosis 
nigricans (610549) 
Rabson-Mendenhall syndrome 
(262190) 
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Various diseases are specified by the 
gene/locus in OMIM and cannot be 
mapped to specific codes in ICD-10  

In ICD-10, acute 
myocardial infarction (I21) 
is classified based on the 
location 
Acute 
  transmural myocardial 
infarction of anterior wall 
(I21.0) 
Acute 
  transmural myocardial 
infarction of inferior wall 
(I21.1) 
Acute 
  transmural myocardial 
infarction of other sites 
(I21.2) 

Myocardial infarction, 
susceptibility to (608446, 
608557) 
  

Diseases classified in OMIM based 
on therapy administered and are not 
included in ICD-10 

Coronary vasodilators, not 
elsewhere classified 
(Y52.3) 

Sublingual nitroglycerin, 
susceptibility to poor response to 
(100650) 
  

Diseases specified in OMIM using 
“progression of”, “protection against”, 
and “susceptibility to” are only 
mentioned by disease name in ICD-
10 

Other conduction disorders 
(I45) 

Cardiac conduction defect, 
susceptibility to (115080) 

Some classifications in OMIM are 
confusing and/or can receive two 
different codes in ICD-10  

“Alzheimer disease” is 
found under the code G30 
(Chapter 6 Diseases of the 
nervous system) while 
“Dementia in Alzheimer 
disease” is present under 
F00 (Chapter 5 V Mental 
and behavioural disorders) 
  

Alzheimer disease (607822, 
104300, 104310, 606889, 
608907, 615590, 602096, 
605526, 606187, 607116, 
609636, 609790, 611073, 
615080, 615711, 300756, 
605055, 611152, 611154, 
611155, 604154, 607413) 

Pre-existing mapping is sometimes 
wrong, imprecise, or too general 

Nephrotic syndrome, type 7 
(615008) is mapped to 
N00.5 (Does not exist in 
ICD-10) in Mondo. 
MalaCards and Orphanet 
both map it to N00.5 and 
D58.8  (Other specified 
hereditary haemolytic 
anaemias). While it is 
mapped to N0.4 (Nephrotic 
syndrome) in KEGG which 
is too general. 

Nephrotic syndrome, type 7 
(615008) 

* This table provides representative examples of ten of the main problems encountered 407 
while mapping disease terms between two disease classification systems: International 408 
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Classification of Diseases 10 (ICD-10) and Online Mendelian Inheritance in Man (OMIM). 409 
(For an extended version, see Supplementary Table 2).  410 

Figures and figure legends 411 

 412 

Fig. 1: Organ/symptom-based versus mechanism-based disease definitions and their 413 
consequences for therapeutic precision.  414 
In orange, the current symptom- and/or organ-based approach to define diseases (left 415 
asthma-like symptoms, right hypertension as risk factor) leading to imprecise therapies with 416 
high numbers needed to treat (NNT) asthma or prevent the consequences of hypertension; 417 
myocardial infarction (MI) or stroke. Note that many patients with hypertension are not at 418 
risk but are treated as well.  419 
In blue, mechanism-based approaches79, where different mechanisms can lead to similar 420 
symptoms, but are treated differently, i.e., in a mechanism-based manner offering a higher 421 
degree of precision and possibility to cure60422 
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 423 

 424 

Fig. 2:  Mismatch of clinical phenotypes and preclinical models of asthma.  425 
(A) The results for the keyword “asthma” when searched in three popular disease 426 
classifications; Disease Ontology (DO, blue), Medical Subject Headings (MeSH, red) and 427 
the International Classification of Diseases 10 (ICD-10, orange). (B) Examples of preclinical 428 
disease models of asthma and their limited overlap with human phenotypes of asthma.  429 
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 430 

Fig. 3: Mapping coverage between different disease ontologies. 431 
(A) on the heat map, the labels indicate the percentage of the pairwise ontology mapping 432 
coverage of the source ontology (y-axis) relative to the target ontology (x-axis). The 433 
percentages are not symmetrical due to differences in the total number of terms of each 434 
ontology, and the fact that mappings are often not one-to-one. The green bounding box 435 
highlights zero coverage with direct mappings between the ontologies (distance = 1), while 436 
indirect mapping provides non-zero coverage (for more details about direct and indirect 437 
mappings, see supplementary Fig. S3). (B) three-way mapping coverage between the 438 
ICD10, Mondo, and Orphanet ontologies. There is one Venn diagram for each base ontology 439 
(rectangles) and the overlap with the other two ontologies (ovals). The total number of terms 440 
in the base ontology is displayed below the corresponding Venn diagram. The percentages 441 
shown on the Venn diagrams represent the coverage relative to the base ontology, 442 
intersections between the ontologies, and the remainder of the unmapped percentage of the 443 
base ontology.   444 
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