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The S100 proteins, a family of calcium-binding cytosolic proteins, have a broad range 
of intracellular and extracellular functions through regulating calcium balance, cell apop-
tosis, migration, proliferation, differentiation, energy metabolism, and inflammation. The 
intracellular functions of S100 proteins involve interaction with intracellular receptors, 
membrane protein recruitment/transportation, transcriptional regulation and integrating 
with enzymes or nucleic acids, and DNA repair. The S100 proteins could also be released 
from the cytoplasm, induced by tissue/cell damage and cellular stress. The extracellular 
S100 proteins, serving as a danger signal, are crucial in regulating immune homeostasis, 
post-traumatic injury, and inflammation. Extracellular S100 proteins are also considered 
biomarkers for some specific diseases. In this review, we will discuss the multi-functional 
roles of S100 proteins, especially their potential roles associated with cell migration, 
differentiation, tissue repair, and inflammation.
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iNTRODUCTiON

The S100 proteins, belonging to a calcium-binding cytosolic protein family, are composed of 25 
known members (1–4). They have a broad range of intracellular and extracellular functions encom-
passing regulation cell apoptosis, proliferation, differentiation, migration, energy metabolism, 
calcium balance, protein phosphorylation, and inflammation (5–8).

Based on their functional roles, s100 proteins are categorized into three main subgroups: S100 
proteins that only exert intracellular functions, S100 proteins that have both intracellular and 
extracellular roles, and S100 proteins that mainly possess extracellular effects (7). The S100 proteins 
within the first subgroup only exert intracellular functions. For example, S100A1 is predominantly 
expressed in striated muscle (especially cardiac muscle) (9) and only exert intracellular regulatory 
effects such as regulating SR Ca2+ recycle and enhancing the gain of the calcium-induced calcium 
release (CICR) cascade (10–12). In addition to intracellular roles, some S100 proteins are released 
into the extracellular environment and may exert extracellular functions. S100B in this subgroup 
was known to directly interact with nuclear Dbf2-related protein kinase (NDR kinase) and block 
the recruitment of its substrates to NDR kinase (13). Furthermore, extracellular S100B could also 
activate extracellular signal-regulated protein kinase (ERK) and NFκB in chondrocytes by binding 
to its cell surface receptor, receptor for advanced glycation end products (RAGE) (14). The third 
subgroup of S100 proteins such as S100A15 mainly exerts extracellular regulatory functions. These 
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FigURe 1 | Involvement of S100 proteins in stress and inflammation-
mediated responses. Cell stress or inflammation induce the release of S100 
proteins to acellular compartment where they bind cell surface receptors 
such as RAGE, TLR4, CD147, and GPCR. The interactions between S100 
proteins and their receptors activate intracellular signaling pathways such as 
AP1 and NFκB, which further initiates multiple cellular processes such as cell 
differentiation, migration, apoptosis, proliferation, and inflammation. AP1, 
activator protein 1; ERK, extracellular signal-regulated protein kinase; GPCR, 
G-protein-coupled receptor; IL-1, interleukin 1; IL-7, interleukin 7; IκBα, 
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor 
alpha; JNK, c-Jun N-terminal kinase; P38, p38 mitogen-activated protein 
kinase; RAGE, receptor for advanced glycation end products; TLR4, toll-like 
receptor 4; Traf2, TNF receptor-associated factor 2.
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of S100 proteins are considered as potential therapeutic targets 
for various human disorders, including arthritis, cancer, and 
Alzheimer’s disease (15, 16).

S100 proteins are involved in multiple intracellular functions 
which include: interacting with intracellular receptors or molecule 
subunits (17), membrane protein recruitment and transportation, 
transcriptional regulation (18, 19), regulating enzymes, nucleic 
acids, and DNA repair (20, 21) (Figure 1). There are two critical 
steps for S100 protein activation: Ca2+ binding (22) and homo- 
or hetero-dimer formation (23). Each S100 protein forming the 
dimer participates in ion (Ca2+, Zn2+, or Cu2+) binding. Ca2+ also 
contributes to the formation of S100 protein oligomers, especially 
calprotectin (S100A8/A9 tetramer) (22, 24, 25).

When released to the extracellular space, S100 proteins have 
crucial activities in the regulation of immune homeostasis, 
post-traumatic injury, and inflammation. S100 proteins trigger 
inflammation through interacting with receptors RAGE and 
TLR4 (26). Increasing evidence has demonstrated that calprotec-
tin (S100A8/A9) is an endogenous agonist of TLR4 (26). Binding 
to TLR4 initiates a signaling cascade and regulates inflammation, 
cell proliferation, differentiation, and tumor development in an 
NF-κB-dependent manner (8, 26–28). Apart from TLR4, RAGE 

has also been suggested to bind S100 proteins such as S100A7, 
S100A12, S100A8/A9, and S100B (27, 29–31). By interacting with 
RAGE, S100 proteins activate NF-κB, inducing the production of 
pro-inflammatory cytokines leading to the migration of neutro-
phils, monocytes, and macrophages (30, 31). In addition to the 
NF-κB pathway, MAP kinase-mediated signaling is also induced 
by S100 proteins such as S100P (32, 33). Interestingly, S100A6 
activates RAGE and promotes apoptosis, while S100B inactivates 
RAGE by interacting with the basic fibroblast growth factor and 
its receptor (14, 34). Extracellular S100 proteins may regulate the 
apoptosis, proliferation, differentiation, and migration of a num-
ber of cell types including monocytes, macrophages, neutrophils, 
lymphocytes, myoblast, epithelial cells, endothelial cells, smooth 
muscle cells, neurons, and fibroblasts. In this review, we aim to 
summarize the immune regulatory role of S100 proteins and their 
potential involvement in inflammatory regulation, tissue repair, 
and tumorigenesis.

S100 geNeS AND MOLeCULAR 
STRUCTURe

Each S100 family protein is encoded by a separate gene. Most 
S100 genes are located within the chromosome 1q21 with a few 
exceptions. For example, S100A11P is located within chromo-
some 7q22-q3, S100B in located within chromosome 21q22, 
S100P is located in chromosome 4p16, S100G is located in 
chromosome Xp22, and S100Z is located with chromosome 5q13 
(5). The sequence homology among S100 proteins varies from 22 
to 57%, which is mainly due to the variance at the hinge region 
and C-terminus, the regions associated with their function (35).

S100 proteins are small proteins with a molecular weight of 
10–12  kDa. Each S100 protein consists of two EF-hand helix–
loop–helix structural motifs, which are arranged in a back-to-
back manner and linked with a flexible hinge (23). The activity 
of the proteins is regulated by metal ions (such as calcium, zinc, 
and copper), which modulates the folding and oligomerization of 
the protein (36, 37).

eXPReSSiON PATTeRN AND 
RegULATiON

Epigenetic mechanisms play a key role in the regulation of S100 
protein expression. S100A3, S100A10, S10011, and S100P could 
be detected in various medulloblastoma cell lines treated with 
DNA de-methylation (38). It is reported that DNA hypometh-
ylation could induce S100A6 overexpression in gastric cancer. 
Lower levels of CpG methylation in the first intron and second 
exon regions of the S100A6 gene, accompanied by higher levels 
of acetylated histone H3 binding to the promoter, have been 
reported in the gastric cancer tissues (39). Lower methylation in 
the proximal promoter region of the S100P gene was also found 
in prostate cancer cell lines (40). The expression of S100 proteins 
may also be regulated by micro RNAs, although further studies 
are needed to provide direct evidence. NFAT5, a transcription 
factor that initiates S100A4 expression (41), is regulated by miR-
568 (42).
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The expression of S100 proteins is strictly regulated to 
maintain immune homeostasis (7, 43). S100A8 and S100A9 
are predominately expressed in monocytes, neutrophils, and 
dendritic cells (44, 45). However, they are also expressed in vari-
ous other types of cells upon activation, such as fibroblasts (46), 
mature macrophages (47), vascular endothelial cells (48–50), and 
keratinocytes (51). In neutrophils, 45% of the cytosolic proteins 
are constituted with S100A8 and S100A9, whereas the proportion 
is only 1% in monocytes (52). The expression levels in different 
monocyte subsets also vary. The level of S100A8 mRNA is higher 
in classical CD14+/CD16− human monocytes when compared to 
non-classical CD14+CD16+ monocytes (47).

Increasing evidence indicates that the expression of most 
S100 proteins is different between physiological and pathologi-
cal conditions. The expression of S100A8 and S100A9 could be 
upregulated by a number of conditions such as oxidative stress, 
specific cytokines, and growth factors in many types of cells 
(53). S100A12 is mainly expressed in neutrophils, monocytes, 
and early macrophages (53, 54), but it can also be detected 
in endothelial cells, keratinocytes, epithelial cells, and pro-
inflammatory macrophages under inflammatory conditions  
(51, 55–58). In human epidermal keratinocytes, interleukin (IL)-
1α induces a significant increase of S100A9 expression by the p38 
MAPK pathway (59). The expression of S100A5 is upregulated 
in bladder cancers (60). Pro-inflammatory cytokines could 
increase S100A7 expression in human breast cancer (61). 
IL-17, IL-22, and bacterial products (e.g., flagellin) can enhance 
S100A7 expression in keratinocytes (62). IL-6 and IL-8 released 
from myofibroblasts could also trigger the upregulation of 
S100A8/A9 in tumor-infiltrated myeloid cells (63). S100A9 was 
significantly higher in the peripheral blood in patients with 
implant-associated osteomyelitis. S100A9 expressing cells were 
also increased in tissue biopsies from patients with implant 
infections, compared with the non-infected individuals (64).

S100 PROTeiNS FUNCTiON AS  
DAMAge-ASSOCiATeD MOLeCULAR 
PATTeRN (DAMP) MOLeCULeS

In addition to serving as calcium-binding proteins, S100 proteins 
were later discovered as DAMP molecules (26, 65, 66). DAMPs 
were considered as a series of intracellular molecules linked with 
cell death and tissue damage through inducing a rapid inflam-
matory response or production biologically active molecules  
(67, 68). DAMPs are biomolecules that are released from dam-
aged or stressed cells and could act as endogenous danger signal 
to activate inflammatory response (69). S100 proteins could be 
released from the cells after cell damage/stress or activation of 
phagocytes such as neutrophils and macrophages. The extracel-
lular S100 proteins then become danger signals and activate 
immune cells and endothelial cells by binding to the pattern 
recognition receptors such as TLRs and RAGE.

They play an important role in modulating inflammatory 
responses (70). Once released from the cell, calprotectins func-
tion as an endogenous agonist to bind TLR4 (S100A8/A9 and 
S100A12) (26) and RAGE (S100A8/A9 and S100A7) [(6, 31, 71) 

#3535]. In the site of inflammation, calprotectin acts as a chemot-
actic factor by inducing neutrophils adhesion (72). Furthermore, 
S100A8/A9 induces apoptosis and autophagy in various cell 
types such as lymphocytes, macrophages, endothelial cells, and 
tumor cells (73). It has been shown that reactive oxygen species 
(ROS) is the critical factor in S100A8/A9-induced cell death and 
involves BNIP3. The increase of ROS production in mitochon-
dria subsequently causes mitochondrial damage and lysosomal 
activation (73).

S100 PROTeiNS iN MACROPHAgeS 
MigRATiON, iNvASiON, AND 
DiFFeReNTiATiON

It is widely accepted that macrophages contribute to immune 
defense, immune regulation, and tissue repair. Based on their 
cytokine production and activation conditions, macrophages 
are categorized into two populations: pro-inflammatory M1 
(classically activated macrophage) and anti-inflammatory M2 
(alternatively activated macrophage). Calprotectin could induce 
pro-inflammatory cytokine production in monocytes and 
macrophages through NF-κB and p38 MAPK pathways (74). An 
increasing number of findings demonstrate that S100 proteins 
contribute to the adhesion and migration of leukocytes. For 
example, the release of S100A8/A9 has been suggested to facilitate 
monocyte and neutrophil transmigration (75, 76). The S100A8/
A9 heterodimer enhances the expression of β2 integrin CD11b 
and the ability of adhesion in phagocytes (72, 77). Moreover, the 
response of S100A9−/− monocytes to chemotaxis was reduced 
when compared with wild-type cells. For example, IL 8-induced 
CD11b upregulation was abolished in S100A9−/− monocytes and 
neutrophils (78). S100A4 has also been shown to interact with 
cytoskeletal proteins to promote cell migration and deletion of 
s100a4, which leads to the deficiency of macrophage migration 
and chemotactic reactions (79–81). S100A12 induced the pro-
duction of pro-inflammatory cytokine IL-6 and IL-8 in both a 
dose-dependent and time-dependent manner. This was critical 
to regulate the recruitment of monocytes and TNF-α release (82).

The intimate relationship between macrophages and cancer 
cells plays a crucial role in tumor growth and metastasis. Tumor 
associated macrophages influence tumor growth by modulat-
ing local inflammation, inhibiting antitumor immunity, and 
stimulating angiogenesis (83–85). It is commonly accepted that 
macrophages contribute to tumor growth and invasion. They 
are recruited to the site of tumors via chemoattractants such 
as CCL3-8, vascular endothelial growth factor (VEGF), and 
macrophage inflammatory protein-1 alpha (MIP-1α) (86). The 
monocytes or macrophages tend to differentiate into the M2 mac-
rophage phenotype rather than the tumoricidal M1 phenotype, 
producing pro-tumor cytokines, such as macrophage colony-
stimulating factor, IL-10, IL-4, and IL-13 (83, 87, 88). S100A10 
was shown to mediate the migration of macrophages to the tumor 
site. Tumor growth was reduced in S100A10-null mice, compared 
with wild-type mice, and was accompanied by less macrophages 
within the tumor. There were many macrophages throughout 
the tumor in wild-type mice, where macrophages were observed 
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only around the absolute tumor tissue border in S100A10-null 
mice (89). Intraperitoneal injection of wild-type macrophages 
restored macrophage density within the tumor, but injection of 
S100A10-deficient macrophages did not. Interestingly, intratu-
moral injection of macrophages of either genotype could rescue 
tumor growth, suggesting that S100A10−/− macrophages still 
have the ability to stimulate tumor growth but lack the ability to 
invade into the tumor (89). Another study showed that S100A10 
deficiency decreased plasmin generation and matrix metallopro-
teinase 9 activation in macrophages, both of which are associated 
with macrophage invasion and migration (90).

Downregulation of S100A8 and S100A9 is associated with 
the differentiation of myeloid cells toward dendritic cells and 
macrophages (91, 92). S100A8 and S100A9 are co-expressed in 
fetal myeloid progenitors, with its expression level associated 
with the development of the myeloid lineage (93). They are highly 
expressed in monocytes and neutrophils. However, the expres-
sions of S100A8 and S100A9 are lost when monocytes terminally 
differentiate into tissue macrophages (93). Recent data have shown 
that S100A8 can be induced by oxidative stress in macrophages in 
an IL-10-dependent manner (51). Interestingly, S100A8/A9 has 
also been shown to control the cell cycle (94). S100A9 inhibited 
myeloid cells differentiation through generation of ROS (92). 
S100A9 is able to induce the differentiation of monocytes toward 
the osteoclast type in in vitro culture experiments and S100A9 
derived from neutrophils and S100A9-induced osteoclast genera-
tion were considered as important reasons for bone degradation 
in infectious osteomyelitis (95). S100A8 and S100A9 have also 
been shown to mediate the arresting effect of TNF-α on the dif-
ferentiation of immature myeloid-derived suppressor cells into 
dendritic cells and macrophages in a RAGE-dependent manner 
(96). Consistent with this finding, IL-6 and IL-8 released from 
myofibroblasts in tumor microenvironment upregulate S100A8/
S100A9 in myeloid cells and induce the differentiation of myeloid 
cells into S100A8/S100A9-expressing myeloid-derived suppres-
sor cells and M2 macrophages (63).

ROLe OF S100 PROTeiNS iN TiSSUe 
RePAiR

Damage-associated molecular pattern molecules play a critical 
role in tissue repair. S100A7, S100A8/A9, S100A12, and S100A15, 
well-documented DAMPs, have been shown to participate 
inflammatory tissue damage and tissue repair. The link between 
S100A12 and the severity of coronary and carotid atherosclerosis 
has been evidenced by multiple human studies (97–99). S100A7 
is highly expressed in the skin, and the expression is increased 
in inflamed skin, which has been shown to be induced by 
pro-inflammatory cytokines (IL-17 and IL-22) and bacterial 
products such as flagellin (62), that the increase of S100A7 has 
been associated with multiple inflammatory skin diseases, such as 
psoriasis and atopic dermatitis (62, 100). Similarly, the expression 
of S100A15 was amplified in the epidermis of psoriatic lesions 
and acted as chemoattractants for immune cells (101). S100A8/
A9 exerts anti-inflammatory function in healthy state, while 
oxidative stress-associated pathological conditions activate their 

pro-inflammatory functions (102). Increased plasma S100A8/A9 
levels have been associated with atherogenesis, plaque vulner-
ability, myocardial infarction (MI), cardiovascular death, and 
heart failure. In a mouse model of angiotensin-induced cardiac 
damage, it was shown that S100A8/A9 released by granulocytes 
upregulated pro-inflammatory gene expression and induced 
the release of cytokines and chemokines in a RAGE-dependent 
manner. This process promoted myocardial tissue inflamma-
tion and fibrotic scar formation (103, 104). In a mouse model 
of collagenase-induced arthritis, the expression of S100A8 and 
S100A9 in synovial was upregulated in wild-type mice. In addi-
tion, S100a9−/− mice were protected from collagenase-induced 
synovitis, cartilage degradation, and osteophyte formation  
(105, 106). S100A9 antibodies could block the accumulation of 
fibroblasts and decrease fibrosis in local inflammatory microen-
vironment (104). In contrast, S100A1 or S100A4, released follow-
ing MI, has a beneficial effect following heart injury by promoting 
muscle tissue repair and maintaining contractility (107, 108).

Binding of S100B to RAGE and the subsequent increase of 
angiogenic factor VEGF have been shown to be essential in the 
development of macular degeneration (109). In addition, S100B 
activates the Ras-MEK-ERK1/2-NF-κB pathway in neural cells 
and leads to the activation of small GTPases, Rac1/Cdc 42, and 
neurite growth (110). In vascular smooth muscle cells, S100B 
induces the upregulation of ROS and recruits JAK2 and STAT3, 
which results in the proliferation of vascular smooth muscle cells 
(111). Similarly, S100B also increased cellular proliferation though 
activating the Phosphatidylinositol-4,5-bisphosphate 3-kinase-
AKT pathway in a RAGE-dependent manner (14). On the other 
hand, S100B could induce apoptosis by increasing production of 
ROS and the release of cytochrome-c from mitochondria (110). 
High levels of S100B are released from injured cardiomyocytes 
following MI and could promote cell apoptosis through RAGE. 
Also, S100B released from injured skeletal muscle tissue could 
stimulate myoblast proliferation but inhibit myoblast differentia-
tion by activating bFGF/FGFR1 signaling (112, 113). However, 
the regeneration effects of S100B on the injured myoblasts are 
strongly dependent on cell density, because it triggers RAGE, 
but not bFGF/FGFR1 signaling, at an early stage of low-density 
myoblast differentiation (114).

THe ROLe OF S100 PROTeiNS iN 
iNFLAMMATORY DiSeASeS

S100 proteins, particularly calgranulins, play a significant role 
in mediating innate and acquired immune responses, which 
contribute to the development of chronic inflammatory diseases.

Calgranulins are associated with joint inflammation in patients 
with rheumatoid arthritis (RA) (115). The level of S100A8/
A9 in the serum and synovial fluid was significantly increased 
in RA (116, 117). Recent findings showed that S100A8/A9 was 
upregulated in early but not late phase osteoarthritis (OA) (118). 
S100A8/A9 plasma levels were increased at baseline in human 
OA participants. Meanwhile, osteophyte size was drastically 
reduced in S100A9−/− mice-induced OA (106). It has also been 
confirmed that S100A8/A9 contributes to cartilage degradation 
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and development of inflammatory arthritis in an antigen-induced 
arthritis model (119). Similar to S100A8/A9, human S100A7 
and S100A15 were first confirmed as over-expressed in psoriatic 
plaques (120). Increasing evidence supports an association of 
S100A7 with several inflammatory skin diseases, including pso-
riasis and atopic dermatitis (62, 100). Evidence strongly indicates 
that S100A8/A9 levels are higher in hypercalprotectinemia, an 
extremely rare inflammatory disorder (121–123). Although the 
mechanism is still unclear, it is possible that the releasing of 
extracellular S100A8/A9 is dysregulated, which accounts for the 
abnormal increase of calprotectin and subsequent hyperactive 
inflammatory reaction. It is suggested that S100 proteins are 
involved in interacting with both the immune system and the 
pathogen. S100A12 plays a key role in fighting infections. For 
example, it has been shown that S100A12 plays a critical role 
in anti-parasite responses (124). In addition to directly killing 
Mycobacterium tuberculosis and Mycobacterium leprae, S10012 
is also required for TLR2/1L- and IFN-γ-induced antimicrobial 
activity against Mycobacterium (125). Haley et  al. also showed 
that S100A12 can help to repress the biogenesis and activity of 
H. pylori cag type IV secretion system by binding nutrient zinc, 
which results in suppressed bacterial growth and viability (126).

S100A8, S100A9, and S100A12 are abundantly expressed 
by neutrophils. Evidence indicates that these three members of 
S100 proteins are released by neutrophils, inducing MUC5AC 
production in airway epithelial cells through activating TLR4 
and RAGE signaling pathway. This reveals the relationship 
between chronic neutrophilic inflammation and obstructive 
airway diseases such as severe asthma, COPD, and cystic 
fibrosis (127). In correlation with their role in the development 
of chronic inflammation, S100A8/A9 also participates in the 
hyperglycemia-induced increase of myelopoiesis occurring in a 
RAGE-dependent manner in diabetic mice (128). Interestingly, 
the amount of circulating monocytes and neutrophils were 
decreased when antidiabetic treatment normalized the glycemic 
index of Ldlr−/− atherosclerotic mice, which might explain the 
increased severity of atherosclerosis found in patients with dia-
betes (128). In accordance with these findings, increased serum 
concentrations of S100A8/A9 were detected in obese individuals 
(129). Furthermore, the expression of the macrophage marker 
CD68 was increased in the visceral adipose tissue (130). Some 
research of dipeptidyl peptidase-4 inhibitors for the treatment of 
type 2 diabetes mellitus indicates that vildagliptin could increase 
the mRNA expression levels of S100A9 and TNF-α in human 
hepatocytes. In addition, it may induce the release of S100A8/
A9 complex from HL-60 cells via TNF-α-independent manner, 
which might be a contributing factor of vildagliptin-associated 
liver dysfunction (131).

S100 PROTeiNS AS BiOMARKeRS iN 
SPeCiFiC DiSeASeS

Extracellular S100 proteins are involved in the activation of G 
protein-coupled receptors, heparan sulfate proteoglycans or 
N-Glycans, and scavenger receptors in autocrine and paracrine 
manners (132, 133). Since S100A proteins can be detected in body 

fluids, such as urine, cerebrospinal fluid, serum, sputum, and 
feces, extracellular S100 proteins are considered as biomarkers 
associated with certain diseases (134–137).

It has been suggested that S100A12, S100A8/A9, and S100B 
are linked to specific diseases and conditions such as auto-
inflammatory diseases, stroke, and trauma (138). The level of 
S100A12 in the blood is increased in the patients with diabetes, 
which is correlated with a higher risk of cardiovascular disease 
development (139). Bogdanova et  al. detected the serum con-
centration of S100A12 and other acute-phase inflammatory 
markers in thirty-five patients with periodic disease (PD) (140). 
The level of S100A12 in PD was significantly higher compared 
to other familial periodic fevers. S100A12 was more sensitive to 
assess the subclinical activity of autoinflammatory diseases, when 
compared to other inflammatory biomarkers such as neutrophil 
counts, fibrinogen, C-reactive protein (CRP), and erythrocyte 
sedimentation rate (140). Similarly, the serum concentrations of 
S100A12, as a novel biomarker, were shown to be upregulated 
in patients with Familial Mediterranean fever in comparison to 
controls (141).

The plasma concentrations of S100A9 were significantly higher 
in patients with implant-associated infectious osteomyelitis 
when compared to patients with sterile inflammation or healthy 
individuals. In addition, S100A9 was associated with osteoclast 
generation and bone degradation. Therefore, it could serve as a 
novel diagnostic marker to aid in the differential diagnosis (95). 
Similarly, serum levels of S100A8 and S100A9 were dramatically 
increased in IL-1Ra−/− mice and contributed to bone erosion, 
cartilage damage, and synovial inflammation. Thus, they can be 
considered as a systemic or local biomarker to evaluate the extent 
of inflammation and inflammatory joint destruction in seronega-
tive arthritis (142). It was shown that the expression of S100A8/
A9 was high in human atherosclerotic lesions and the blood levels 
were also increased in the patients with coronary artery diseases 
(CAD), which implied S100A8/A9 might act as a biomarker for 
cardiovascular events (143). Recent research has shown similar 
findings that serum S100A8/A9 levels were elevated in 178 CAD 
patients with unstable angina pectoris or acute myocardial 
infarction, and the level of S100A8/A9 was significantly positively 
linked with CRP (P < 0.01) (144). These clinical data suggest that 
S100A8/A9 may become a novel biomarker for CAD (139).

In addition, more studies explored the value S100A8/A9 
as a predictive biomarker for autoimmune diseases. In RA, 
S100A8/A9 was suggested as a potential biomarker in predict-
ing clinical response to monitor treatment (145, 146). Some 
clinical investigations have indicated that S100A8/A9 levels 
might be a more sensitive predictor for monitoring synovial 
inflammation in RA patients when compared with other mark-
ers such as CRP levels (147).

The study by Shakeri et al. suggested that S100 B protein could 
be used as a posttraumatic biomarker for predicting brain death 
in severely injured patients with exclusive head trauma during 
the first 6 h after trauma, but found no relationship between S100 
B levels and death (148). Pelinka et  al. confirmed that in  vitro 
S100 B concentrations increased significantly in rats with femoral 
fractures but not head injury (149). Interestingly, adverse results 
indicated that there was no difference in S100 B concentrations 
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between patients with and without head injury (150). S100B has 
also been considered as a prognostic marker of the acute phase 
of neurologic damage (151), predicting the outcome of traumatic 
brain injury and large volume cerebral infarction (152, 153). The 
level of serum S100B in ischemic stroke implied a worse outcome 
secondary to the stroke (154, 155). This research demonstrates that 
S100 B is correlated to trauma and a worse long-term outcome. 
S100B has recently been confirmed to be associated with some 
genetic disorders and was found to be over-expressed in patients 
with Down syndrome (156, 157). There was also study showing 
that S100B may be one of the best biomarkers of melanoma (158).

S100 PROTeiNS AS THeRAPeUTiC 
TARgeTS iN DiSeASe

Although direct clinical evidence is limited, increasing studies 
indicate that S100 proteins may also serve as a therapeutic target 
for certain disease conditions. As mentioned above, S100 proteins 
are involved in a number of diseases including inflammatory 
disease. It has been reported that multiple anti-allergic drugs such 
as amlexanox, cromolyn, and tranilast are able to bind S100A12 
and S100A13, and block downstream RAGE signaling (159). 
Therefore, these drugs may serve as a therapeutic approach to 
target S100 proteins. Multiple S100 proteins such as S100A4 (160) 
and S100B (161) have been shown to participate in the neoplastic 
disorders by binding to P53 and suppressing its phosphorylation 
(162). Therefore, efforts are being made to restore P53 function 
by targeting S100 proteins (163). In an in vitro study, Most et al. 
demonstrated that extracellular S100A1 is endocytosed by the 
neonatal ventricular cardiomyocytes protects cardiomyocytes 
from 2-deoxyglucose and oxidative stress-induced apoptosis 
via activation of ERK (164). Adeno-associated virus-mediated 
S100A1 gene transfer in failing cardiomyocytes was also shown to 
be able to restore the contractile function, suggesting a potential 
implication of AAV-mediated S100A1 gene therapy in heart 
failure (165, 166). Despite the promising potentials, the feasibility 
and safety of these approaches and issues such as how to control 
and keep expression levels in the therapeutic window need to be 
further investigated (166).

CONCLUSiON

Evidence strongly supports that S100 proteins, as a remarkable 
multifunctional proteins family, are involved in the regulation of 
several important biological processes such as the inflammatory 
response, protecting the intra- and extracellular environments dur-
ing infection, cell proliferation and differentiation, tumor growth 
and metastasis, cell apoptosis, energy, and glutathione metabolism.

However, the activities of all members S100 proteins depend 
on the cell-specific expression patterns and binding targets 
even the local microenvironment. Extracellular effects of S100 
proteins interact with receptors including TLR-4, RAGE, and 
heparan sulfate proteoglycans during infection and inflammation 
which associated with the pathogenesis of inflammatory such as 
autoimmune disease, infectious diseases, allergy, tumorigenesis 
and metastasis, and anti-microbial disease. Extracellular S100 
proteins can also contribute to the regulation of tissue develop-
ment and regeneration or repair, which is essential for elucidating 
their role in the pathological procession of tissue damage, cell 
apoptosis, or tissue repair.

Although growing evidence has begun to show the regulation 
of S100 proteins in detail which improves our understanding of 
how immune homeostasis is maintained during the development 
of S100 protein-associated disease, there are certain gaps in our 
understanding of the role of S100 proteins in pathophysiology. 
Among 25 known members of S100 family, only limited number 
of S100 proteins such as S100A8 and S100A9 have been well 
documented and the functional roles of other members are 
underappreciated. In addition, further studies are required to 
fully reveal the underlying mechanisms by which S100 proteins 
participate in a variety of disease conditions. For instance, a role 
of S100P has been reported in leukemia (167), while the exact 
function of S100P in leukemia and the signal pathways involved 
in this process are not completely understood. Also, the direct 
clinical evidence of the therapeutic potential of S100 proteins is 
limited at current stage. Therefore, future directions in this area 
could focus on the development of therapeutic approaches target-
ing S100 proteins, verification of the therapeutic potential of S100 
proteins in both preclinical and clinical settings, and elucidation 
of the underlying mechanisms.
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