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ABSTRACT

In recent years, a lot of efforts have been made
in conformational epitope prediction as antigen
proteins usually bind antibodies with an assembly
of sequentially discontinuous and structurally com-
pact surface residues. Currently, only a few meth-
ods for spatial epitope prediction are available
with focus on single residue propensity scales or
continual segments clustering. In the method of
SEPPA, a concept of ‘unit patch of residue triangle’
was introduced to better describe the local spatial
context in protein surface. Besides that, SEPPA
incorporated clustering coefficient to describe the
spatial compactness of surface residues. Validated
by independent testing datasets, SEPPA gave an
average AUC value over 0.742 and produced a
successful pick-up rate of 96.64%. Comparing with
peers, SEPPA shows significant improvement over
other popular methods like CEP, DiscoTope and
BEpro. In addition, the threshold scores for certain
accuracy, sensitivity and specificity are provided
online to give the confidence level of the spatial epi-
tope identification. The web server can be accessed
at http://lifecenter.sgst.cn/seppa/index.php. Batch
query is supported.

INTRODUCTION

With growing need of monoclonal antibodies and vac-
cines, B cell epitope prediction has become more and
more desirable especially for new proteins isolated from
pathogens. A lot of efforts have been put for this purpose,

but primarily on continuous epitopes. However, crystal-
lographic studies have shown that most of the epitopes
in protein antigens are discontinuous (1), while only a
few methods have been designed for this condition. For
instance, the first server CEP was erected in 2005 by intro-
ducing ‘accessibility of residues’ based on the 3D nature
of the antigen proteins (2). Subsequently, DiscoTope pre-
diction method was designed by combining propensity
scale matrixes with the spatial proximity and surface expo-
sure (1). Recently, BEpro improved DiscoTope method by
introducing spatial attribute of half sphere exposure (3).
While these tools provided a lot of help in designing
molecular experiments, benchmark and reviews have
shown that the prediction of spatial epitope remained dif-
ficult for protein antigens (4,5). As being pointed out, the
possible improvement could lie in new features character-
izing 3D structures of epitope and better training data (4).

This article introduces a new computational server,
SEPPA, for spatial epitope prediction of protein antigens.
In the method of SEPPA, a novel concept of ‘unit patch
of residue triangle’ is introduced to better describe local
spatial context in protein antigen surface. Typical network
parameter of spatial clustering coefficient is also incorpo-
rated to reflect the 3D characteristic of epitopes. In
addition, comprehensive training data of non-redundant
spatial epitopes is curated from PDB database (6) with
unique representatives covering the vast diversity of
known epitopes. SEPPA was rigorously trained by 82
antigen–antibody protein complexes, which contained 84
unique epitopes. One hundred and nineteen independent
spatial epitopes of protein antigens were collected as test-
ing dataset. SEPPA’s performance in detecting potential
spatial epitopes was evaluated and compared with popular
peer methods.
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DATASET

Antigen–antibody complexes were extracted from PDB
database dated August 2008. Only those with resolution
better than 3.0 Å and protein antigen length with more
than 25 residues were retained. Redundant epitopes were
removed by 60% similarity. Eighty two structures were
finally retained as the training data which included 84
unique epitopes.

The testing data were collected from the training dataset
of DiscoTope (1), databases of IEDB (7) and Epitome (8).
A testing dataset of 119 antigens was set up by deducting
SEPPA’s training data from above testing data. The PDB
IDs included in the training and testing datasets can be
found in the Supplementary Data (Table S1).

METHODS

Definition for unit patch of residue triangle

Solvent accessible surface areas (SASA) were calculated
(Naccess V2.1.1.) for each residue in antigen proteins.
Surface residues were those with more than 1 Å2 SASA,
while those with SASA loss in binding of more than 1 Å2

were classified as epitope residues. The unit patch of res-
idue triangle was defined among any three surface residues
if the distance for every two of them was within 4 Å atom
distance. Based on the training data, unit patches contain-
ing more than two epitope residues were termed as epitope
unit patches; otherwise were classified as non-epitope unit
patches.

Derivation of propensity indices for unit patches

Considering that various residues may have similar
functional moieties of R-groups in antigen–antibody inter-
action, the 20 residues were consolidated into 13 func-
tional subgroups according to the conformational
epitope research of Erez et al. (9). Four hundred and
fifty five combination patterns of subgroups were
observed out of 13� 13� 13 for unit patches. Propensity
index (trii) of the unit patch pattern i is calculated as the
ratio of the number of pattern i among all epitope unit
patches ( fi

�/�i fi
�) compared with that ratio in the non-

epitope unit patches ( fi/�i fi):

trii ¼
ð f �i =�i f

�
i Þ

ð fi=�i fiÞ
ði ¼ 1, 2, . . . 455Þ, 1

where fi
�

is the number of unit patch pattern i in epitope
unit patches, while Si fi

�

is the number of all epitope
patches. Denominator indicates those for non-epitope
unit patches.

For a certain surface residue r, the propensity score of
it (avgr) is predominantly determined by its local neighbor-
ing environment. Thus avgr is calculated as the averaged
propensity indices of all possible unit patches around res-
idue r:

avgr ¼
�trii
N

, 2

where Strii is the sum of propensity indices for neighbor-
ing unit patches within certain distance of residue r, and
N is the number of these neighboring unit patches.

Definition of residue neighbor and clustering coefficient

Clustering coefficient is introduced to describe the
compactness of the neighboring residues around one
residue. It reflects the probability that the neighbors of
residue r are also neighbors with each other (10). For
one residue r, all residues within 15 Å of r are defined as
residue neighbors of r. kr is the total number of residues
neighbors for r.
Theoretically, the number of all possible links among kr

residue neighbors is kr(kr–1)/2. However, as only those
links within certain distance can be called residue neigh-
bors of each other, the observed actual number of residue
neighbor pairs among kr is recorded as er. The clustering
coefficient (ccr) is given below:

ccr ¼
er

½krðkr � 1Þ=2�
: 3

Algorithm of SEPPA

For each antigen protein from input, SEPPA will:

Step 1: Determine all the surface residues in the protein
antigen;

For each surface residue r:

Step 2: Search all possible unit patches within 15 Å atom
distance of residue r, map the pre-calculated pro-
pensity indices (trii) to above unit patches, and
calculate the propensity index avgr using
Equation (2);

Step 3: Calculate the clustering coefficient (ccr) for resi-
due r using Equation (3);

Step 4: Summarize avgr and ccr as the antigenicity score
for residue r;

Step 5: Give the antigenicity score for each residue, and
highlight those residues with scores higher than
a threshold. Visualize the subsets of predicted
epitope area graphically.

Performance of SEPPA

The Area Under the Curve (AUC) value and successful
pick-up rate have been introduced to assess the perfor-
mance of SEPPA. SEPPA achieved the average AUC
value of 0.742 on the 119 independent testing dataset
(Table S2). With default threshold 1.80, a sensitivity of
0.580 and a specificity of 0.707 were got on this testing
dataset. The performance of SEPPA was also compared to
popular tools of CEP, DiscoTope and BEpro under
the 119 testing dataset (Table S3). By default thresholds,
CEP, DiscoTope and BEpro produced average estimated
AUC values (defined as (sensitivity+specificity)/2) of
0.521, 0.601 and 0.563, respectively. In the case of
SEPPA, an average estimated AUC value of 0.644 was
achieved under its default threshold of 1.80, which was
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significantly better than those of other tools. It should
be reminded that this testing dataset is only new to
SEPPA. Hence, this comparison may be biased in favor
of other tools.

On the other hand, it would be worth to compare
among the tools the ability of picking up true epitope
residues from random surface residues. For SEPPA,
DiscoTope and BEpro, unpaired t-tests were done to the

Figure 1. A snapshot of predicted spatial epitope and graphical display of influenza virus (PDB code 1A14:N). (a) Result page for epitope prediction
of influenza virus. In result box, the query sequence is displayed in single letter code. Core residues are shown in lowercase, and surface residues are
shown in uppercase. Predicted epitope residues are highlighted with yellow color. (b) Antigenicity scores predicted for each residue in influenza virus.
(c) Visualization of the predicted spatial epitope. Tints from blue to red represent a rising propensity for a residue to be in the epitope. (c) is
generated with Jmol, and predicted epitope residues can be highlighted with solid sphere mode and labeled with their information.
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prediction scores between the true epitope residues and
other non-epitope surface residues. If the mean prediction
score for all the true epitope residues in a protein antigen
is significantly higher than that of non-epitope surface
residues (P< 0.05; unpaired t-test, one-tailed), this pre-
diction will be considered as a successful pick-up. The
pick-up rates were compared between the three tools on
the 119 testing dataset. SEPPA gave the best performance
of 96.64%, while DiscoTope achieved 89.08% and BEpro
gave 90.76% (Table S4). It is reminded that CEP did
not attend this round of evaluation because it produces
qualitative patch prediction results instead of antigenicity
scores.

IMPLEMENTATION

Input

SEPPA requires a 3D protein structure in PDB format
as input. Users can submit the query with a released
PDB ID or upload a structural file in PDB format.
The format of input file is provided as an example. It is
recommended to specify the chain(s) ID if not all peptides
are antigen proteins to be queried in the structure
file. Otherwise, each chain will be assumed as an antigen
protein and calculated for antigenicity scores.

Output

The results of prediction are displayed in html format. As
seen in Figure 1, the predicted epitope of the influenza
virus (PDB code 1A14:N) are shown as an example. The
sequence of submitted protein antigen is displayed in
single letter code in result window. The core residues are
shown in lowercase and surface residues in uppercase. The
residues predicted as epitope are highlighted with yellow
color background (Figure 1a). The scores of prediction are
recorded in another file, which lists the antigenicity scores
for individual residue as shown in Figure 1b and this file is
downloadable. A link to visualize the prediction result is
also provided in the result page. The visualization of result
is displayed with Jmol (an open-source Java viewer for
chemical structures in 3D), as shown in Figure 1c. Tints
from blue to red represent a rising propensity for a residue
to be in the epitope.

DISCUSSION

Generally there are two strategies to define epitope resi-
dues from the structures of immune complexes. One
adopts the change of SASA between unbound and
bound state of antigen structures to define epitope resi-
dues, while the other picks up a distance cutoff between
antigen and antibody atoms in complexes, e.g. 4 Å in
DiscoTope (1). SEPPA took the first strategy; the distance
cutoff one was also simulated to inspect the robustness.
Results indicated that these two strategies had given
similar results to the performance of SEPPA (data is not
shown).

Currently, a parameter of 4 Å was chosen in the
definition of unit patch of residue-triangle. Considering
that the majority of atom contacts occur at <5 Å (11),

different distances of 4, 5 and 6 Å were put under
test in our work and 4 Å was found to give the best
results. Furthermore, the cutoff for neighborhood was
set to be 15 Å because of the following calculation.
Cutoff ranges from 5 to 20 Å were scanned according to
their impact on prediction. The results showed that the
most stable performance was achieved at 15 Å under train-
ing data. Thus, this value was selected as the neighbor-
hood cutoff.
ROC curve is often applied to evaluate the performance

of predictive methods. In our case, however, CEP is
categorized as a discrete classifier, which does not produce
the prediction scores. Thus a ROC curve could not be
generated for CEP but the AUC value could be estimated
as (sensitivity + specificity)/2 following the method of
Julia et al. (4), which is also applicable for other three
tools under their respective default thresholds. Since
the ROC curve and AUC value are highly correlated,
we assume that the estimated AUC value could be an
alternative vector to compare the performance of those
tools in our work.
From this work, the concepts of ‘unit patch of residue

triangle’ and ‘clustering coefficient’ seem to make major
contribution to the effective prediction of spatial epitopes.
As being frequently suggested, epitope residues function
as a whole on antigen surface during antibody binding.
Correspondingly, the concept of ‘unit patch of residue
triangle’ just describes the minimum moiety of surface
patches which can better reflect the local spatial context
on antigen exterior. Thus SEPPA makes prediction based
on both the residual context and the spatial compactness
of neighboring residues. Since the propensity index is
derived from statistics of training data, these data are
very important as well to be representative and unique.
With more and more structural data accumulated, we
believe that SEPPA would be increasingly improved by
incorporating further refined features of spatial epitopes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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