
1

Logic for Computational Effects: work in
progress

Gordon Plotkin and John Power
School of Informatics

University of Edinburgh
King’s Buildings
Mayfield Road

Edinburgh EH9 3JZ
Scotland

gdp@inf.ed.ac.uk, ajp@inf.ed.ac.uk

Abstract

We outline a possible logic that will allow us to give a unified approach to reasoning
about computational effects. The logic is given by extending Moggi’s computational
λ-calculus by basic types and a signature, the latter given by constant symbols,
function symbols, and operation symbols, and by including a µ operator. We give both
syntax and semantics for the logic except for µ. We consider a number of sound and
complete classes of models, all given in category-theoretic terms. We illustrate the
ideas with some of our leading examples of computational effects, and we observe
that operations give rise to natural modalities.

Keywords: Computational effects, computational λ-calculus, signature, operations, equations, modalities,
Freyd-categories.

1. INTRODUCTION

We are attempting to develop a formal logical system for reasoning about computational effects
in a unified manner. Our starting point is Eugenio Moggi’s computational λ-calculus or λc-
calculus [5, 6]. The λc-calculus terms provide an underlying call-by-value functional programming
language. We add basic types together with a signature consisting of constant symbols, function
symbols, and operation symbols. It is the operations in the signature that yield computational
effects. The λc-calculus also provides a basic logic, which we extend to obtain a logic for
computational effects. Crucially, the extension includes equations and an induction principle for the
operations. The equations, which arise from observations, allow us to use the usual tools of logic
in developing a proof theory and thereby a mechanisation of the logic. We shall deal with recursion
later. So our development of a logical system for computational effects focuses on operations and
on the relationship between equations and observations. Such operations include binary ∨ for
modelling nondeterminism, read and write for modelling interactive input/output, and lookup and
update for modelling side-effects (see [11, 12] for details). Our techniques are inherently semantic,
using category theory. We seek to give an integrated, unified analysis of a programming logic with
operational and denotational semantics, that applies to a range of computational effects and the
constructions one makes on them, that is readily extendable to further computational features,
and that is amenable to dealing with the special features of each of the effects, such as those
arising from locality in addressing state.

1This work has been done with the support of EPSRC grants GR/M56333 and GR/N64571/01.

The Sixth International Workshop in Formal Methods (IWFM’03) 1

Logic for Computational Effects: work in progress

2. SYNTAX

The syntax for the programming language that forms the λc-calculus may be taken to be identical
to that for the simply typed λ-calculus [14]. So it has type constructors

σ ::= 1 | σ1 × σ2 | σ → τ

and term constructors
e ::= ∗ | 〈e, e′〉 | πi(e) | λx.e | e′e | x

where x ranges over variables, ∗ is of type 1, with πi existing for i = 1 or 2, all subject to the
evident typing. The λc-calculus has two predicates: an equality predicate exactly as in the simply
typed λ-calculus and a unary predicate (−) ↓ for “definedness” or “effect-freeness”. The rules
for the latter say ∗ ↓, x ↓, λx.e ↓ for all e, if e ↓ then πi(e) ↓, and similarly for 〈e, e′〉, and that
definedness is closed under equality. There are two classes of rules for =. The first class say that
= is a congruence. And the second class are rules for the basic constructions and for unit, product
and functional types. The rules are closed under substitution of effect-free terms for variables. It
follows from the rules for both predicates that types together with equivalence classes of terms in
context form a category, with a subcategory determined by effect-free terms.

The only aspect of the λc-calculus that goes beyond the standard simply typed λ-calculus is the
predicate (−) ↓ together with associated sophistication in the rules for =. The λc-calculus has
typically been treated either as an equational logic or as an higher order intuitionistic logic, both of
which were considered in [5, 6]. We primarily plan to focus on the latter, extending predicate logic
(either intuitionistic or classical) by a µ (and a ν) predicate constructor µX(x1 : σ1, · · · , xn : σn).φ
as in the modal µ-calculus in order to model temporal properties of programs. We also expect
to modify the λc-calculus as we proceed, for instance by considering the predicate ≤ rather than
= in order to incorporate recursion. And we expect to weaken the axioms for (−) ↓ as, in some
situations, the axiom x ↓ seems unnatural. We shall also add further type constructors such as
those corresponding to symmetric monoidal structure as used in studying locality [8, 11].

A signature consists of (base) types, function symbols, predicate symbols for the programming
language, and operation symbols. The constant, function, and predicate symbols are to be
considered and modelled using effect-free terms in context, while the operation symbols form
arbitrary terms that will not in general be effect-free.

Example 1 Suppose one wishes to consider an idealised language for the combination of global
state with nondeterminism. One might add to the λc-calculus a type Nat for natural numbers,
function symbols 0, succ, and pred, for natural numbers, and a predicate symbol = 0. Then one
adds operation symbols for nondeterminism and global state such as operation symbols ∨ for
binary nondeterminism and update and lookup for state. The equational axioms to be added to
the λc-calculus are those generated by the combination of nondeterminism and global state, as
for instance in [11, 13]. One can give a systematic account of the combination of nondeterminism
and global state in these terms [1, 2]. If one adds further type constructors as mentioned above,
we have semantic evidence that suggests an extension to local state by adding another operation
block subject to natural axioms [11], but the most elegant way to achieve that requires further
investigation.

We have many examples of such signatures and associated equations in [1, 2, 10, 11, 12, 13]. But
to date, we do not have a systematic way to generate the equations from an abstract formulation
of the notion of observation. Part of our ongoing work will be devoted to providing such a
formulation and such a construction, as the notion of observation is computationally natural while
an equational presentation allows us more easily to adopt the usual principles of proof theory,
and a proof theory is central to providing a computational tool to prove that programs satisfy their
specifications.

In our analysis, we plan to introduce a modality [f] for each operation symbol f , where
[f](φ1, · · · , φn)(x) is defined to be

∀y1, · · · , yn : σ.(x = f(y1, · · · , yn) → φ1(y1) ∧ · · · ∧ φn(yn))

The Sixth International Workshop in Formal Methods (IWFM’03) 2

Logic for Computational Effects: work in progress

and a dual 〈f〉 defined by

∃y1, · · · , yn : σ.(x = f(y1, · · · , yn) ∧ (φ1(y1) ∨ · · · ∨ φn(yn)))

These modalities fit with our constructions of and results about operational semantics for the
λc-calculus together with algebraic operations in [10].

It requires some thought to see how best to extend these modalities to infinitary operations. It will
involve a delicate analysis of the notion of arity, as we want to include a binary operation ∨ in
studying nondeterminism but we also want to include arities such as types In and Out, typically
to be modelled by natural numbers, in studying interactive input/output. This requires care as we
seek finitistic proof theory in order to allow for easy mechanisation, and we want to isolate our use
of higher order structure, as studies such as those involved with data refinement require [3], data
refinement providing an application of our logic.

These modalities are different to those considered by Pitts [9] then Moggi [7]. They do not have
the λc-calculus as an underlying language and logic, and their modalities inherently involve use of
a monad, which is only implicit for us. But, subject to the reformulation those points require, their
modalities may be derivable from ours; the converse is not true as they do not have our systematic
account of operations. Our modalities do allow us to extend Hennessy-Milner logic, and we may
consider a modal version of the logic.

3. SEMANTICS

The most direct sound and complete class of models for the λc-calculus is given by (faithful) closed
Freyd-categories [14]. These, by construction, generalise cartesian closed categories exactly by
asserting the existence of a class of arrows in the ambient category subject to axioms that ensure
that if one models effect-freeness of Γ ` e : σ by an arrow in the class, one obtains a sound and
complete class of models.

Thus, instead of having a cartesian closed category, one has a category C together with a
subcategory B containing the same objects as C, with B having finite products, their extending
along the inclusion J : B −→ C to a weakened form of product, such that, for every object X of B,
the functor J(− × X) : B −→ C has a right adjoint X → − : C −→ B. It is evident how to model
types and terms in context in a faithful closed Freyd-category; the predicate (−) ↓ is modelled
for a term in context by the assertion that the arrow lies in B, and = is modelled for two terms
in context by the assertion that the two induced arrows are equal. This interpretation canonically
extends to intuitionistic predicate logic, interpreting formulae by sets of arrows in the style of
Kripke-Joyal semantics [4]: one can model classical logic by restricting B to be Set. Another way
to model the logic is by means of a fibration.

Several natural questions arise. By syntactic construction, sound and complete classes of models
exist for our logic. But can one fix B, e.g., fixing B to be Set, and still find a sound and complete
class of models? How do models for fragments of the logic interact with models of the full logic?
For instance, subject to some delicacy with types, the operation symbols taken together with their
equations yield (enriched) Lawvere theories [1, 2, 13], which in turn yield models for the full logic.
Do these models form a sound and complete class? The equations between operations yield
equations between programs [12]. What additional equations are implied by this process? How
do these issues extend to locality, wherein Set is replaced by a presheaf category and the logic
naturally restricts to intutionistic logic?

Closed Freyd-categories were not the first sound and complete class of models given for the λc-
calculus: the first class was given by starting with a base category B with finite products, asserting
the existence of a strong monad T on B, and asserting that T have Kleisli exponentials (and satisfy
the “mono requirement”) [5, 6]. The λc-calculus was then modelled in the Kleisli category for T ;
the predicates were modelled by the evident subobjects of TX and TX × TX. The construction
of the Kleisli category characterises closed Freyd-categories. Both definitions together with two
other sound and complete classes of models for the λc-calculus and the relationships between
them, are explained in [14].

The Sixth International Workshop in Formal Methods (IWFM’03) 3

Logic for Computational Effects: work in progress

There are good reasons to consider different classes of models for the λc-calculus. For instance,
one often seeks to analyse programming languages in terms of sublanguages. So one would like
constructs that, given two signatures together with their equations, combine them. Several such
constructs exist, two of them studied in [1, 2]. For a corresponding semantical analysis, it is natural
to start with a fixed base category B, extend it in two ways, then study possible combinations of
the two extensions. That is more in the spirit of monads than that of closed Freyd-categories.
In fact, a generalisation of Lawvere theory is even better in some ways. These are questions to
be addressed in association with our logic. Our overview paper [13] lists further natural semantic
questions, which in turn give rise to questions about our logic: for instance, how to deal with handle
for exceptions, which does not behave as an operation in the sense we consider here.

Further, we mentioned above the possibility of dropping the λc-calculus axiom x ↓. What are the
models then? We have a class of models for (−) ↓ with such a deleted axiom: given a closed
Freyd-category, one can consider the subgraph (in fact an ideal) of B given by those maps
f : X −→ Y such that

TX
Tf - TY

X

ηX

6

f
- Y

ηY

6

has a unique diagonal fill-in from TX to Y , where TX is defined to be 1 → X. These maps can
equivalently be described as the maps g : X −→ Y in C for which the map (1 → g) : (1 → X) −→
(1 → Y) in B factors through ηY . But we have not yet considered a sound and complete class of
models; and the models we have described involve B although its arrows no longer appear as the
semantics of any syntactic entity.

REFERENCES

[1] Hyland, M., G. D. Plotkin, G. D. and Power, A. J. (2002) Combining computational effects:
commutativity and sum. Proceedings of IFIP Conf. On Theoretical Computer Science,
Montreal, Canada, 25–30 August pp. 474–484. Kluwer, Dordrecht.

[2] Hyland, M., Plotkin, G. D. and Power, A. J. Combining computational effects: sum and tensor,
submitted.

[3] Kinoshita, Y. and Power, A.J. (1999) Data Refinement in Call-by-Value Languages.
Proceedings of CSL 99, Lecture Notes in Computer Science 1683, Madrid, Spain, 20–25
September, pp. 562–576. Springer-Verlag, Berlin.

[4] Mac Lane, S. and Moerdijk, I. (1992) Sheaves in Geometry and Logic, Springer-Verlag,
Berlin.

[5] Moggi, E. (1989) Computational lambda-calculus and monads. Proc. LICS ’89, Asilomar,
California, 5–8 June, pp 14–23, IEEE Press, Washington.

[6] Moggi, E. (1991) Notions of computation and monads. Information and Computation, 93,
55–92.

[7] Moggi, E. (1995) A Semantics for Evaluation Logic. Fundamenta Informaticae, 22, 117–152.
[8] O’Hearn, P. W. and Tennent, R. D. (1997) Algol-like Languages, Birkhauser, Boston.
[9] Pitts, A. M. (1991) Evaluation Logic. Proc. 4th Higher Order Workshop, Banff 1990,

Workshops in Computing, 283, Alberta, Canada, 10–14 September, pp 162–189, Springer-
Verlag, Berlin.

[10] Plotkin, G. D. and Power, A.J. (2001) Adequacy for Algebraic Effects. Proc. FOSSACS 2001,
Lecture Notes in Computer Science 2030, Genova, Italy, 2–6 April, pp 1–24, Springer-Verlag,
Berlin.

[11] Plotkin, G. D. and Power, A. J. (2002) Notions of Computation Determine Monads, Proc.
FOSSACS 2002, Lecture Notes in Computer Science 2303, Grenoble, France, 8–12 April,
pp 342–356, Springer-Verlag, Berlin.

The Sixth International Workshop in Formal Methods (IWFM’03) 4

Logic for Computational Effects: work in progress

[12] Plotkin, G. D. and Power, A. J. (to appear) Algebraic Operations and Generic Effects. Applied
Categorical Structures.

[13] Plotkin, G. D. and Power, A. J.(2002) Computational effects and operations: an
overview. Proc. 6th Workshop Domains, Birmingham, Electronic Notes in Theoretical
Computer Science 73, Birmingham, United Kingdom, 16–19 September, Elsevier
(http:www.elsevier.nl/locate/entcs/).

[14] Power, A. J. (2001) Models of the computational λ-calculus. Proc. MFCSIT 2000,
Electronic Notes in Theoretical Computer Science 40, Cork, Ireland, 20–21 July, Elsevier
(http:www.elsevier.nl/locate/entcs/).

The Sixth International Workshop in Formal Methods (IWFM’03) 5

