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Advances in multimodal immunotherapy have signifi-
cantly reduced acute rejection rates and substantially
improved 1-year graft survival following renal trans-
plantation. However, long-term (10-year) survival rates
have stagnated over the past decade. Recent studies
indicate that antibody-mediated rejection (ABMR) is
among themost important barriers to improving long-
term outcomes. Improved understanding of the roles
of acute and chronic ABMR has evolved in recent years
following major progress in the technical ability to
detect and quantify recipient anti-HLA antibody pro-
duction. Additionally, new knowledge of the immu-
nobiology of B cells and plasma cells that pertains to
allograft rejection and tolerance has emerged. Still,
questions regarding the classification of ABMR, the
precision of diagnostic approaches, and the efficacy of
various strategies for managing affected patients
abound. This review article provides an overview of
current thinking and research surrounding the patho-
physiology and diagnosis of ABMR, ABMR-related
outcomes, ABMR prevention and treatment, as well
as possible future directions in treatment.
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Introduction

The widespread use of potent and specific immunosup-

pressive agents has significantly reduced acute cellular

rejection rates and substantially improved 1-year graft

survival following renal transplantation. Substantial im-

provement of long-term (10-year) outcomes, however, has

not been realized (1–4). A recent analysis of more than

250000North American renal transplant recipients showed

that despite modest improvements in long-term graft

survival between 1989 and 2005 (5), and improvements

in graft half-life in the past decade for both living and

deceased donor transplants (6), high attrition rates persist

that stubbornly limit recent progress (5).

The ongoing therapeutic challenge is to achieve effective

and safe immunosuppression and avoid unwanted tox-

icities to produce enduring renal allograft function (7–9). The

incidence of hyperacute rejection caused by preexisting

anti-HLA donor-specific antibodies (DSA) has been nearly

eliminated by crossmatch and compatibility matching
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strategies. Similarly, the incidence of acute T cell–mediated

injury has been significantly reduced with the effective

multimodal application of immunosuppressive agents.

However, acute and chronic antibody-mediated rejection

(ABMR) are playing an increasingly critical role in kidney

allograft loss and are considered among themost important

barriers that limit long-term outcomes (10–14).

Although the cellular and molecular pathways that regulate

ABMR are still under investigation, new knowledge of

humoral immunobiology indicate that B cell and plasma cell

activation results in the generation of DSA, which bind to

HLA or non-HLA molecules on the endothelium (15,16).

Antibody binding to endothelium and subsequent cellular

activation involving complement-dependent and -indepen-

dent pathways leads to the recruitment of natural killer (NK)

cells, polymorphonuclear neutrophils and macrophages,

which contribute to capillaritis and eventual tissue injury

(Figure 1) (15–17). The morphologic nature of endothelial

cell injury in acute ABMR demonstrates platelet aggrega-

tion, thrombotic microangiopathy (TMA) and neutrophilic

accumulation, resulting in an early pattern of cellular

necrosis and a relatively rapid decline in allograft function.

Chronic ABMR results from a repetitive pattern of chronic

thrombotic events and inflammatory changes, which result

in cellular injury and repair. It manifests as late transplant

glomerulopathy (TG) and results in a decline in renal

function (18). In addition to pathology mediated directly by

antibodies, recent evidence suggests that B cells and

plasma cells may themselves influence rejection or

tolerance (19,20). The clinical picture of ABMR has become

increasingly complex, with questions abounding regarding

its classification, the precision of diagnostic approaches,

and the efficacy of various therapeutic strategies for safely

and effectively managing affected patients (21). This article

provides an overview of current progress in clinical and

translational research surrounding ABMR pathophysiology

and ABMR-related outcomes, prevention, treatment and

future directions.

Defining and diagnosing ABMR
The first description of acute ABMR identified two distinct

features: neutrophils in peritubular capillaries (PTCs) and
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Figure 1: Mechanisms of donor-specific antibody-mediated endothelial injury in renal allografts. Anti-MHC antibodies may either

result in direct injury to the capillary endothelium or in indirect injury via complement fixation or recruitment of inflammatory cells with Fc

receptors. In cases with donor-specific antibodies that lack C4d deposition, endothelial injury and cellular recruitment could be important

mediators. Poly, polymorphonuclear cell. Reproduced with permission from Farkash and Colvin (15).
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de novo antidonor HLA class I antibodies (22,23). Around

the same time, C4d, a degradation product of the

complement pathway that binds covalently to the endothe-

lium, was identified as a stablemarker of antidonor humoral

activity (24). Subsequently, the correlation between DSA,

histologic findings of microcapillary injury and diffuse

(>50%) C4d deposits in the PTCs were described in acute

ABMR (25). C4d and DSA were also linked to the

histopathologic features of chronic ABMR (26,27). Since

2003, the Banff Working Group classification system for

renal allograft biopsies has differentiated T cell–mediated

rejection (TCMR) from ABMR (28,29). The most recent

Banff 2013 diagnosis of ABMR, published in this issue of

the journal, requires histologic evidence of acute or chronic

tissue injury, evidence of current/recent antibody interac-

tion with vascular endothelium and serologic evidence of

the presence of circulating DSA (30). Importantly, C4d

staining is no longer a requirement for the diagnosis of

ABMR (Table 1).

C4d and the diagnosis of ABMR
C4d is a split product of C4 activation and has no known

biological action. It may be activated by the classical and

lectin complement pathways and serves as a footprint of

antibody–antigen interactions on the surface of endothelial

cells (31). Although useful, C4d has significant limitations

for the diagnosis of ABMR, not least because of

methodological issues (immunoperoxidase vs. immunoflu-

orescence, frozen vs. paraffin), poor understanding of the

meaning of minimal and focal staining, and its waxing and

waning deposition. Staining depends on the density of the

capillary network, with poor sensitivity in chronic settings,

andC4d positivity has been reported in the absence of other

evidence of graft injury (21). Furthermore, C4d stainingmay

not be associated with measurable DSA in the case of non-

HLA antibodies or antibodies absorbed by the allograft (31).

Overall, the sensitivity of C4d is low, and its expression

depends on the density of PTCs. In this regard, a number of

studies have established the concept of C4d-negative acute

and chronic ABMR (32–35). Loupy et al (33) reported that

C4d staining waxed and waned and was not a sensitive

indicator of parenchymal disease in the first year after

transplant. In this study, 55%of C4d-negative biopsieswith

ABMR had evidence of concomitant capillary inflamma-

tion (33). Sis et al described that 60% of kidneys with high

endothelial activation and injury transcripts (ENDATs) and

chronic ABMR or graft loss were C4d negative (34).

Findings were confirmed by another study in which 63%

of late kidney failures after biopsy were attributable to

ABMR, but many were C4d negative (35). A recent

microarray study from Sellarés et al (36) concluded that

changes in ABMR-associated gene expression (mostly in

endothelial or NK cells) correlated with the presence of

capillary lesions or DSA and may predict graft failure

independent of C4d staining. Together, these observations

point to the low sensitivity of C4d for the diagnosis of

humoral rejection and support the addition of novel

biomarkers of capillary inflammation and endothelial injury,

including NK cells and macrophages to the diagnosis

algorithm of ABMR (33–38). This recommendation was

officially acknowledged at the 11th Banff Conference on

Allograft Pathology (Figure 2) (21) andwas incorporated into

the new Banff 2013 diagnostic criteria for ABMR (30)

(Table 1).

DSA and the diagnosis of ABMR
Terasaki et al identified HLA antibodies in the serum of

patients after transplantation nearly 45 years ago (39).

However, the importance of a low-strength antibody that is

undetectable by cell-based methodology was not recog-

nized until studies from the same group, three decades

later, discovered a strong association between HLA anti-

bodies detected by solid-phase assays and graft failure (40).

DSA may be directed against HLA or other endothelial cell

antigens, and its presence is required for the diagnosis of

acute and chronic active ABMR (21,37,41). In addition,

there is growing evidence supporting the roles of

preformed and de novo DSA as independent risk factors

for acute and chronic ABMR and graft loss (14,41–51). A

recent systematic review and meta-analysis demonstrated

that the presence of DSA before transplantation was

associatedwith a twofold greater risk of acute rejection and

a 75% greater risk of graft loss (46). Despite these findings,

our understanding of the biological relevance of DSA

remains limited. In vitro studies suggest that anti-HLA class

I alloantibodies result in endothelial cell injury and activation

through both complement-dependent and complement-

independent pathways (52,53). However, little is known

about signal transduction in response to class II antibodies

or the pathogenesis of DSA-induced renal allograft injury in

actual patients. It is important to note that not all DSA fix

complement or cause ABMR and, conversely, not all

episodes of acute graft injury with capillary inflammation

and C4d deposition are associated with DSA being

detectable with standard assays. In fact, the majority of

patients with DSA maintain normal kidney function for

years and have long-term outcomes similar to nonsensi-

tized patients (14,42,48).

Another important limitation is that currently available HLA

antibody tests are qualitative and have not been cleared by

the US Food and Drug Administration (FDA) for quantitative

measurements (54). More studies are needed to identify

risk stratification strategies on the basis of semiquantitative

measures of DSA and calculated panel reactive antibody

(PRA), subclasses of immunoglobulin G anti-HLA anti-

bodies, and C1q complement-fixing DSA (44,55,56). Pend-

ing the results of collaborative standardization studies (57),

consensus guidelines on the testing and clinical manage-

ment issues associated with HLA and non-HLA antibodies

in transplantation were recently published (58). These

recommendations are intended to provide guidance on the
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use and clinical application of contemporary methods for

HLA antibody detection.

ABMR classification and phenotypes
The2011Banffmeeting report and a 2010workshop held by

the FDA both noted the confusion generated by reports on

acute and chronic ABMR, and emphasized the importance

of correctly defining ABMRphenotypes (21,54). In theBanff

report, two principal phenotypes of acute ABMR were

defined: (1) ABMR phenotype 1 in the presensitized patient,

occurring early posttransplant; and (2) ABMR phenotype 2,

which develops from the emergence of de novo DSA in the

late posttransplant period and is thought to be mostly

related to nonadherence or inadequate immunosuppres-

sion (12,59,60). However, additional characteristics—

including the nature of the antibody; the significance of

C4d; the severity of microcapillary injury, gene transcripts,

Table 1: Revised (Banff 2013) classification of antibody-mediated rejection (ABMR) (30)

Acute/active ABMR; all three features must be present for diagnosis1,2

1. Histologic evidence of acute tissue injury, including one or more of the following:

� Microvascular inflammation (g>03 and/or ptc>0)

� Intimal or transmural arteritis (v>0)4

� Acute thrombotic microangiopathy (TMA), in the absence of any other cause

� Acute tubular injury, in the absence of any other apparent cause

2. Evidence of current/recent antibody interaction with vascular endothelium, including at least one of the following:

� Linear C4d staining in peritubular capillaries (C4d2 or C4d3 by IF on frozen sections, or C4d>0 by IHC on paraffin sections)

� At least moderate microvascular inflammation ([gþptc]�2)5

� Increased expression of endothelial activation and injury transcripts (ENDATs) or other gene expression markers of endothelial

injury in the biopsy tissue, if thoroughly validated

3. Serologic evidence of donor-specific antibodies (HLA or other antigens)

Chronic, active ABMR; all three features must be present for diagnosis1,6

1. Morphologic evidence of chronic tissue injury, including one or more of the following:

� Transplant glomerulopathy (cg>0),7 if no evidence of chronic TMA

� Severe peritubular capillary basement membrane multilayering (requires electron microscopy [EM])8

� Arterial intimal fibrosis of new onset, excluding other causes9

2. Evidence of current/recent antibody interaction with vascular endothelium, including at least one of the following:

� Linear C4d staining in peritubular capillaries (C4d2 or C4d3 by IF on frozen sections, or C4d>0 by IHC on paraffin sections)

� At least moderate microvascular inflammation ([gþptc]�2)5

� Increased expression of endothelial activation and injury transcripts (ENDATs) or other gene expression markers of endothelial

injury in the biopsy tissue, if thoroughly validated

3. Serologic evidence of donor-specific antibodies (HLA or other antigens)

C4d staining without evidence of rejection; all three features must be present for diagnosis10

1. Linear C4d staining in peritubular capillaries (C4d2 or C4d3 by IF on frozen sections, or C4d>0 by IHC on paraffin sections)

2. g¼0, ptc¼0, cg¼0 (by light microscopy (LM) and by EM if available), v¼0; no TMA, no peritubular capillary basement membrane

multilayering, no acute tubular injury (in the absence of another apparent cause for this)

3. No acute cell-mediated rejection (Banff 1997 type 1A or greater) or borderline changes

1For all ABMR diagnoses, it should be specified in the report whether the lesion is C4d-positive (C4d2 or C4d3 by IF on frozen sections;

C4d>0 by IHC on paraffin sections) or without evident C4d deposition (C4d0 or C4d1 by immunofluorescence (IF) on frozen sections; C4d0

by IHC on paraffin sections).
2These lesions may be clinically acute, smoldering or subclinical. Biopsies showing two of the three features, except those with donor-

specific antibodies (DSA) and C4d without histologic abnormalities potentially related to ABMR or T cell–mediated rejection (TCMR) (C4d

staining without evidence of rejection; see footnote 10) may be designated as ‘‘suspicious’’ for acute/active ABMR.
3Recurrent/de novo glomerulonephritis should be excluded.
4It should be noted that these arterial lesions may be indicative of ABMR, TCMR or mixed ABMR/TCMR. ‘‘v’’ lesions are scored in arteries

having continuous media having two or more smooth muscle layers.
5In the presence of acute TCMR, borderline infiltrates or evidence of infection, ptc�2 alone is not sufficient to define moderate

microvascular inflammation and g must be�1.
6Lesions of chronic, active ABMR can range from primarily active lesions with early transplant glomerulopathy (TG) evident only by EM (cg

1a) to those with advanced TG and other chronic changes in addition to active microvascular inflammation. In the absence of evidence of

current/recent antibody interactionwith the endothelium, the term active should be omitted; in such cases DSAmay be present at the time

of biopsy or at any previous time posttransplantation.
7Includes glomerular basement membrane (GBM) duplication by EM only (cg1a) or GBM double contours by LM.
8�7 layers in one cortical peritubular capillary and �5 in two additional capillaries, avoiding portions cut tangentially.
9While leukocytes within the fibrotic intima favor chronic rejection, these are seen with chronic TCMR as well as chronic ABMR, and are

therefore helpful only if there is no history of TCMR. An elastic stain may be helpful as absence of elastic lamellae is more typical of chronic

rejection and multiple elastic lamellae are most typical of arteriosclerosis, although these findings are not definitive.
10The clinical significance of these findings may be quite different in grafts exposed to anti-blood-group antibodies (ABO-incompatible

allografts), where they do not appear to be injurious to the graft and may represent accommodation, and anti-HLA antibodies where more

clinical outcome data are needed.
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molecular and cellular signatures; and the pathology and

function of the allograft—are relevant, were included in the

Banff 2013 criteria, andmay subsequently affect the design

of clinical trials of patients with ABMR (16,21,30,34,36)

(Table 1).

Predictors of poor outcome related to
antibody-mediated injury

Acute and chronic ABMR are associated with poor

outcomes after kidney transplantation. Specifically, pa-

tients with acute ABMR are at greater risk for subsequent

rejection, chronic ABMR and graft loss (10,14,33,42,61).

Similarly, thosewith chronic ABMR are at increased risk for

graft loss (12,13,35,60,62,63). However, not all ABMR

phenotypes have poor outcomes, and many patients

maintain stable graft function for years after treatment of

the initial injury. We will review the independent roles

of C4d, circulating antibodies, B cells and plasma cells,

microcirculation injury/inflammation, subclinical ABMR and

novel biomarkers to predict outcomes in patients with

acute and chronic ABMR.

C4d and microvascular injury
C4d and microcirculation inflammation are independent

biomarkers of subsequent rejection, chronic ABMR and

graft loss in patientswith acute ABMR (24,33,48,62). Loupy

et al (33) demonstrated that higher increments of C4d Banff

Figure 2: Acute and chronic definitions of ABMR based on C4d positivity. ABMR, antibody-mediated rejection; ATN, acute tubular

necrosis; DSA, donor-specific antibodies; IF, immunofluorescence; IFTA, interstitial fibrosis and tubular atrophy; IHC, immunohisto-

chemistry; PTC, peritubular capillary. Reproduced with permission from Mengel et al (21).
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scores predict greater microvascular inflammation at

both 3 months and 1 year after transplant, as well as

worse TG and higher levels of class II DSA. The extent of

microvascular injury was similar between biopsies with

focal and diffuse C4d. However, the presence of microcir-

culation inflammation and class II DSA at 3 months was

related to a fourfold increased risk of chronic ABMR

independent of C4d (33). We recently demonstrated that

focal C4d staining in postreperfusion biopsies was a

significant predictor of subsequent ABMR in sensitized

patients (48). Despite the important diagnostic and

prognostic roles of C4d and microcirculation inflammation

in acute ABMR, prospective studies are required to

determine whether the treatment of isolated C4d staining

or microcirculation inflammation in patients with DSA

improves outcomes.

C4d and endothelial injury are also associated with poor

outcomes in chronic ABMR (12,13,35,60,63–65). In support

of this observation, most graft losses in the current era of

immunosuppression have evidence of chronic ABMR with

positive C4d staining (12,13,35). In the Deterioration in

Kidney Allograft Function (DeKAF) study, patients with

new-onset kidney allograft dysfunction underwent a biopsy

at a mean time of 7.3 years after transplant (60). Most

biopsies had some evidence of antibody-mediated injury

(C4d or DSA), and the risk of subsequent graft failure was

significantly increased in the presence of C4d (60). Other

studies have confirmed the association of both focal and

diffuse C4d staining in chronic ABMR with graft

loss (64,65). Microcirculation injury defined as microcircu-

lation inflammation (PTC and g) or microcirculation deterio-

ration (cg and PTC multilayering) was also an important

predictor of graft loss in late biopsies (>1 year after

transplant), independent of C4d staining (35,63). As a result,

the newBanff 2013 criteria further characterize ABMRbased

on current/recent antibody interactions with vascular endo-

thelium including C4d staining, at least moderate microvas-

cular inflammation ([gþ ptc]� 2), increased expression of

ENDATs or gene expression of other validated markers of

endothelial injury in the biopsy tissue (Table 1) (30).

In summary, there is a clear and independent association

between C4d and microcirculation injury with poor out-

comes in kidney transplant recipients (KTRs) with acute or

chronic ABMR. Standardized risk stratification strategies

are needed to better define preventive and treatment

approaches for each ABMR phenotype.

Donor-specific antibodies
Preexisting (49,55) or de novo circulating antibodies (14,63)

have been shown to compromise renal allograft survival.

These antibodies may be directed against HLA or non-HLA

molecules on endothelial cells, including major histocom-

patibility complex class I-related chain A antibody (MICA),

and angiotensin type 1 receptor (37,41,66). In support of

this observation, among recipients of HLA-identical sibling

transplants, patients with no PRA had significantly higher

10-year graft survival than patients with PRA >1%,

suggesting that non-HLA immunity has an important role

in clinical transplantation and chronic graft loss (37).

In sensitized patients with preexisting anti-HLA-DSA,

8-year graft survival rates were significantly worse than in

sensitized patients without HLA-DSA or nonsensitized

patients (55). Peak HLA-DSA strength was related to the

risk of acute ABMR (49,55) and graft loss (55). Conversely,

in renal transplant recipients without preexisting DSA,

10-year graft survival was significantly lower for patients

who developed de novo HLA-DSA (14). Histopathology of

ABMR phenotype 2 could be observed in the absence of

graft dysfunction. Similar findings were reported earlier,

where patients with de novo DSA at the time of biopsy had

worse graft survival than those with preexisting DSA,

indicating that patients with ABMR phenotype 2 have

worse graft outcomes than those with ABMR phenotype

1 (63). De novo DSA are predominantly directed at class II

donor HLA mismatches and are associated with non-

adherence and cellular rejection (Figure 3) (14). Although

the reason for this is unclear, it appears that class I

antibodies are associated with early ABMR, whereas class

II antibodies are more commonly associated with late

ABMR and graft failure (14,35,48–51,63).

In summary, although DSA are important risk factors for

graft loss, the majority of patients with DSA have stable

allograft function and experience no rejection. It is therefore

important to determine the pathogenic role and specificity

of anti-class I and class II HLA and non-HLA-DSA and to

better understand the effect of de novo DSA compared

with preexisting DSA.

B cells and plasma cells
The relationship between the presence of circulating DSA

and the development of antidonor B cell responses in

allograft rejection and tolerance is currently under active

Figure 3: The natural history of phenotype 2 ABMR. ABMR,

antibody-mediated rejection; DSA, donor-specific antibodies; IFTA,

interstitial fibrosis and tubular atrophy; TG, transplant glomeru-

lopathy. Reproduced with permission from Wiebe et al (14).
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investigation (19,20). While the absence of circulating DSA

may indicate graft tolerance, it is also possible that

antibodies produced as a result of a B cell response are

not detectable because of binding/absorption by the graft

itself (20,67). To investigate donor-directed B cell re-

sponses, a recent study (19) used donor-derived fibroblasts

as targets to quantify DSA-secreting cells isolated from

peripheral blood of KTRs before and after transplantation.

Even in the absence of circulating DSA (with no evidence of

rejection), the number of DSA-secreting cells was in-

creased posttransplant in all patients, suggesting a greater

role for B cells and plasma cells in posttransplant immune

regulation than previously thought (19).

B cells may also contribute to posttransplant immune

regulation through its antigen-presenting function (20). In

addition to pathways used by other antigen-presenting

cells (APCs), B cells can present antigen via antigen

binding to the clonotypic B cell receptor (68). In turn,

B cells (unlike other APCs) undergo clonal expansion, which

may contribute to rejection by amplifying antidonor B cell

responses (20).

Subclinical ABMR
Subclinical ABMR is defined as immunohistological evi-

dence of ABMR in KTRs with normal renal allograft

function. Evidence suggests that untreated subclinical

ABMR is an important predictor of poor renal allograft

outcomes (69,70). At 1-year posttransplant, those with

subclinical ABMR at 3 months had more interstitial fibrosis

and tubular atrophy (IFTA) and TG compared with patients

who did not have subclinical ABMR at 3 months (69).

Similarly, patients with C4d-negative subclinical ABMR at

3 months (defined as PTCþg> 0) had more PTC and IFTA

and a lower GFR at 1 year relative to those without

subclinical lesions at 3 months (69). These findings were in

agreement with earlier observations that demonstrated a

strong association between subclinical rejection (70) and

chronic allograft nephropathy in 83 patients who received

HLA-incompatible renal allografts and support the indication

of protocol biopsies in sensitized recipients. Protocol

biopsies can further identify subclinical TG, which is

considered an important risk factor for chronic injury and

graft dysfunction (69,71). As a result, it is recommended

that high-risk patients (i.e. desensitized or DSA-positive/

crossmatch-negative) should be monitored by protocol

biopsies in the first 3 months after transplantation. Protocol

biopsies may also be conducted after ABMR to determine

the effectiveness of therapy and to identify prognostic

indicators of outcome (58).

Novel biomarkers
New assays and molecular tests may be considered as

diagnostic and prognostic tools in patients with ABMR.

There is evidence that ENDATs and DSA-selective tran-

scripts are indicators of active ABMR damage and worse

graft outcomes (17,34,72). The expression of these tran-

scripts in biopsiesmay provide a new tool for understanding

the pathogenesis of late kidney graft loss and ABMR, as

well as for predicting graft outcomes and defining ABMR

even in C4d-negative biopsies in patients with antibod-

ies (17,34). Differentially expressed microRNAs and their

predicted targets identified by deep sequencing may also

be candidates for further investigation to understand the

mechanism and management of kidney allograft fibrosis in

patientswith ABMR (73). The C1q assay is another test that

is designed to distinguish complement-fixing from non-

complement-fixing antibodies (56). Recent studies indicate

that a positive C1q assay for de novo DSA correlates with

acute rejection and long-term graft loss after kidney

transplantation (74–76). Other investigators have found

no significant difference in graft survival between patients

with or without preformed C1q-fixing DSA (77), suggesting

that additional studies are needed to clarify the role of this

assay in clinical transplantation. Finally, C4d-fixing luminex-

binding antibodies have been reported to predict graft

failure in heart transplantation, but the role of this assay in

kidney transplantation is being debated (78,79). In summa-

ry, while new assays with potential diagnostic and

prognostic value are being developed in the area of

ABMR, these tools need to be validated by larger studies.

Preventing ABMR

More than 20 000 patients awaiting kidney transplantation

in the United States are sensitized (typically owing to

blood transfusion, pregnancy or previous transplants) to

HLA class I and/or class II antibodies (80). Until recently,

transplantationwas routinely avoided in sensitized patients,

at the expense of prolonging waiting time for suitably HLA-

matched organs. However, with the advent of virtual

crossmatch, desensitization protocols and paired kidney

exchange (PKE) programs, timely kidney transplantation

has become a reality for many of these high-risk

patients (81,82) (Table 2). Highly sensitized patients may

be able to participate in special programs such as the

Eurotransplant Acceptable Mismatch Program (83), in

which the HLA typing of panel donors with negative

reactions is determined during screening if PRA is below

100%; alternatively, selection and crossmatching of blood

donors with a single HLA mismatch to the patient’s

phenotype can be undertaken (84). It has been argued

that implementation of these programs may lead to similar

graft survival rates to those observed in nonsensitized

patients (84).

Prevention of acute ABMR phenotype 1
Only one randomized controlled clinical trial (RCT) has been

conducted to lower allosensitization prior to transplanta-

tion (85). In this study, 101 adult patients with a PRA�50%

were enrolled in a trial sponsored by the National Institutes

of Health. Patients received intravenous immunoglobulin

Current Status of Antibody-Mediated Rejection
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(IVIG) 2 g/kg monthly for 4 months or an equivalent volume

of placebo with additional infusions at 12 and 24 months

after entry if not transplanted while on IVIG or placebo. IVIG

significantly reduced PRA levels in study subjects com-

paredwith placebo, andmore patients in the IVIG armwere

transplanted (35% vs. 17%). Seven graft failures occurred

(four IVIG, three placebo) among adherent patients with

similar 2-year graft survival rates (80% IVIG, 75% placebo).

The investigators concluded that IVIG is better than placebo

in reducing anti-HLA antibody levels and improving

transplantation rates in highly sensitized patients with

end-stage renal disease. In a follow-up study by the same

group, the combination of B cell depletion therapy and high-

dose IVIG was shown to be effective in reducing PRA from

77�18% to 44� 30% at the time of transplantation (86).

However, recent studies have not been able to reproduce

these data, specifically in patients with PRA>80% (87–89).

Two randomized clinical trials have examined the role of

rabbit anti-human thymocyte globulin (rATG) as induction

therapy in sensitized kidney transplants based on current or

peak PRA levels (90,91). The use of rATG was associated

with a significant reduction in the incidence of acute

rejection and improved 1-year survival, specifically in

patients who remained rejection-free, suggesting that

ATG induction may be associated with better outcomes

in sensitized patients (90,91). Compared with anti-IL-2

therapy (basiliximab), induction with rATG in moderately

sensitized KTR was associated with reduced incidence of

de novo DSA and ABMR (92). In contrast, outcomes from

the CTOT02 study, including nonsensitized adults and

children, found anti-IL-2 induction to be protective against

the development of anti-HLA antibodies; however, no

difference in allograft survival was associatedwith anti-HLA

antibody development (93,94). Although these studies

support the use of ATG and IL-2 blockade in sensitized and

low-risk patients, respectively, the effects of induction with

rATG or anti-IL-2 therapy on de novo DSA or long-term

outcomes remain largely unknown.

Nonrandomized clinical observations suggest that a combi-

nation of plasmapheresis and low-dose IVIG combinedwith

IL-2 blockade or rATG for induction has become the

standard of care for the treatment of sensitized pa-

tients (11,46,95). Using this approach, desensitization

was associated with improved patient survival compared

with chronic dialysis (95). Despite these promising findings,

long-term outcomes for crossmatch-positive living-donor

kidney transplantation are generally inferior to nonsensitized

KTRs (51,96), suggesting that better immunomodulatory

strategies are required.

Alemtuzumab, a lymphocyte-depleting, CD52-specific

monoclonal antibody, is increasingly used as induction

therapy in renal transplantation. A recent review and meta-

analysis of 10 RCTs (enrolling more than 1200 patients), as

well as studies specifically in highly sensitized patients,

concluded that alemtuzumab induction is associated with a

comparable or lower risk of biopsy-proven acute rejection

compared with rATG or IL-2 receptor antibodies (97–99). In

contrast, other studies have demonstrated potential nega-

tive effects of alemtuzumab on the regulation of humoral

immunity, including unexpectedly high rates of ABMR (100)

and high rates of circulating alloantibody and intragraft C4d

at 1-year posttransplant (100). Increased risk for ABMR

with alemtuzumabmay be partlymediated by dysregulation

of B cell activating factor (BAFF), as an increase in BAFF

mRNA expression was observed in monocytes of alemtu-

zumab-treated patients (101,102).

The anti-CD20 agent rituximab may also have utility as an

induction agent for renal transplant recipients, although its

efficacy is yet to be proven and it is not currently licensed

in this setting (103). An RCT (ClinicalTrials.gov number

Table 2: Strategies to prevent ABMR

1. Do not transplant highly sensitized patients

2. Avoid blood transfusion

3. Paired kidney exchange

4. In sensitized patients, precise characterization of their alloantibodies and exact HLA typing of the donor at the time of transplantation

5. Participation in special programs (such as the Eurotransplant Acceptable Mismatch Program)

6. Removal of DSA (plasmapheresis, immunoadsorption)

7. Direct or indirect inhibition of DSA production

a. Anti-B cell agents (rituximab1)

b. Anti-plasma cell agents (proteasome inhibitors, e.g. bortezomib1)

c. Rabbit anti-human thymocyte immunoglobulins (e.g. thymoglobulin)?

d. Costimulation blockade (e.g. belatacept)?

8. Inhibition of complement cascade (eculizumab1)

9. Intravenous immunoglobulin1

e. Neutralizing DSA: anti-idiotypic activity

f. Inhibiting complement activation by binding C3b, C4b

g. Inhibiting activation of macrophages, neutrophils by binding FcgRs

h. Apoptosis of B cells (inhibits CD19 expression)

10. Splenectomy

ABMR, antibody-mediated rejection; DSA, donor-specific antibodies; FcgRs, Fc gamma.
1These drugs are used off-label in solid organ transplantations.
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NCT00565331) presented at the 2013 American Transplant

Congress evaluated a single dose of rituximab as induction

therapy added to standard concomitant immunosuppres-

sion (i.e. tacrolimus,mycophenolatemofetil and steroids) in

patients with PRA >6% and re-transplants. The results

showed that rituximab was significantly more effective

than placebo at preventing biopsy-proven acute rejection

within the first 6 months posttransplant, though this study

did not report the effect of rituximab induction on the

incidence of ABMR (104). In a retrospective study of

patients receiving ABO-incompatible KTRs, rituximab

induction inhibited the development of de novo DSA and

reduced the rate of chronic ABMR (relative to splenectomy)

in this subset of patients (105). Further induction trials of

rituximab are ongoing (103), including the Rituximab

Induction in Renal Transplantation (ReMIND) trial (Clinical-

Trials.gov number NCT01095172).

Several observational studies have used bortezomib and

eculizumab in their desensitization protocols. Bortezomib is

a proteasome inhibitor that acts on plasma cells and is

effective in removing preformed DSAwhen combinedwith

plasmapheresis (106,107). It is also associatedwith durable

reductions in DSA and stable allograft function in de novo

DSA-positive renal transplant recipients (108). The efficacy

of the humanized anti-C5 antibody eculizumab in the

prevention of ABMR was also recently assessed in renal

transplant recipients with a positive crossmatch (109). The

incidence of ABMR was 8% with eculizumab compared

with 41% in the control group, and the rate of TG at 1 year

was also significantly lower with eculizumab (109). There is

an ongoing, multicenter, international, randomized trial

testing the role of eculizumab plus conventional treatment

(or conventional treatment alone) that may clarify its utility

(NCT00670774) (110). However, these published single-

center observations have not yet been confirmed by larger

studies, and none of these drugs is approved by the FDA for

the prevention or treatment of ABMR. Furthermore, these

protocols are associated with costs that may not be

covered by insurance.

A common approach toABMRprevention has been to avoid

transplanting highly sensitized patients. However, avoiding

transplant renders chronic dialysis the only option, with

implications for patient health and quality of life, as well as

healthcare costs. Long-term survival in posttransplant

patients has been improved considerably by desensitiza-

tion, and the enrollment of patients in special programs to

optimizematching can lead to timely transplantswith better

outcomes. A recent study examined both the efficacy and

cost-effectiveness of desensitization using IVIG and

rituximab in 146 patients who were originally DSA-positive

(PRA >80%) and transplanted with an acceptable cross-

match (111). The patient survival rate at 3 years was 96.6%

in the desensitization arm compared with 79.0% for

patients remaining on dialysis. Each patient treated with

desensitization was estimated to save the US healthcare

system $18753. These data suggest that survival and

financial gains can be achieved by a desensitization

approach; however, this was a relatively small study, and

the extent of the relative benefits of desensitization over

dialysis will ultimately be determined by drug cost.

A growing option for the prevention of ABMR in highly

sensitized patients is the use of PKE transplant programs,

such as the National Kidney Registry, the Alliance for Paired

Donation and the United Network for Organ Sharing Kidney

Paired Donations Pilot Program (112,113) (see Table 2).

Such programs enable sensitized patients with immuno-

logically incompatible living donors to be transplanted with

high-quality grafts from other living donors in similar

situations who were willing to exchange organs. Although

cost has been a concern for kidney exchange registries in

the United States, it seems that the PKE could help

participating centers avoid complex desensitization proto-

cols while improving long-term outcomes. Furthermore,

mathematical modeling predicts that an optimized match-

ing algorithm and a national PKE program would improve

outcomes and reduce healthcare costs for highly sensitized

patients (114). With the rising number of highly sensitized

patients in PKE programs, some centers combine desensi-

tization and paired exchange options.

Prevention of acute ABMR phenotype 2
Nonadherence and the choice of maintenance immuno-

suppressionmay influence the development of ABMRafter

transplant (13,14,115). For example, calcineurin inhibitor

minimization or withdrawal strategies may increase the

incidence of de novoDSA and ABMR (13,14,115). Analyses

from two prospective randomized clinical trials demon-

strated that the conversion of cyclosporine to everolimus at

3–4.5 months after transplant was associated with

significantly higher rates of de novo DSA (10.8% vs.

23%, p¼ 0.04) and ABMR (3% vs. 13%, p¼ 0.03) (116).

Whereas avoiding calcineurin-based regimens may be

advantageous in KTRs by reducing the potential risks of

nephrotoxicity and other adverse events after transplant,

the intentional or unintentional reduction of immunosup-

pression increases the risk of ABMR and graft

loss (12,13,117). Treatment with belatacept, a selective

costimulation blocker that targets CD80/CD86-CD28 inter-

action to prevent T cell activation, was associated with a

low rate of de novo DSA over 3 years of treatment in phase

III trials, although this was not an initial end point of the

studies and requires confirmation (118,119). This observa-

tion is supported by experimental data demonstrating that

belatacept inhibits primary T cell–dependent antibody

responses and the generation of DSA in primates (120).

A phase II clinical study in which conversion from a

calcineurin inhibitor-based regimen to belatacept had no

effect on the incidence of de novo DSA or ABMR despite

higher rates of cellular rejection (7% vs. 0%) (117).

In summary, notwithstanding the advent of novel immuno-

suppressive agents, the ideal regimen for the prevention of

Current Status of Antibody-Mediated Rejection
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ABMR phenotypes 1 and 2 in sensitized KTRs remains

unknown.

Treatment of ABMR

Acute ABMR
The primary aims of therapeuticmodalities for ABMR are to

remove existing antibodies and inhibit their redevelopment.

Themanagement of ABMR is challenging and is associated

with poorer outcomes compared with traditional anti-T cell

rejection therapy for pure cell-mediated rejection (121). A

recent systematic review of treatments for acute ABMR in

renal allografts found 10 388 citations but only five small

randomized and eight non-RCTs (Table 3) (122). Of these

trials, benefit was found in five studies evaluating

plasmapheresis or immunoadsorption, and small, nonran-

domized controlled studies suggested benefit from ritux-

imab or bortezomib (33,120,122,124–128,130–134). An

evaluation of a small group of patients from a randomized

trial of kidney allograft recipients suggested that immu-

noadsorption (received by five patients and compared with

the outcomes of five controls) was effective in reversing

severe C4d-positive ABMR (123). However, it is important

to note that immunoadsorption is not practiced in the

United States.

Ironically, there are no randomized controlled studies that

support the benefits of IVIG in acute ABMR, despite its

common use in this context (122). Only one randomized

controlled study has found plasmapheresis to be benefi-

cial (125); two controlled studies found no benefit (124,127)

and one found potential harm (126), indicating that the role

of plasmapheresis for the treatment of acute ABMR

remains under debate. Uncontrolled or controlled nonran-

domized studies support a role for rituximab, bortezomib,

plasmapheresis and IVIG (45,128–134). However, the

relative importance of these therapies is difficult to assess

because treatment strategies were not standardized,

doses and frequencies were not similar, and the specific

drugs were combined with other agents.

One-year results were recently reported from a phase III,

multicenter, randomized, placebo-controlled trial (RITUX

ERAH) that examined the effect of rituximab (combined

with plasmapheresis, IVIG, corticosteroids, tacrolimus and

mycophenolate mofetil) on a composite measure of graft

loss or absence of improvement of renal function at day 12,

in patients with biopsy-proven acute ABMR. ABMR

occurred after a median of 35.5 days, with no advantage

of rituximab over control for the graft loss or renal function

outcome (135).

Eculizumab was recently used for the treatment of

multidrug-resistant ABMR (136), but there are no random-

ized controlled studies to confirm the efficacy of this

expensive drug. In summary, efficacy data for the

treatment of acute ABMR are of very low quality, and

larger RCTs and dose–response studies are needed to fully

evaluate therapies in this setting (122). In the absence of

strong evidence to support consensus guidelines for the

treatment of ABMR, the Kidney Disease: Improving Global

Outcomes Transplant Work Group recommends the use of

corticosteroids, plasmapheresis, IVIG, anti-CD20 antibod-

ies and lymphocyte-depleting antibodies alone or in

combination (137) (Figure 4).

Chronic ABMR
Chronic ABMR is amore difficult condition to treat because

irreversible tissue damage has occurred in the setting of

severely compromised graft survival (138). A small-scale

retrospective study of rituximab combined with standard

maintenance immunosuppression (including prednisone,

mycophenolate mofetil and calcineurin inhibitors) in 31

patients with chronic ABMR had encouraging results, with

partial therapeutic response and an increase inmedian graft

survival in the rituximab-treated group compared with the

control group (685 days vs. 439 days, respectively). The

outcomes within the rituximab group were dichotomous,

with significantly different median survival time in res-

ponders compared with nonresponders and control

patients, though there were no pathologic parameters

that distinguished any subset of patients (139).

Clinical trials of rituximab for the treatment of chronic

ABMR are ongoing or recruiting patients (NCT00476164

[RituxiCAN-C4] in the United Kingdom andNCT00307125 in

the United States).

New directions and future perspectives
Despite the important role of ABMR in patient morbidity

and mortality after renal transplantation, our current

understanding of the pathogenesis and pathologic pheno-

types of ABMR is limited. Evidence supports an important

role for DSA in acute and chronic ABMR. However, not all

DSA detected by current assays cause injury in the allograft

and not all ABMR phenotypes cause rapid allograft failure.

Similarly, C4d has significant limitations as a biomarker of

ABMR. It will therefore be essential to determine risk

stratification strategies for DSA, C4d and ABMR pheno-

types to guide preventive and therapeutic approaches,

including plasmapheresis, IVIG and anticomplement and

anti-B/plasma cell therapies.

Treatment options for ABMR are being informed by

growing awareness of the complex role played by B cells

in acute ABMR and chronic allograft dysfunction and the

underlying biological processes. B cell lineages are now

known to havemultiple negative effects on the alloimmune

response, including antigen presentation to T cells, the

production of cytokines supporting T cell activation,

antibody production and tertiary lymphoid organ and

lymphatic vessel formation (140). Donor-specific B cells

can be detected in peripheral blood using HLA-binding
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tetramers (141,142), and these tetramers may also

represent a potential therapeutic agent to deplete donor-

specific B cells. Strategies currently used in transplantation

to deplete B cells or inhibit B cell activation are rATG,

alemtuzumab and rituximab. However, despite the short-

term depletion of B cells, alemtuzumab is associated

with altered phenotypic and functional properties of

the repopulated cells (143), which may contribute to

increased rates of ABMR (144,145). The maintenance

immunosuppressant belatacept may provide indirect inhi-

bition of B cells through costimulatory blockade of CD80

and CD86, as this disables the stimulation of CD28, a

mediator of antibody production by B cells and B cell

proliferation (146). However, belatacept is not under

evaluation as a treatment for ABMR.

Limited clinical trial evidence suggests that the proteasome

inhibitor bortezomib (which induces plasma cell apoptosis)

may be useful in combination with plasmapheresis to

reduce anti-HLA antibodies in sensitized patients and to

treat ABMR following renal transplantation (138,140,147).

Other investigational B cell-depleting therapies include

potent anti-CD20 antibodies (e.g. ofatumumab and ocreli-

zumab) and an anti-CD22 antibody (epratuzumab)

(138,140,148). Agents targeting the BAFF pathway, which

costimulates B cell survival and expansion, are also in

clinical development (e.g. atacicept and belimumab)

(140,149). The inhibition of antibody effector function is

another interesting area of research, and some promise has

already been shown by eculizumab, an anti-C5 antibody, in

the prevention and treatment of ABMR (140,149).

Many of the potential treatment options for ABMR have

been imported from other areas of medicine, without

appropriate clinical trials in kidney transplantation; hence,

there is a need for well-designed clinical trials that use

standardized and contemporary diagnostic, monitoring and

therapeutic strategies for ABMR. There are challenges in

organizing multicenter, prospective clinical trial study

groups aimed at developing agents for DSA reduction

and treatment of ABMR. There is also a bias toward

developing B cell/antibody-targeting drugs for indications

outside of transplantation (such as oncology or rheumatol-

ogy), and the FDA has highly stringent requirements for the

approval and labeling of new agents in the transplantation

arena. Before novel andmore effective treatments become

available, the close monitoring of high-risk patients and an

emphasis on adherence to well-tolerated maintenance

immunosuppressants are recommended to minimize the

risk of ABMR.
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66. Dragun D, Müller DN, Bräsen JH, et al. Angiotensin II type 1-

receptor activating antibodies in renal-allograft rejection. N Engl J

Med 2005; 352: 558–569.

67. Martin L, Guignier F, Mousson C, Rageot D, Justrabo E, Rifle G.

Detection of donor-specific anti-HLA antibodies with flow

cytometry in eluates and sera from renal transplant recipients

with chronic allograft nephropathy. Transplantation 2003; 76:

395–400.

68. Vidard L, Kovacsovics-Bankowski M, Kraeft SK, Chen LB,

Benacerraf B, Rock KL. Analysis of MHC class II presentation

of particulate antigens of B lymphocytes. J Immunol 1996; 156:

2809–2818.

69. Loupy A, Suberbielle-Boissel C, Hill GS, et al. Outcome of

subclinical antibody-mediated rejection in kidney transplant

recipients with preformed donor-specific antibodies. Am J

Transplant 2009; 9: 2561–2570.

70. Haas M, Montgomery RA, Segev DL, et al. Subclinical acute

antibody-mediated rejection in positive crossmatch renal allog-

rafts. Am J Transplant 2007; 7: 576–585.

71. Gloor JM, Sethi S, Stegall MD, et al. Transplant glomerulopathy:

Subclinical incidence and association with alloantibody. Am J

Transplant 2007; 7: 2124–2132.

Djamali et al

268 American Journal of Transplantation 2014; 14: 255–271



72. Sis B, Jhangri GS, Riopel J, et al. A new diagnostic algorithm for

antibody-mediated microcirculation inflammation in kidney trans-

plants. Am J Transplant 2012; 12: 1168–1179.

73. Ben-Dov IZ, Muthukumar T, Morozov P, Mueller FB, Tuschl T,

Suthanthiran M. MicroRNA sequence profiles of human kidney

allografts with or without tubulointerstitial fibrosis. Transplanta-

tion 2012; 94: 1086–1094.

74. Freitas MC, Rebellato LM, Ozawa M, et al. The role of

immunoglobulin-G subclasses and C1q in de novo HLA-DQ

donor-specific antibody kidney transplantation outcomes. Trans-

plantation 2013; 95: 1113–1119.

75. Sutherland SM, Chen G, Sequeira FA, Lou CD, Alexander SR,

Tyan DB. Complement-fixing donor-specific antibodies identified

by a novel C1q assay are associated with allograft loss. Pediatr

Transplant 2012; 16: 12–17.

76. Yabu JM, Higgins JP, Chen G, Sequeira F, Busque S, Tyan DB.

C1q-fixing human leukocyte antigen antibodies are specific for

predicting transplant glomerulopathy and late graft failure after

kidney transplantation. Transplantation 2011; 91: 342–347.

77. Otten HG, Verhaar MC, Borst HP, Hene RJ, van Zuilen AD.

Pretransplant donor-specific HLA class-I and -II antibodies are

associated with an increased risk for kidney graft failure. Am J

Transplant 2007; 7: 2809–2815.

78. Smith JD, Hamour IM, Banner NR, Rose ML. C4d fixing, luminex

binding antibodies—A new tool for prediction of graft failure after

heart transplantation. Am J Transplant 2007; 7: 2809–2815.

79. Wahrmann M, Bartel G, Exner M, et al. Clinical relevance of

preformed C4d-fixing and non-C4d-fixing HLA single antigen

reactivity in renal allograft recipients. Transpl Int 2009; 22: 982–

989.

80. Blume OR, Yost SE, Kaplan B. Antibody-mediated rejection:

Pathogenesis, prevention, treatment, and outcomes. J Trans-

plant 2012; 2012: 201754.
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