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Abstract: This paper presents a novel approach to fruit detection using deep convolutional
neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which
is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit
yield estimation and automated harvesting. Recent work in deep neural networks has led to
the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster
R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery
obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods
are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel
multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work
with the F1 score, which takes into account both precision and recall performances improving from
0.807 to 0.838 for the detection of sweet pepper. In addition to improved accuracy, this approach
is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than
pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker
to perform). The model is retrained to perform the detection of seven fruits, with the entire process
taking four hours to annotate and train the new model per fruit.

Keywords: visual fruit detection; deep convolutional neural network; multi-modal; rapid training;
real-time performance; harvesting robots; horticulture; agricultural robotics

1. Introduction

According to [1], sourcing skilled farm labour in the agriculture industry (especially horticulture)
is one of the most cost-demanding factors in that industry. This is due to the rising values of supplies,
such as power, water irrigation, agrochemicals, and so on. This is driving farm enterprises and
horticultural industry to be under pressure with small profit margins. Under these challenges, food
production still needs to meet the growing demands of an ever-growing world population, and this
casts a critical problem to come.

Robotic harvesting can provide a potential solution to this problem by reducing the costs of labour
(longer endurance and high repeatability) and increasing fruit quality. For these reasons, there has
been growing interest in the use of agricultural robots for harvesting fruit and vegetables over the past
three decades [2,3]. The development of such platforms includes numerous challenging tasks, such
as manipulation and picking. However, the development of an accurate fruit detection system is a
crucial step toward fully-automated harvesting robots, as this is the front-end perception system before
subsequent manipulation and grasping systems; if fruit is not detected or seen, it cannot be picked.
This step is challenging due to various factors, among which are illumination variation, occlusions, as
well as the cases when the fruit exhibits a similar visual appearance to the background, as shown in
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Figure 1. To overcome these, a well-generalised model that is invariant and robust to brightness and
viewpoint changes and highly discriminative feature representations are required.

(a) (b)

(c) (d)

Figure 1. Example images of the detection for two fruits. (a) and (b) show a colour (RGB) and a
Near-Infrared (NIR) image of sweet pepper detection denoted as red bounding boxes respectively.
(c) and (d) are the detection of rock melon.

In this work, we present a rapid training (about 2 h on a K40 GPU) and real-time fruit
detection system based on Deep Convolutional Neural Networks (DCNN) that can generalise well
to various tasks with pre-trained parameters. It can be also easily adapted to different types of fruits
with a minimum number of training images. In addition, we introduce approaches that combine
multiple modalities of information (colour and near-infrared images) with early and late fusion.
For the evaluation, we demonstrate both quantitative and qualitative results compared to previous
work [4]. The contributions of this paper are therefore:

• Developing a high-performance fruit detection system that can be rapidly trained with a
small number of images using a DCNN that has been pre-trained on a large dataset, such as
ImageNet [5].

• Proposing multi-modal fusion approaches that combine information from colour (RGB) and
Near-Infrared (NIR) images, leading to state-of-the-art detection performance.

• Returning our findings to the community through open datasets and tutorial documentation [6].



Sensors 2016, 16, 1222 3 of 23

To the best of our knowledge, this is the first attempt to fuse RGB and NIR multi-modal images
within a DCNN framework for fruit detection. We use standard evaluation metrics, precision-recall
curves and the F1 score [7] (i.e., the harmonic mean of precision and recall), to perform extensive
evaluations using data collected from three commercial sites acquired during day and night.
This dataset, along with the annotated ground truth imagery and labelling tool will be distributed
upon the publication of this work to encourage further research use in the relevant area.

The remainder of the paper consists of the following. Section 2 introduces related work and
the background. Section 3 presents the descriptive comparisons between our previous works using
the Conditional Random Field (CRF) with hand-crafted features and the proposed approach using
Faster Region-based Convolutional Neural Network (R-CNN) for fruit detection. Multi-modal fusion
schemes are also addressed in this section. We demonstrate the experimental results in Section 4.
Conclusions are drawn in Section 6.

2. Related Work/Background

Although many researchers have tackled the problem of fruit detection, such as the works
presented in [8–13], the problem of creating a fast and reliable fruit detection system persists, as found
in the survey by [14]. This is due to high variation in the appearance of the fruits in field settings,
including colour, shape, size, texture and reflectance properties. Furthermore, in the majority of
these settings, the fruits are partially abstracted and subject to continually-changing illumination and
shadow conditions.

Various works presented in the literature address the problem of fruit detection as an image
segmentation problem (i.e., fruit vs. background). Wang et al. [11] examined the issue of apple
detection for yield prediction. They developed a system that detected apples based on their colour and
distinctive specular reflection pattern. Further information, such as the average size of apples, was used
to either remove erroneous detections or to split regions that could contain multiple apples. Another
heuristic employed was to accept as detections only those regions that were mostly round. Bac et al. [12]
proposed a segmentation approach for sweet peppers. They used a six band multi-spectral camera
and used a range of features, including the raw multispectral data, normalised difference indices, as
well as entropy-based texture features. Experiments in a highly controlled glasshouse environment
showed that this approach produced reasonably accurate segmentation results. However, the authors
noted that it was not accurate enough to build a reliable obstacle map.

Hung et al. [13] proposed the use of conditional random fields for almond segmentation.
They proposed a five-class segmentation approach, which learned features using a Sparse
Autoencoder (SAE). These features were then used within a CRF framework and was shown to
outperform previous work. They achieved impressive segmentation performance, but did not perform
object detection. Furthermore, they noted that occlusion presented a major challenge. Intuitively, such
an approach is only able to cope with low levels of occlusion.

More recently, Yamamoto et al. [10] performed tomato detection by first performing
colour-based segmentation. Then, colour and shape features were used to train a Classifier and
Regression Trees (CART) classifier. This produced a segmentation map and grouped connected pixels
into regions. Each region was declared to be a detection and to reduce the number of false alarms.
They trained a non-fruit classifier using a random forest in controlled glasshouse environments.

In all of the above-mentioned works, a pixel-level segmentation approach for object detection
has been adopted, and most of these works have examined fruit detection predominantly for yield
estimation [8,11]. The limited studies that have conducted accurate fruit detection have done so for
fruits in controlled glasshouse environments. As such, the issue of fruit detection in highly challenging
conditions remains unsolved. This is due to the high variability in the appearance of the target objects
in the agricultural settings, which meant that the classic methods of sliding window approaches,
although showing good performance when tested on datasets of selected images [15], cannot handle
the variability in scale and appearance of the target objects when deployed in real farm settings.
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Recently, deep neural networks have made considerable progress in object classification and
detection [5,16,17]. The state-of-the-art detection framework on PASCAL-VOC [18] consists of
two stages. The first stage of the pipeline applies a region proposal method, such as selective search [19]
and edgebox [20] to extract regions of interest from an image and then feed them to a deep neural
network for classification. Although it has high recall performance, this pipeline is computationally
expensive, which prevents it from being used in real time for a robotic application. Region Proposal
Networks (RPNs) [21–23] solve this problem by combining a classification deep convolutional network
with the object proposal network, so the system can simultaneously predict object bounds and classify
them at each position, the parameters of the two networks are shared, which results in a much faster
performance, making it suitable for robotic applications.

In real outdoor farm settings, a single sensor modality can rarely provide the needed information
to detect the target fruits under a wide range of variations in illumination, partial occlusions and
different appearances. This makes a great case for the use of multi-modal fruit detection systems
because varying types of sensors can provide complementary information regarding different aspects
of the fruits. Deep neural networks have already shown great promise when used for multi-modal
systems in domains outside agricultural automation, such as in [24], where audio/video has been used
very successfully, and in [25,26], where image/depth demonstrate a better performance compared to
the utilisation of each modality alone. This work follows the same approach and demonstrates the use
of a multi-modal region-based fruit detection system and how it outperforms pixel-level segmentation
systems, as we show in the following sections.

3. Methodologies

Fruit segmentation is an essential step in order to distinguish the fruits from the background
(leaves and stems). This task is challenging due to variation in fruit colour and illumination, as well as
high levels of occlusion.

In this section, we present the state-of-the-art fruit detection system [4], which performs pixel-wise
segmentation, against which we compare. We then describe the DCNN approach, Faster R-CNN, which
forms the basis of our proposed method. The details behind adapting this model for fruit detection are
then given, followed by a description of the fusion methods we propose for this DCNN architecture.

3.1. Fruit Detection Using a Conditional Random Field

In prior work [4], we demonstrated that using a CRF [27] to model colour and visual texture
features from multi-spectral images led to the impressive performance for sweet pepper segmentation.
The multi-spectral images contain both colour (RGB) and Near-Infrared (NIR) information. The CRF
uses both colour and texture features. The colour features are constructed by directly converting the
RGB values to the HSV colour space. Visual texture features are extracted from the NIR channel. NIR
images are used to calculate texture features, as they were found to be more consistent than the colour
imagery. Three sets of visual texture features are used: (i) Sparse Autoencoder (SAE) features [13];
(ii) Local Binary Pattern (LBP) [28]; and (iii) a Histogram of Gradients (HoG) [29]. Each feature captures
a different property, such as the distribution of the local gradient, edges and texture, respectively.
It appears that the LBP feature can capture information, such as the smooth surface of sweet peppers,
and provides an efficient method for encoding visual texture.

Although the CRF-based approach yields impressive results, there are two key challenges: ground
truthing (i.e., pixel-wise image annotation) for training, and model evaluation requires labour-intensive
work, as shown in Figure 2. Pixel-wise annotations took an order of magnitude more time to
produce than bounding box annotations (in our experiments per-pixel segmentation of 5 images
took approximately 470 s, whereas bounding box annotations took approximately 43 s). The slow
processing time (∼1.5 s/frame only using LBP feature) of the current MATLAB implementation is
also a bottleneck for robotic application, which usually requires a closed-loop control. We present
quantitative comparisons to our new proposed method in Section 4.2.
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(a) (b)

Figure 2. Pixel-wise (a) and bounding box (b) image annotation.

3.2. Fruit Detection Using Faster R-CNN

Despite the recent progress being made using deep convolutional neural networks on large-scale
image classification and detection [5], accurate object detection still remains a challenging problem
in the computer vision and machine learning fields. This task requires not only detecting which
objects are in a scene, but also where they are located. Accurate region proposal algorithms thus play
significant roles in the object detection task.

There are recent works, such selective search [19], which merges super pixels based on
low-level features, and EdgeBoxes [20], making use of edge information to generate region proposals.
However, these methods require as much running time as the detection to hypothesise object locations.
Faster R-CNN [21] was proposed to overcome this challenge by introducing the Region Proposal
Network (RPN), which shares convolutional features with the classification network, and two networks
are concatenated as one network that can be trained and tested through an end-to-end process. By doing
that, the running time for region proposal generation takes around 10 ms, and this framework can
maintain a 5 fps detection rate and outperform the state-of-the-art object detection accuracy using very
deep models [30].

The Faster R-CNN work of [21] uses colour (RGB) images to perform general object detection.
It consists of two parts: (i) region proposal; and (ii) a region classifier. The region proposal step
produces a set of NP proposed regions (bounding boxes) where the object(s) of interest could reside
within the image. The region classifier step then determines if the region belongs to an object class of
interest; the classifier could be a 2-class or N-class classifier. To train the Faster R-CNN for our task, we
perform fine-tuning [31]. This requires labelled (annotated) bounding box information for each of the
classes to be trained. An example of the bounding boxes required is given in Figure 2.

Figure 3 illustrates the test-time detection pipe line. First, regions of interest are generated
from the input image, and these are fed into subsequent convolutional layers. In this paper, we use
the VGG-16 model that has 13 convolutional layers. The RPN produces region proposals using the
previously-generated feature map. These proposals highlight the regions that are highly probable to
contain an object. Fully-connected layers and the softmax classifier yield n bounding boxes, Bn and
their corresponding probability scores of each class, P(xn |Bn).

Although it is usually challenging and out of the scope of this paper to prove why the use of
deep convolutional neural network works well for the object detection task, we present some level of
visual proofs that the neural networks can capture significant features discriminatively. Figure 4a is
the visualisation of the first convolutional layer of the colour VGG-16 network. This model is designed
to use of 3 × 3 convolutional kernels (mask) and a 2 × 2 pooling mask from the beginning to the
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end of 13 convolutional nets. It can be observed that filters have reddish and greenish colours that
correspond to red and green sweet peppers. Other filters represent edge filters in varying orientations.
Figure 4b shows the input data layer and one of feature maps from conv5 layer Figure 4c. It can be
seen that the regions for sweet red peppers (cyan boxes) are strongly activated, and this information is
highly useful for RPN and further classification process.

13 Convolutional layers

Feature map

Region Proposal Network

RoI pooling

Fc6 Fc7

Softmax3 channels 

Input image 

NMS

Faster R-CNN network

Bounding 

box

Cls1 score 

P (x1|B1)

,B1

Bounding 

box

Cls1 score 

,B2

P (x2|B2)

Bounding 

box

Cls1 score 

B1

B2

RoIs

R
G

B

Bounding box 

prediction

Class 

probabilityBN
O1:N: output

,BK

P (xK|BK)

Figure 3. Illustration of test time the Faster Region-based Convolutional Neural Network (R-CNN).
There are 13 convolutional and 2 fully-connected (Fc6 and Fc7) and one softmax classifier layers.
N denotes the number of proposals and is set as 300. O1:N is the output that contains N bounding
boxes and their scores. Non-Maximum Suppression (NMS) with a threshold of 0.3 removes duplicate
predictions. BK is a bounding box of the K-th detection that is a 4 × 1 vector containing the coordinates
of top-left and bottom right points. xK is a scalar representing an object being detected.

(a) (b) (c)

Figure 4. (a) The 3 × 3 (pixels) Conv164 filters of the RGB network from VGG, (b) The input data and
(c) One of the feature activations from the conv5 layer. The cyan boxes in (b) are manually labelled in
the data input layer to highlight the corresponding fruits of the feature map.

We also perform further investigation for visual proofs by visualising a high-dimensional
feature space. It was shown that output from the fully-connected layer can be used as feature
representations for classification tasks [17], and we show how this feature is discriminative.

Four thousands ninety six dimensions of feature vectors are extracted from the fully-connected 7
(fc7) layer and are fed into t-Distributed Stochastic Neighbour Embedding algorithm (t-SNE) [32] with
the corresponding labels. t-SNE is one of the popular dimensionality reduction methods that measures
pairwise neighbouring similarities using the L2 norm distance in both high and low dimensions.
The pairwise similarities are calculated around the sample points, and the Kullback–Leibler divergence
is used to gauge the distance between two probability distributions (i.e., the similarities of high and
low dimensions). Stochastic Gradient Decent (SGD) minimises the distance to keep the local structure
in a low dimension space. Figure 5 shows low dimension (2D) feature visualisation using t-SNE. Each
point represents a feature, and its colour is the corresponding label. It is obvious that sweet peppers
(green) and rock melons (blue) are highly distinguishable from each other and the background (in red).
This figure also shows that good detection results are expected given a reasonable classifier.
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Figure 5. t-SNE feature visualisation of 3 classes. The 4 k dimensions of features are extracted from the
Fc7 layer and visualised in 2D. For the visualisation, 86 images are randomly selected from the dataset
and processed for the network shown in Figure 3.

Note that the key contributions of this model (VGG-16) are in demonstrating that the depth of
the network plays significant roles for proper detection performance, and despite its slightly inferior
classification power, its features generated from the network architectures outperform other state-of-the
art networks, such as AlexNet [17], ZF [33] and GoogLeNet [34]. It is, therefore, the most popular
choice at the time of writing this article in the computer vision and machine learning communities for
the front-end feature extraction module. Faster R-CNN also makes use of these feature maps as the
guidance for where to look. We will present how to train VGG-16 net and deploy it for fruits detection
in the following section.

3.3. DeepFruits Training and its Deployment

The data that we have are multi-modal, colour (RGB) and NIR in nature, and so, we fine-tune
(adapt) the Faster R-CNN for each modality independently. Fine-tuning consists of updating,
or adapting, the model parameters using the new data. In practice, this involves initialising
a new classification layer and updating all of the layers, for both the region proposal and
classification network. The classification network uses the same architecture as VGG [30], as this
provided the best performance.

The VGG network configuration used (Configuration D) consists of 13 convolutional layers
followed by two fully-connected layers, referred to as VGG-D. The original implementation of Faster
R-CNN was fine-tuned using the PASCAL VOC dataset (20 objects, 11 k images and 27 k annotated
objects), and the network was initialised by the pre-trained ImageNet dataset, which consists of
1000 object categories, 1.2 million images and their bounding box annotations [5]. This implies that we
are required to fine-tune again the network using our custom data; otherwise, Faster R-CNN can only
detect the 20 ordinary objects on which the network was trained, such as aeroplane, bicycle, bird, cat,
dog, and so on. By doing this, we can make use of features learned from a large-scale dataset which
are well generalised to various visual recognition tasks.

Given the VGG-16 network, we define three classes named ‘background’, ‘sweet pepper’ and
‘rock melon’ and fine tune the network. Regarding this fine-tuning topic [35], abundant resources are
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available from online [36], and we also have made publicly available our implementation and tutorial
document [6].

Table 1 shows the number of training images used by CRF and Faster R-CNN only for the
performance evaluation. We can only use a relatively small number of images due to the limited
pixel-wise image annotation datasets from [4]. For a fair comparison, the same training and testing
images are utilised, and the experimental results are presented in Section 4.2. We also conduct further
experiments by increasing the number of classes and training images to detect another fruit and to
demonstrate its generalisation.

Table 1. Number of images used for training and testing for CRF and Faster R-CNN.

Train Test Total(RGB + NIR) (RGB + NIR)

CRF and Faster R-CNN 100 (82%) 22 (18%) 122

After the training, we deploy the trained fruit detector on a laptop that has Intel i7, 64-bit
2.90 GHz quad-core CPUs, a GeForce GTX 980M 8 GB GPU (1536 CUDA cores) and 16 GB of memory
space running on an Ubuntu 14.04 Linux system. Input images are obtained from a multi-spectral
camera, the JAI AD-130GE, and a Microsoft Kinect 2. Each camera has a resolution of 1296 × 964 and
1920 × 1080, respectively. Processing for the detection takes an average of 341 ms with a 4 ms standard
deviation for JAI and 393 ms with 3 ms for the Kinect 2 image. The processing time gap is caused by
an external library for reading different resolution images.

3.4. Multi-Modal Fusion

In the previous section, we introduced the proposed fruit detection approach using the Faster
R-CNN framework; here, we present the two methods, late and early fusion, that we use to combine the
multi-modal (RGB and NIR) imagery that we have. Late fusion combines the classification decisions
from the two modalities. Early fusion alters the structure of the input layer of the VGG network so
that 4 channels, rather than 3, are provided.

3.4.1. Late Fusion

Late fusion combines the classification information from the two modalities, colour and
NIR imagery. Using the independently-trained models for each modality (see Section 3.2), we combine
the classification information in the following manner.

Each modality m produces Nm,P region proposals. To combine the two modalities, these region
proposals are combined to form a single set of NP∗ = m × Nm,P region proposals. A score sm,p is
then proposed for the p-th proposed region of the m-th modality. A single score for the p-th region is
produced by averaging the response across the modalities,

sp =
M

∑
m=1

sm,p (1)

The score is a C-dimensional variable, where C is the number of classes to be classified.

3.4.2. Early Fusion

Early fusion alters the structure of the input layer of the VGG network so that the input data layer
has Nc = 4 channels (3 channels from RGB and 1 channel from NIR), rather than Nc = 3. The VGG
network is modified and adapted to receive RGB and NIR information simultaneously. An overview
of this is provided in Figure 6. To achieve this, we duplicate the R response from the VGG-D network
and initialise the extra, NIR channel using this; the R channel (620–750 nm) is chosen, as it is closest
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to the NIR channel’s wavelength (750–1400 nm). This early fusion network is then fine-tuned as
previously described.

Faster

R-CNN

R
G

B

4 channels 
Input 

NIR

*Note that the first layer of this Faster R-CNN is different 
to that of Fig. 5 in order to cope with 4 channels input.

O1:N: output

NMS
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Cls1 score 
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: NIR network output

1 channel

input

(b)

Figure 6. A diagram of the early and late fusion networks. (a) The early fusion that concatenates a
1-channel NIR image with a 3-channel RGB image; (b) The late fusion that stacks outputs, ORGB + NIR

1:2N ,
from two Faster R-CNN networks. ORGB

1:N and ONIR
1:N represent the output containing N = 300 bounding

boxes and their scores from the RGB and NIR networks, respectively. K is the number of objects being
detected. Note that the Faster R-CNNs of the early fusion are identical to that of Figure 3.

4. Experimental Results

In this section, we qualitatively and quantitatively evaluate our proposed method on five
experimental settings: (1) we compare the early and late fusion performance; (2) we evaluate
the performance between the baseline algorithm (CRF) and the proposed method; (3) we inspect
the performance of RPN; (4) we exam the generalisation of the proposed method by performing
spatial-temporal independent condition experiments; (5) we evaluate the extensibility of the proposed
approach by applying it to several other fruits.

Prior to presenting the experimental results, we mention the creation of the ground truth of the
dataset. Figure 7a depicts hand-labelled bounding boxes (yellow) based on the colour image and
the NIR image. In Figure 7b, the cyan colour box missing from Figure 7a highlights the missing
annotation of a sweet pepper in the NIR image due to its poor visibility; whereas it is more obvious
to see the sweet pepper in the RGB image because of the reflection from the sweet pepper. This also
happens the other way around. A fruit in the dark is difficult to see in the RGB-based image, but can
be identified easily in an NIR image. We thus merge these two ground truth sources using both RGB
and NIR images by computing the pairwise Intersection of Union (IoU) of bounding boxes shown in
Figure 7c. The remainder of this article refers the merged ground truth as merged GT, and the other
two ground truths are referred to as RGB GT and NIR GT based on the image sources used for making
the ground truth.

In this paper, we utilise the precision-recall curve with the corresponding F1 score as the evaluation
metric for fruit detection. It is considered as detected if the IoU between the prediction and ground
truth bounding boxes is greater than 0.4, following [5]. It is worth noting that we choose this threshold
as smaller than the ImageNet challenge (0.5) due to the relatively small fruit size with respect to
the image resolution. Although the threshold affects the performance evaluations (the smaller the
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threshold is, the higher the F1 score produced), we consistently use the identical threshold for all
experiments and comparisons presented in this paper.

(a) (b) (c)

Figure 7. (a,b) The hand-labelled ground truth using an RGB image and an NIR image respectively;
(c) A merged ground truth bounding box. The cyan box displays a bounding box that is correctly
annotated using the RGB image, but missed in the NIR image, due to the poor visibility of a fruit.

Given this threshold, the precision (P), recall (R) and F1 score are computed as:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2 · P · R
P + R

(2)

where TP is the number of true positives (correct detections), FP is the number of false positives
(false detection), FN is the number of false negatives (miss) and TN is the number of true
negatives (correct rejection).

4.1. Early and Late Fusion Performance Comparison

Multi-modal visual sensing techniques are widely used in the agricultural field because they can
often capture necessary signatures utilised for detection. We present the results of our proposed early
and late fusion methods introduced in Section 3.4. The specifications of the training and testing dataset
are shown in Table 1.

Figure 8 shows the precision-recall curves of single-stream and multi-stream fusion networks.
The markers denote the points where precision and recall are identical, and we compute F1 scores
at these points shown in Table 2. As expected, the late fusion method outperforms best. It is noted
that the late fusion approach contains twice as many parameters (i.e., 276 million) than the others
(i.e., 138 million) and requires more resources, such as computation time and GPU memory space.
Interestingly, the RGB network slightly outperforms both the early fusion and NIR network. This may
indicate that pre-trained ImageNet parameters are more suitable to operate with RGB inputs. We can
also observe that the number of parameters of a network is a critical component to increase detection
performance, as mentioned by [25,30].

Table 2. F1 scores of fused and single-stream networks.

RGB Only NIR Only Early Fusion Late Fusion

0.816 0.797 0.799 0.838

4.2. Fruit Detection Performance Comparison with CRF and Faster R-CNN

As previously mentioned in Section 3.1, fruit detection performance evaluation is conducted
between CRF and the fine-tuned Faster R-CNN. We use the same training and test settings as described
in Table 1. The only difference is that the pixel-annotated training set is utilised as the ground truth for
CRF training, while bounding box annotations are used for Faster R-CNN (see Figure 2). The ground
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truth for test images remains identical. We should note that the output from CRF is a pixel-level
likelihood map representing how much the pixel belongs to a specific label. In order to have a
fair comparison with the bounding box outputs of Faster R-CNN, we use a Laplacian of Gaussian
(LoG) multi-scale blob detector [37] for the CRF-based method to produce detected fruit regions
(i.e., bounding boxes).

Figure 9 shows the precision-recall curves for the CRF and fused networks. CRF has a similar
performance as early fusion, but could not reach late fusion’s performance (shown in Table 3). Note that
we can only compute the F1 score of CRF from the valid point where precision and recall are slightly
different (see the black markers from Figure 9) due to the denominators of precision and recall from
Equation (2) being all zeros. This implies that there are no sweet peppers in the ground truth (TP = 0);
therefore, no false detection (FP = 0) or misdetections (FN = 0) are reported.

Although CRF shows impressive performance, there are a couple of challenges; difficulty in
pixel-level ground truthing and huge processing time. For example, the processing time in order to
produce the results shown in Figure 9 takes 331 s/frame with a 17 s standard deviation for featurisation,
which extracts and prepares features for subsequent detection, and 0.819 s with a 0.067 s standard
deviation for the detection; while Faster R-CNN can run of 393 ms/frame including all procedures
(842-times faster than CRF).

Unfortunately, we are unable to measure the time spent on pixel-level and bounding box
annotation, because it is highly subjective with the human-in-loop and the institutes’ internal ethics
and integrity issues. However, from empirical experience, doing the bounding box annotation is much
faster than pixel-level annotation.

Table 3. F1 scores of CRF and fused networks.

CRF Early Fusion Late Fusion

0.807 0.799 0.838
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Figure 8. Precision-recall curves of four networks. The marks indicate the point where precision and
recall are identical, and F1 scores are computed at these points.
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Figure 9. Precision-recall curves of the CRF baseline, early and late fusion networks. All make use of
RGB and NIR images as inputs. Due to the performance issue of CRF, we calculate the F1 score slightly
offset from the equilibrium point.

4.3. Inspection of RPN Performance

High-quality region proposals significantly contribute to the performance of the object
detection task. In this section, we present a study to evaluate proposal quality by demonstrating the
detection rate versus a number of proposals being generated, as well as efficiency in terms of region
proposal generating time.

Given the sweet peppers in the ground truth, we compute a pairwise IoU for all proposals. If the
IoU is greater than a threshold, 0.4, then we consider it as being detected (TP), otherwise as missed
detection (FN). The detection rate (recall) is calculated using Equation (2) with varying numbers of
proposals (six levels).

It can be observed in Figure 10 that all networks’ performances are almost saturated after
generating 100 proposals. There is a subtle improvement at 500 for the NIR network and the early
fusion network, but a longer computation time is required. The maximum detection rates are 0.945,
0.859, 0.967 and 0.945 for RGB, NIR, early fusion and late fusion networks, respectively. This implies
that the maximum performance that we can achieve is bounded to these maximum detection rates.
RGB and late fusion networks report identical performance, since the latter one simply concatenates
proposals from both the RGB and NIR networks

This study also explains the incomplete curves in Figure 8. The maximum performance all
networks can achieve is less than one due to the limited performance of RPN. For CRF, it can only
achieve 0.75 of the maximum detection rate.

The proposals’ generation time demonstrates the efficiency of this method; the results are
presented in Table 4. It can be seen that the computation time increases almost proportionally as the
number of proposals increases.
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Table 4. Region proposal generating time including detection.

Net.

# Prop.
10 50 100 300 500 1000

RGB network (in s) 0.305 0.315 0.325 0.347 0.367 0.425
Early fusion (in s) 0.263 0.268 0.291 0.309 0.317 0.374
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Figure 10. Performance evaluation of the region proposals of four different networks.

4.4. Impact of the Number of Training Images for Fruit Detection

We presented the impact of the number of proposals versus the fruit detection rate in the
previous section. In this section, we address the study of the impact of the number of images being
used for retraining the network. The aim of this study is to demonstrate the performance of the fruit
detector by varying the number of training image sets.

It is known that more training images leads to better performance under the framework of the
deep convolutional neural network. The same trend can be seen in Figure 11. It is, however, interesting
that the impact of fine-tuning shows impressive results, as only 10 training images are utilised for
retraining, but produce a 0.7 F1 score. Using 50 images (green) yields a slightly lower F1 score than
using 25 images (blue), but it coversa wider recall area with higher precision. In addition, this study
also implies that it is feasible to achieve better performance with more fruit images.
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Figure 11. (a) Precision-recall curves with the varying number of training images as denoted by
different colours. The marks indicate the points where precision and recall are identical; (b) The F1
scores versus the number of images being used for fine-turning.
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4.5. Spatial-Temporal Independent Condition Experiments

There has been abundant interest in the computer vision and machine learning
communities [33,38] to study the generalisation of the learning algorithm, as it is one of the important
tasks in object detection. A well-generalised model is expected to perform as well as the performance
on the training dataset. Recently, it has turned out that training a deep learning model using the
massive ImageNet database generalises well to other datasets. It considerably outperformed many
hand-crafted feature representations.

In this experiment, we introduce variations to the camera setup, time and locations of data
acquisition. Three different cameras are used; a JAI multi-spectral camera, Kinect 2 (RGB only) and
a mobile phone camera. The time for data collection is day and night, and the sites are different
commercial farms and grocery stores. For training, 100 sweet pepper samples are collected at a
commercial farm site, and 109 rock melon images are gathered from a glass house. Experimental
results are only demonstrated qualitatively.

Firstly, Figure 12 shows sweet pepper detection results for a test image pair (registered RGB and
NIR images) that were recorded with the same camera setup (JAI) at the same site at night-time, where
the training dataset was collected. There are noticeable FN (missing) in the NIR test image. Figure 13
displays the results of images captured by a different camera (Kinect 2) at a different commercial farm
sites during the day time. We can only conduct experiments over RGB images in this experiment,
because it is a challenge to register RGB and NIR images obtained from a Kinect 2 due to differences in
resolution and visual appearances.

4.6. Different Fruit Detection Results

Prior to this section, we have presented only one fruit’s detection performance (i.e., sweet
pepper). Detection results for several fruits can be easily obtained through a minor modification
of our proposed system; (1) creating a new fruit training dataset (i.e., bounding box annotation for
each fruit); (2) performing fine-tuning and deploying the trained model to the new test set. For the
steps above, we provide supplementary documents [6]. Note that we trained the network as a one
versus rest manner in these experiments. This means that there are only two classes (e.g., ‘background’
and ‘fruit1’). This is acceptable in real applications, because usually, one fruit is cultivated at a one
farm site in practice due to economic reasons, such as fertilisation, irrigation and the prevention of
harmful diseases and insects.

In this section, we demonstrate the detection of six more novel fruits, including rock melon,
strawberry, apple, avocado, mango and orange, with a small training dataset, as shown in Table 5.
The datasets for sweet pepper and rock melon are collected by our team, and the rest are obtained from
a Google Image search. We choose fruit images in orchard environments. The training and testing
dataset will be available upon publication.

For training, we also include different ripeness levels and varieties in order to show the robustness
of the detector. A simple colour detector cannot achieve this performance due to the presence of
ambiguity in the background. For example, the apple detection test set consists of red and green, and
the strawberry test set encapsulates well-ripened red and whitish and greenish young strawberries.

Figure 14 shows quantitative results for seven fruits as precision-recall and F1 scores. We achieve
promising results for all fruits. Although the number of the testing dataset is small due to limited
accessible labour for data annotation, F1 scores are all above 0.8. It can be observed that the detection
results of sweet pepper and rock melon are slightly inferior compared to other fruits. This is mainly
due to the large occlusions of fruits at farm sites, as shown in Figures 15 and 16. For qualitative
inspection, we present eight instances of fruit detection, except sweet pepper and rock melon (low
visuality due to small fruits) throughout Figures 17–21.
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Table 5. Number of images used for training and testing for different fruits.

Name of Fruits Train (# Images), 80% Test (# Images), 20% Total, 100%

Sweet pepper 100 22 122
Rock melon 109 26 135

Apple 51 13 64
Avocado 43 11 54
Mango 136 34 170
Orange 45 12 57

(a) (b)

Figure 12. Instances of detection performance using the same camera setup as the training dataset
and the same location. Above each detection is the classification confidence output from the DCNN.
(a,b) The outputs from the RGB and NIR networks, respectively. It can be seen that there are noticeable
FN (miss) in the NIR image, and colour and surface reflections play important roles in detection for
this example.

(a) (b)

Figure 13. Instances of detection performance using a different camera setup (Kinect 2) and a
different location. Above each detection is the classification confidence output from the DCNN.
(a,b) Without/with a Sun screen shed, respectively. Despite the brightness being obviously different in
the two scenes, the proposed algorithm impressively generalises well to this dataset.
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rockmelon, F1=0.848
strawberry, F1=0.948
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Figure 14. Quantitative performance evaluation for different fruits. The marks indicate the point where
F1 scores are computed.

(a) (b)

(c) (d)

Figure 15. Four instances of sweet pepper detection. (a) and (b) are obtained from a farm site using a
JAI camera, and (c) and (d) are collected using a Kinect 2 camera at a different farm site. Above each
detection is the classification confidence output from the DCNN.
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(a) (b)

(c) (d)

Figure 16. Four instances of rock melon detection. (a) and (b) are obtained from a farm site using a JAI
camera, and (c) and (d) are from Google Images. Above each detection is the classification confidence
output from the DCNN.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Eight instances of red (a,e–h) and green (b–d) apples detection (different varieties). Images
are obtained from Google Images. Above each detection is the classification confidence output from
the DCNN.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. Eight instances (a–g), and (h) of avocado detection (varying levels of ripeness). Images are
obtained from Google Images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Eight instances (a–g), and (h) of mango detection (varying levels of ripeness). Images are
obtained from Google Images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20. Eight instances (a–g), and (h) of orange detection (varying levels of ripeness). Images are
obtained from Google Images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21. Eight instances (a–g), and (h) of strawberry detection (varying levels of ripeness). Images
are obtained from Google Images.
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Figure 22. Detection result when two fruits are present in the scene. Two images are manually cropped,
stitched and then fed to the RGB network.

In the last experiment, we evaluate our detector to detect several fruits in the same scene as
depicted in Figure 22 (using a multi-class detector). There are five fruits in total in the scene; three
sweet peppers and two rock melons; and TP = 4 (hit), FP = 3 (false detection) and FN = 1 (miss).
In this example, precision is 0.57 with a 0.8 recall rate with a score threshold of 0.8. Note that all FP
have relatively low scores (i.e., lower than 0.85), whereas fruits being detected are all above 0.9. If the
score threshold is set to 0.85, then precision will be 1.0 with a 0.8 recall rate. This score threshold
should be properly adjusted depending on the circumstances and applications.

5. Discussion and Future Works

In this section, we discuss the fruit detection results presented in the previous section. It is
noticeable that there are several FN , false negatives (miss), in Figure 18. The cause can be from two
possibilities: the small set of training images; and the scales of fruits in the testing images can be
considerably different. We perform a supervised machine learning task that trains a model of the
object of interest. A deep neural network can reasonably handle some variations in scales due to
its deep convolutional layers. More specifically, the VGG net consist of 13 convolutional operations
(3 × 3 kernels), five max pooling layers (2 × 2 kernels) and three fully-connected operations. However,
if an object size in a testing image is significantly less than that of a training set, it misses the detection.
Empirically, we have witnessed that the proposed detector can handle around 50% scaled-down
object detection.

In order to overcome this issue, high-quality and more training image sets covering multiple
scale levels are required. We only used 43 training images of avocado and 11 for testing as presented
in Table 5.

Fruit counting is also one of our future works. This task includes data association, which means
we need to distinguish whether a fruit is already seen from the previous image frame or not [11].
Feature matching, tracking and association techniques are required to identify fruits.
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In order to deploy the developed system into real robot systems (e.g., unmanned ground vehicles),
the only bottleneck is processing performance, which requires an NVIDIA GPU (Graphics Processing
Unit) device that has more than 8 GB of memory for model testing.

6. Conclusions

We present approaches for a vision-based fruit detection system that can perform up to a 0.83 F1
score with a field farm dataset, maintaining fast detection and a low burden for ground truth
annotation. This is a competitive result compared to our previous pixel-based detector of 0.80. We also
demonstrated qualitative results to show how well the trained model using a small dataset generalises
to entirely independent (unseen) environments.

In developing this system, we performed fine-tuning of the VGG16 network based on
the pre-trained ImageNet model. The novel use of RGB and NIR multi-modal information
within early and late fusion networks provides improvements over a single DCNN. Furthermore,
we investigated the performance of region proposal networks to narrow down a possible bottleneck of
performance degradation. Our findings are returned to the relevant communities through an open
dataset and tutorial documentation.

Future work involves the integration of the proposed algorithm with our custom-built harvesting
robot and the collection of an enormous amount of ground truth annotations for a variety of
fruits by utilising Amazon Mechanical Turk or other out-sourcing supplies to achieve more
accurate performance.
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