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Abstract

There is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in
temperate regions and that the efficiency of this route depends on humidity. Nevertheless, the precise mechanisms by
which humidity might influence transmissibility via the aerosol route have not been elucidated. We hypothesize that
airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation
rate and respiratory droplet size. To gain insight into the mechanisms by which humidity might influence aerosol
transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public
settings over a relative humidity (RH) range of 10–90%. The model incorporates the size transformation of virus-containing
droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted
concentration of infectious IAVs in air is 2.4 times higher at 10% RH than at 90% RH after 10 min in a residential setting, and
this ratio grows over time. Settling is important for removal of large droplets containing large amounts of IAVs, while
ventilation and inactivation are relatively more important for removal of IAVs associated with droplets ,5 mm. The
inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min.
Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and
affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and
results complement recent studies on the relationship between humidity and influenza’s seasonality. Maintaining a high
indoor RH and ventilation rate may help reduce chances of IAV infection.
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Introduction

Influenza A has a clear seasonal pattern in temperate regions,

yet the underlying cause for it remains controversial despite nearly

a century of investigation. The literature identifies numerous

factors that may influence influenza’s seasonality: environmental

conditions such as temperature, humidity, and ultraviolet

radiation; immune function; school schedules; and human

mobility patterns and contact rates [1]. Among these, the leading

contenders are humidity and temperature [2,3,4], and in indoor

environments, where people spend ,90% of their time, humidity

is the more variable factor. Particularly in the developed world

where heating, ventilation, and air conditioning systems (HVAC)

are the norm, indoor temperature tends to fall in a narrower

range, and thus its influence is limited. Recent studies using a

guinea pig experimental model [3,4] indicate that low relative

humidity (RH) favors aerosol transmission of influenza A viruses

(IAVs), in which they are transmitted by small respiratory droplets

expelled from infected hosts. Nevertheless, the precise mechanisms

by which humidity might influence influenza viability and

transmissibility via the aerosol route have not been elucidated.

Humidity may affect airborne IAV transmission via two

important variables. The first is droplet size. When released from

the respiratory tract (assumed to have 100% RH), droplets

experience rapid evaporation and shrinkage upon encountering

the unsaturated ambient atmosphere. The ultimate size of a

droplet depends on ambient humidity, and size determines

aerodynamic behavior and whether the droplet will settle to the

ground quickly or remain suspended in the air long enough to

possibly cause a secondary infection. Previous studies on

evaporation of respiratory droplets usually used water or simple

saline solutions (e.g., NaCl) to simulate respiratory fluid [5,6].

However, respiratory fluid is a complicated combination of water,

salts, and various organic compounds [7,8] that affect the

thermodynamics of evaporation, compared to pure water or

saline solutions. The equilibrium droplet size is affected by surface

curvature and solute effects, the combination of which is described

by Köhler theory [9]. While the vapor pressure is enhanced over

curved versus flat surfaces, it is reduced by the presence of solutes.

These competing effects are magnified at smaller droplet

diameters and determine the equilibrium size at a particular RH.

The second variable that is sensitive to humidity is IAV viability

[2,10,11,12,13]. Hemmes et al. [2] linked influenza’s seasonality to

the seasonal oscillation of RH indoors, based on their experiment on

death-rate variation versus RH. Shaman and Kohn [14], on the

other hand, concluded that absolute humidity (AH) rather than RH

modulates influenza seasonality through constraint on viability, but

whether AH or RH is controlling is under debate. For our purposes,

differentiating between the two is not possible because this work

focuses on a narrow range of typical indoor temperatures. Finally, it

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21481



is possible that the two variables—final droplet size and viability—

are linked, if evaporation and subsequent concentration of solutes in

respiratory droplets affects IAV viability in aerosols.

Elucidating the causes of influenza’s seasonality will require

improved comprehension of transmission mechanisms, especially

the aerosol route. To advance a mechanistic understanding of the

role of humidity in aerosol transmission, we model the change in

size of respiratory droplets and IAV inactivation at RHs ranging

from 10% to 90%. Based on these results, we further model the

dynamics of droplets emitted from a cough in an indoor

environment and illustrate the evolution of infectious IAV

concentrations and size distributions, considering removal by

gravitational settling, ventilation, and viral inactivation. We are

thus able to determine the magnitude by which humidity affects

airborne concentrations of infectious IAVs.

Results

Initial size distribution of droplets expelled from a cough
We located seven papers that reported the size distribution of

droplets expelled while coughing, sneezing, and speaking

[6,15,16,17,18,19,20]. The droplet diameter geometric mean

(GM), size range, and droplet number varied greatly among the

different studies, as summarized in Table 1. Because ,80% of

patients with influenza manifest symptoms of coughing [21], we

focus on droplets emitted from coughing to demonstrate the

dynamics of airborne IAVs. Droplet diameters as small as 0.3 mm

and as large as 2000 mm have been observed from coughing, and

the GMs in the studies ranged from 0.25 mm to 96.6 mm,

depending on the experimental methods used (Table 1). Four of

the studies reported GMs in a much narrower range of 8.4 mm to

16.0 mm. We adopted Duguid’s [20] results on the basis of

reliability of the methods and care and thoroughness of the

experimental design and analysis. Though the study dates to 1946,

its results were similar to those of more contemporary work that

use modern aerosol characterization equipment [6,17]. Similar to

Nicas et al. [22], we found that droplets between 1–100 mm from

coughing follow a log-normal size distribution. Eq. 1 describes the

relationship:

z~1:216 ln Di{3:113 r2~0:997
� �

ð1Þ

where Di is the initial droplet diameter in mm, and z is the

corresponding quantile of a normal distribution with the same

cumulative probability. According to this relationship, the size

distribution of droplets emitted from coughing has a GM of

12.9 mm and a geometric standard deviation (GSD) of 2.3

(Figure 1).

Respiratory droplet size transformation
Equilibrium droplet size is attained nearly instantaneously upon

release. A 20-mm droplet shrinks to one-half of its original

Table 1. Prior studies of respiratory droplet size distributions.

Activity Droplet size (mm)
Droplet
number

Experimental
conditions Measurement methods

Adjustment for
evaporationb Reference

GM (GSD)a Range

Cough 12.1 (2.6)c 1–2000 5000 NA Microscope Factor of 4 [20]

16.0 (5.8)d 1R1471 466 NA Bone paper and 0.45-mm filter As measured [15]

0.5 (1.7)e ,0.6–2.5 420 24uC, 45%RH;
35uC, 23%RH

Optical particle counter
(OPC), electron microscope

As measured [16], [22]

8.4 (2.2) NA NA 95% RH Aerodynamic particle
sizer (APS), scanning
mobility particle sizer, OPC

As measured, assumed
to be the original size

[17]

13.5f 2–1000 NA 24.9uC, 73.9% RH Interferometric Mie
imaging (.2 mm),
particle image velocimetry

As measured [6]

1.8g 0.3–20 NA 27uC, 59.4% RH Expiratory droplet
investigation system, APS

As measured [18]

96.6 (2.4)h 0–1500 42 28uC, 70% RH Microscope, aerosol
spectrometer

Factor of 3 [19]

Sneeze 8.2 (2.3)c 1–2000 16106 NA Microscope Factor of 4 [20]

Speaki 11.9 (2.8)c 1–1000 252 NA Microscope Factor of 4 [20]

16f 2–1000 NA 24.9uC, 73.9% RH Interferometric Mie
imaging (.2 mm),
particle image velocimetry

As measured [6]

62.1 (1.8)h 0–1000 253 28uC, 70% RH Microscope, aerosol
spectrometer

Factor of 3 [19]

aGeometric mean (GM) and geometric standard deviation (GSD) calculated by methods presented in [51] or cited as reported in the original papers.
bWhether droplet sizes were adjusted upward to account for evaporation or were reported as measured.
cCalculated from data in Table 3 in [20].
dCalculated from data in Table 1 in [15]; droplet diameter upper end assumed to be 2000 mm.
eCalculated from data in Table IV in [22].
fNo data on GSD reported.
gReported modal diameter.
hCalculated from data in Table 2 in [19], only results from experiments without food dye were used.
iCounting aloud from 1 to 100.
doi:10.1371/journal.pone.0021481.t001
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diameter in less than half a second at 20uC [22]. Table 2 shows the

equilibrium, or final, diameters (Deq) of droplets with Di of 0.1, 1,

and 10 mm at 10–90% RH. These were calculated based on a

model of droplet transformation that assumes separate solutes and

volume additivity (SS-VA) [23]. Due to the Kelvin effect,

evaporation of smaller droplets is enhanced, and the equilibrium

diameters are smaller. The ratio Deq/Di is 0.490 at 90% RH for a

respiratory droplet with Di = 0.1 mm, versus 0.516 under the same

conditions for a larger one with Di = 10 mm. However, the Kelvin

effect is negligible for droplets with Di.0.1 mm, and Deq/Di is

independent of RH for droplets larger than 1 mm.

Efflorescence or crystallization of NaCl, a major component of

respiratory droplets, due to loss of water is expected to occur

between 40–50% RH [24]. According to our results, between 10–

40% RH, Deq/Di varies by only 3.7% (0.402–0.417); in

comparison, between 50–90% RH, the ratio varies by 21.7%

(0.424–0.516). Respiratory droplets lose almost all their water at

low RHs. For comparison, we also calculated the Deq/Di ratios

based on volume additivity using experimental data on dehydra-

tion of droplets containing NaCl [25] and on hydration of those

containing a glycoprotein [26]. Differences between modeled and

experimental results are less than 4% (Table 2).

Inactivation of airborne IAVs
The viability of IAVs decreases over time and is affected by

environmental variables such as temperature, humidity, and UV

radiation [12,27]. The inactivation rate (k), derived from

experimental data on airborne IAVs [12], is linearly correlated

with RH (Figure 2), following the relationship

k~0:0438RH{0:00629 ð2Þ

with an r2 of 0.977 and p-values for the model, intercept, and slope

of 0.0015, 0.059, and 0.0015, respectively.

Evolution of infectious IAV distribution after a cough
The well-mixed indoor air model we developed for infectious

IAVs accounts for removal by gravitational settling, ventilation,

and viral inactivation. The concentration of infectious IAVs

associated with droplets of a specific diameter Deq in a room at

time t is

C~C0 exp½{(
v

H
zlzk)t� ð3Þ

where C0 is the initial concentration of infectious IAVs associated

with droplets of size Deq in the room, v is the settling velocity, H is

the height of the room, l is the air exchange rate (AER) and

assumes no recirculation, and k is the inactivation rate. The

inactivation rate k depends on RH, according to Eq. 2, and the

settling velocity v depends on Deq, which also depends on RH. Eq.

3 can be integrated over all droplet sizes to obtain the total

concentration of infectious IAVs in a room. We calculate results

for AERs of 1 air change per hour (ACH) and 10 ACH, typical of

residential and public settings, respectively [28,29]. For simplicity,

we assumed that room heights are the same in residences and

public settings such as offices, classrooms, and hospitals, where

people aggregate and thus have a higher risk of infection. The

equation is applicable for a single rectangular room, does not

depend on the volume of the room, and does not account for air

exchange between multiple rooms.

Table 2. Respiratory droplet size transformation.

RH Model-based Deq/Di ratiosa
Experimentally derived Deq/Di ratiosb Diff.c

Di = 0.1 mm Di = 1 mm Di = 10 mm

10% 0.401 0.402 0.402 0.391 2.61%

20% 0.407 0.407 0.407 0.395 3.06%

30% 0.412 0.412 0.412 0.398 3.42%

40% 0.416 0.417 0.417 0.401 3.98%

50% 0.422 0.423 0.424 0.427 20.90%

60% 0.429 0.431 0.432 0.437 21.19%

70% 0.439 0.443 0.444 0.449 21.20%

80% 0.456 0.464 0.465 0.464 0.02%

90% 0.490 0.513 0.516 0.502 2.63%

aCalculated according to the SS-VA model of Mikhailov et al. [23].
bCalculated based on volume additivity using experimental data from Tang et al. [25] and Bagger et al. [26].
cDifference between modeled and experimental Deq/Di ratios for Di = 10 mm.
doi:10.1371/journal.pone.0021481.t002

Figure 1. Log-probability plot of droplet size distribution from
a cough, adapted from Duguid [20]. Di is the initial droplet size in
mm, and z is the corresponding quantile of a normal distribution with
the same cumulative probability.
doi:10.1371/journal.pone.0021481.g001
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Figure 3 shows the evolution of IAV concentrations in time in

terms of both the total number of infectious viruses (Figure 3A and

3B) and size distribution (Figure 3C and 3D). Only emitted

droplets with Di#100 mm are considered, as larger ones will be

removed by gravitational settling within seconds. Following a

single cough in a well-mixed room, the concentration of infectious

IAVs is initially 1.86103 # m23 under the assumptions of this

study. Figures 3A and 3B show that the total number of infectious

IAVs falls rapidly with time and that the loss is greater at higher

RH and in public versus residential settings. If one infected person

is continuously shedding viruses by coughing 15 times per hour

[30], then the concentration of IAVs will be ,26103 # m23 in a

public setting. This concentration is similar in magnitude to those

measured in hospitals, medical clinics, day care facilities, and

airplanes [31,32,33]. Under conditions of higher RH, removal by

settling is more effective because droplets shrink less, and

inactivation is more rapid. Removal of 99.9% of the IAVs emitted

requires much greater time in a residential versus public setting,

indicating that ventilation is an important removal mechanism and

that airborne IAVs can persist for longer times in settings with

lower AERs.

Figure 3C and 3D show that, at 50% RH, emitted droplets

shrink to about half of their original diameters due to evaporation.

Evaporation happens almost instantaneously [22], so while the

initial size distribution at 0 min extends out to 100 mm, all

subsequent ones end at 42 mm (Deq/Di = 0.42). This process greatly

increases the fraction of IAVs that are associated with smaller

droplets, since the virus concentration within a droplet increases

by a factor of 8 (23) as its diameter shrinks by half. For instance,

compared to the initial droplets emitted at 0 min, which quickly

reach their equilibrium diameters, the number of IAVs associated

with equilibrium droplet sizes smaller than 25 mm increases by a

factor of 5.2 at 50% RH. Due to more rapid settling, IAVs

associated with larger droplets are lost faster than are those

associated with smaller ones. Consequently, IAVs associated with

smaller droplets become more dominant over time, as indicated by

the shifting of the peak of DC/DDeq to the left in Figure 3C and

3D. The diameter of droplets containing the most IAVs (i.e., the

mode of the distribution) shifts from ,50 mm upon release to

,16 mm at 1 min, ,10 mm at 10 min, and ,5 mm at 60 min in

residential settings; a similar trend is shown in Figure 3D for public

settings.

Humidity dependency and removal mechanisms
Figure 4 shows the effect of RH on size distributions of

infectious IAVs, 10 min after a cough in residential and public

settings. For both cases, IAV concentrations decrease with

increasing RH across all sizes, but the modes of the distributions

remain around 9–10 mm. The total IAV concentration (i.e., the

area under each curve) decreases with increased RH. As a result, it

takes twice as long to remove 99.9% of IAVs emitted at 10% RH

than that at 90% RH in residential settings (.100 min at 10% RH

versus ,50 min at 90% RH, as shown in Figure 3A).

Humidity affects both settling, because of its dependence on size

transformation, and inactivation of IAVs. The relative importance

of these two effects can be illustrated by comparing the ratios of

virus concentrations at 10% RH versus those at 90% RH at

varying times. The ratios increase approximately exponentially

with time: 2.4 at 10 min, 5.4 at 30 min, and 16.1 at 60 min. If

only inactivation were considered, these factors would instead be

1.4, 2.7, and 7.3, respectively; and if only settling were considered,

the corresponding factors would be 1.7, 2.0, and 2.2, respectively.

These ratios are independent of the ventilation rate. The much

narrower range of factors for settling than for inactivation (i.e.,

1.7–2.2 versus 1.4–7.3) indicates that RH has a greater impact on

inactivation, especially over long periods (.30 min).

Figure 5 shows the effectiveness of each removal mechanism—

settling, ventilation, and inactivation—independently as a function

of RH (Figure 5A and 5B) and droplet size (Figure 5C and 5D),

10 min following a cough. Figure 5A shows that gravitational

settling is the dominant removal mechanism in residential settings.

Settling alone removes over 80% of airborne IAVs within 10 min,

and its removal efficiency increases slightly with RH, from 87% to

92% across the range of RHs. In contrast, ventilation only

removes 15% of total IAVs, regardless of RH. Removal efficiency

by inactivation increases with RH, accounting for up to 28% at the

highest RH. Figure 5B shows that ventilation and gravitational

settling are both important in removing airborne IAVs from public

settings with higher AERs. At an AER of 10 ACH with no

recirculation, ventilation removes 81% of airborne IAVs. Settling

and inactivation are independent of ventilation rate and remove

the same amounts of IAVs as in residential settings.

Removal efficiencies for IAVs vary as a function of droplet size

for settling but not ventilation or inactivation. Figure 5C and 5D

show removal efficiency versus equilibrium droplet diameter at

50% RH, 10 min following a cough, for each mechanism

individually and all three together. Because settling velocity scales

with diameter squared, removal efficiencies due to gravitational

settling range from only 0.7% for droplets with Deq = 1 mm to

51.2% for those with Deq = 10 mm to .98.8% for those with

Deq.25 mm. Ventilation is equally effective for all sizes, with

removal efficiencies of 15% in residential settings (Figure 5C) and

81% in public settings (Figure 5D), depending on the AER.

Overall, gravitational settling is the main removal mechanism in

both residential and public settings (Figure 5A and 5B). It removes

a disproportionately large fraction of IAVs because it favors larger

droplets, which contain far more IAVs, as their numbers are

proportional to the initial droplet volume, or Di
3. However,

settling is ineffective at removing droplets ,5 mm, as shown in

Figure 5C and 5D. Ventilation is important in public settings and

particularly so for removal of smaller droplets (,5 mm) for which

settling is inefficient. It accounts for ,50% of total removal of

IAVs associated with droplets ,5 mm in residential settings

(Figure 5C) and ,80% in public settings (Figure 5D). Inactivation

increases with RH and is maximal at 28% at 90% RH, 10 min

following a cough (Figure 5A and 5B). Although the removal

efficiency by inactivation is relatively low, it is important when

Figure 2. IAV inactivation rate versus RH. IAV inactivation rates (k)
for each RH over 1 h were calculated based on experimental data
adapted from Harper [12].
doi:10.1371/journal.pone.0021481.g002
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removal by ventilation and settling are both minor. For instance,

in residential settings (Figure 5C), inactivation accounts for ,50%

of total removal of IAVs associated with droplets ,5 mm.

Discussion

Removal of infectious IAVs
Higher RH favors removal of infectious IAVs. Since larger

droplets have greater settling velocities, higher RHs, at which

Deq/Di is larger, thereby will accelerate the removal rate.

Additionally, the inactivation rate of IAVs increases with

increasing RH (Eq. 2). According to our model, the concentration

of airborne IAVs resulting from a cough would be reduced by

10% if the RH increases from 35%, the mean indoor RH in

heating season [30], to 50%, 10 min following the cough, and by

40% after 1 h in residential settings. These estimates agree in

magnitude with those reported by Myatt et al. [30], whose model

suggests that influenza virus survival decreases by 17.5–31.6%

when indoor RH increases by 11–19% over 15 h. Hence,

maintaining a reasonably high indoor RH (e.g., 50%) may

Figure 3. Evolution of infectious airborne IAV concentrations and size distributions. Time series of airborne, infectious IAV concentrations
following a cough into residential (A) and public (B) settings at 10–90% RH. The horizontal dashed line indicates 99.9% removal. Evolution over time
of airborne, infectious IAV size distribution following a cough into residential (C) and public (D) settings at 50% RH.
doi:10.1371/journal.pone.0021481.g003

Figure 4. IAV size distributions. Infectious IAV size distributions at various RHs in residential (A) and public (B) settings with a volume of 50 m3

and a height of 2.5 m, 10 min after a cough.
doi:10.1371/journal.pone.0021481.g004
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accelerate the removal of infectious IAVs and help prevent or

reduce influenza infection.

The relative importance of the two mechanisms—droplet size

transformation and inactivation—as a function of humidity is of

interest. Shaman and Kohn [14] concluded that AH modulates

influenza transmission by influencing the virus’ survival rate, rather than

by enhancing production of airborne droplet nuclei in low humidity

conditions. We found that respiratory droplets would shrink to one-half

of their original diameters at 90% RH, and to around two-fifths at 10%

RH. It thus appears that changes in droplet size are dramatic at

unsaturated RHs and that variations due to differences in RH are

relatively trivial. Our analysis shows that removal by inactivation is

more variable with RH than is removal by settling. This may explain

why Shaman and Kohn [14] could find a statistically significant

relationship between AH and influenza survival but not transmission.

However, this does not suggest that droplet shrinkage in response to

unsaturated RHs is not important for influenza transmission, only that it

is not as obvious as the induced change in viability.

We have demonstrated the relative importance of the three removal

mechanisms. Settling can remove over 80% of droplets emitted from a

cough within 10 min; however, it is effective only for larger droplets

and allows the smaller ones (,5 mm) to remain suspended. In contrast,

ventilation is able to remove all droplets regardless of size simply by air

exchange. Therefore, higher AERs will facilitate the elimination of

virus-containing droplets from indoor environments, especially to

compensate for the inefficacy of settling in removing the small ones.

This observation also justifies the requirement to maintain a high AER

in public places (e.g., 12 ACH in hospital waiting areas [34]). Removal

efficiencies due to virus inactivation are relatively small (i.e., 0–28% in

10 min, if only inactivation were considered). However these estimates

are based on experimental data reported by Harper [12], which

indicated lower inactivation rates of 0.0031–0.028 min21 at 20–81%

RH, compared to 0.007360.0031 min21 at 15–40% RH and

0.09160.024 min21 at 50–90% RH, as reported by Hemmes [2].

If estimated Hemmes’ data [2], the corresponding removal efficiencies

would be larger: 7.0% at 15–40% RH and 59.8% at 50–90% RH.

Virus inactivation may thereby play a more significant role depending

on the actual inactivation rate.

IAV viability, seasonality, and humidity dependency
Experimental and/or theoretical models have been constructed to

predict the viability of airborne IAVs as a function of humidity

[14,35], but a widely accepted mechanistic explanation for the

relationship is still lacking. Studies on the effect of humidity agree that

IAVs survive better at lower RHs. However, Hemmes [2,11] and

Harper [12] found higher inactivation rates at both medium and high

RHs, in contrast to Shechmeister [10] and Schaffer et al. [13], who

found higher inactivation rates at medium but not high RHs. This

disparity may stem from the different compositions of media used in

each experiment. All media contained salts (approximately 0.5–3%);

however, those used in the former two experiments contained far

more proteins than did those in the latter two. High concentrations of

salts are found to be detrimental to avian IAVs [36]. As water in the

droplets evaporates, solute concentrations increase and may

Figure 5. IAV removal mechanisms. Infectious IAV removal efficiencies due to settling, ventilation, and inactivation in residential (A) and public
(B) settings at different RHs. Removal efficiency of settling, ventilation, and inactivation as a function of droplet size in residential (C) and public (D)
settings at 50% RH. Removal efficiencies are shown for each mechanism independently and do not sum to 100% because in actuality, more than one
mechanism may act on the same virus/droplet.
doi:10.1371/journal.pone.0021481.g005
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consequently accelerate IAV inactivation. However, an NaCl droplet

can suddenly lose all of its water and crystallize at the point of

efflorescence (45–48% RH) [25], thus eliminating the negative effect

of dissolved salts at low RHs. This effect is perceivable in Table 2,

which shows that Deq/Di varies little when RH#40%. The

combination of increasing salt concentrations followed by efflores-

cence as RH decreases may explain the trend observed by

Shechmeister [10] and Schaffer et al. [13].

Additionally, a study on aerosol transmission between guinea

pigs [3] indicated that transmission was inversely related to RH at

5uC, although experiments at 20uC showed a lower transmission

rate at 50% RH than at 65% RH. As 0% transmission was

observed at 80% RH, the inconsistent result at 50% or 65% RH

may be due to the stochastic nature of infection. If higher

transmission rates are due to higher viabilities, at least in part,

these results appear to agree with the trend reported by Hemmes

[2,11] and Harper [12]. Given the similar constitution of droplets

emitted from infected human and guinea pigs (i.e., salts plus

proteins), it seems reasonable to believe that IAVs associated with

droplets expelled from humans will be subject to higher

inactivation at higher RHs.

The relationship between IAV viability and RH may be due to

interactions among components of respiratory droplets (i.e.,

glycoproteins, salts, and water) and the virus that are sensitive to

concentration, which depends on the extent of evaporation, which

depends in turn on ambient humidity. Proteins may complicate

the effect of salt ions on IAVs by interacting with the salt ions and

counteracting their adverse effects. Studies have shown that IAVs

remain infectious much longer in the presence of respiratory

mucus [37,38]. Investigation into such interactions and the

possible complexes formed in respiratory droplets in response to

humidity variation at a molecular level is needed.

We speculate that the seasonality of influenza with its wintertime

peak in temperate regions is stimulated by more vigorous

evaporation of droplets at low RHs leading to higher suspended

concentrations of IAVs, combined with the sensitivity of aerosolized

IAVs’ viability to RH. When RH is ,90%, droplets shrink

approximately in half, leaving associated IAVs that can remain

suspended long enough to cause secondary infections. Our recent

measurements of size-resolved airborne IAV concentrations support

this assertion: 64% of the IAV genomes detected in a daycare center,

a health center, and airplanes were associated with fine particles

,2.5 mm (15% in the 0.25–0.5 mm fraction, 10% in the 0.5–1.0 mm

fraction, and 28% in the 1.0–2.5 mm fraction) [33]. These particles

can remain suspended for hours to days. Because of the many factors

involved in infection, it is still not clear which size of droplets is most

likely to transmit influenza, nor is it clear which region in human

airways is most susceptible to influenza infection. However, if we

simply consider deposition efficiency in human airways, the droplet

size with the highest deposition efficiency (,95%) in all regions of the

airways combined is ,5 mm. For such droplets, deposition efficiency

is ,10% in the tracheobrochial and alveolar regions; the majority of

the droplets deposit in the nasopharyngeal region. The droplet size

with the highest deposition efficiency (,17%) in the tracheobron-

chial and alveolar regions is ,2.5 mm [39]. Thus these smaller

droplets have greater potential both to remain suspended and to

deposit deeper into human airways.

At extremely high RHs, for example, close to 100% in tropical

regions during the rainy season, the droplets do not shrink as much

(Deq/Di = 0.927 at 99% RH, and 0.755 at 98% RH, according to

our calculations). Droplets thus settle more quickly, rendering the

aerosol route relatively less important. However, due to less

evaporation, salts and glycoproteins remain at concentrations

closer to those found in the respiratory tract, and these

concentrations are not detrimental to the virus. As suggested by

Lowen et al. [40,41], other transmission routes (e.g., contact) may

dominate in the tropics. They also proposed that the airborne

route’s sensitivity to RH and temperature contributes to

seasonality in temperate regions while the contact route’s

insensitivity to the two variables contributes to year-round

influenza in tropical regions. Our analysis supports this hypothesis.

Model limitations
There are several limitations of our model. First, although the

model used to predict equilibrium droplet sizes has been

confirmed with experiments using NaCl-bovine serum albumin

(BSA) particles [23], further verification with actual respiratory

fluid is needed due to its complex composition. Furthermore, the

composition of respiratory fluid depends on the emission site (nose

or mouth) and source (upper or lower respiratory tract), as well as

the stage of infection. Inflamed airways secrete larger amounts of

mucus which consequently increase the dry mass of respiratory

fluid [42]. Therefore, the equilibrium size of emitted droplets may

be larger than presented here based on composition under healthy

conditions. On the other hand, saliva has much lower concentra-

tions of salts and glycoproteins [43,44], due to dilution by which

droplets emitted from coughing may have lower dry mass.

Second, the model is based on limited data obtained from

laboratory experiments. Not only are Harper [12] and other

studies of IAV viability in aerosolized droplets [10,11,13] decades

old, but none investigated inactivation rates as a function of

droplet size. More accurate measurements concerning the

influence of respiratory droplet size on IAV viability are needed

to better predict the fate of airborne IAVs.

Third, we calculated the IAV concentration based on a well-

mixed room model with no recirculation. This model assumes that

droplets are instantaneously, continuously, and evenly distributed

throughout the room. However, according to Lai and Cheng [45], it

takes at least 270 s for 10-mm droplets to mix thoroughly at 5 ACH.

It may take even longer for the system to become well-mixed at

lower AERs. More accurate calculations may be achieved by the use

of computational fluid dynamics. Additionally, if recirculation

accounts for a large fraction of the AER and if viruses are not

removed in the HVAC system, then ventilation will play a relatively

smaller role in virus removal compared to settling and inactivation.

Finally, this research demonstrates the evolution of IAV

concentrations induced by a cough but not other activities, such

as normal respiration, talking, and sneezing. Fabian et al. [46]

determined that IAV RNA (i.e., potentially infectious IAVs) was

emitted in exhaled breath from infected patients at a rate of ,3.2

to 20 RNA particles min21. These droplets were smaller than

those associated with a cough; over 87% of them were ,1 mm in

diameter. Therefore, for IAVs exhaled during normal breathing,

because of the smaller droplet size, airborne IAV concentrations

would be lower and removal would rely more on ventilation and

inactivation than gravitational settling. IAVs may also be expelled

during talking, although to our knowledge, no detailed experi-

mental data on this phenomenon are currently available in the

literature. The droplet size distribution for talking is similar to that

for coughing (Table 1). Therefore, model results are expected to be

similar for IAVs generated by talking in terms of removal

efficiencies by different mechanisms. Sneezing is a less common

clinical manifestation of influenza than is coughing, which is

manifested in ,80% of patients [21,46,47,48]. The main

difference between sneezing and coughing is that the former

generates far more droplets, especially smaller ones. Thus, IAV

concentrations would be higher initially, and ventilation would

play a larger role in removal.
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Methods

Equations for generating the initial respiratory droplet
size distributions

From data on the size distribution of droplets expelled in a

cough [20], we considered counts of droplets with Di#100 mm.

The standard normal distribution z-value with the same

cumulative probability as that for droplets with a diameter Di

was computed by the NORMSINV function in Excel 2007. The

equation of the least-squares linear regression between z and lnDi

is shown in Eq. 1 and Figure 1.

The initial size distribution of droplets (#100 mm) from

coughing was then generated by the NORMSDIST function in

Excel 2007:

ni~N|(NORMSDIST(zi,upper){NORMSDIST(zi,lower)) ð4Þ

where ni is the droplet count in the ith size bin (5-mm step in this

study), N is the total number of droplets #100 mm (i.e., 4775

according to Duguid [20]), and zi, upper and zi, lower are the upper

and lower z values of the ith size bin.

Model for calculating equilibrium respiratory droplet size
The equilibrium droplet sizes resulting from evaporation were

estimated based on Köhler theory taking into account the two major

constituents of respiratory fluid: inorganic salts and glycoproteins.

Effros et al. [7] determined concentrations (mean 6 standard error)

of the major electrolytes to be, respectively, 9168 (Na), 60611 (K),

and 102617 (Cl) mM, of glycoproteins to be 76.3618.2 g L21, and

of lactate to be 44617 mM. We thereby assume respiratory fluid

contains 150 mM (8.8 g L21) NaCl to represent the inorganic

components and 76 g L21 of total proteins (TP) to approximate the

organic components, as done by Nicas et al. [22].

The SS-VA model derived by Mikhailov et al. [23] is based on

the physiochemical properties (practical osmotic coefficients,

molecular weights, and densities of the component solutes, etc.)

of the droplet and the Kelvin effect. Their modeling results for

particles with 90% BSA (dry mass fraction) fitted well with

experimental data for dehydration of mixed NaCl-BSA particles.

Given the similar composition of respiratory fluid (89.6% TP in

dry mass) to their NaCl-BSA particles, we applied their SS-VA

model to compute the equilibrium size for respiratory droplets.

The SS-VA model predicts the equilibrium RH with a specific

droplet diameter (Deq) to be:

RH~ exp (
4sMw

rRTDeq

{
Mw

rw((Deq{Dm,s)
3{1)

X

y

vyWyryxs,y

My

) ð5Þ

where, s is the surface tension (approximated by that of water as

done in Mikhailov et al. [23], i.e., 0.072 N m21); M is the molar

mass, the subscripts w and y refer to water and component y (either

NaCl or TP), respectively, and Mw = 18 g mol21, MNaCl = 58.4 g

mol21, MTP<MBSA = 66.56103 g mol21; r, rw, ry are the

densities of the entire droplet, water, and component y

(rNaCl = 2165 kg m23, rTP<rBSA = 1362 kg m23), respectively; R

is the ideal gas constant; T is the absolute temperature (298 K in

this study); Deq is the equilibrium diameter of a droplet residue at a

given RH; Dm,s is the mass equivalent diameter of a particle

consisting of the dry solutes; uy is the stoichiometric dissociation

number of component y, uNaCl = 2, and uTP = uBSA = 1; Wy is the

molal or practical osmotic coefficient of component y describing

the non-ideality of the solution; and xs,y is the mass fraction of

component y (xNaCl = 0.104 and xTP = 0.896 in this study). Given

Di, the mass equivalent diameter, Dm,s, can be calculated and used

as an input to further calculate Deq with its equilibrium RH.

Virus inactivation rate
Harper [12] performed a detailed study on the viability of

airborne IAVs over a wide range of both RH and temperature. In

the experiment, droplets containing IAVs were generated with an

atomizer and stored in a drum turning at 3 rpm, and results were

corrected for physical loss by settling and other deposition

mechanisms. We used his viability data at 20–24.5uC, typical

indoor temperatures, at RHs ranging from 20% to 81% to

calculate inactivation rates as a function of RH (Table 3). Because

the residence time of air indoors is typically 1–2 h at most, we

considered viability data from the first 1 h of the experiment only.

We quantified viability by assuming that airborne IAVs undergo

first-order inactivation upon emission, such that,

dN

dt
~{kN ð6Þ

where N is the number of IAVs emitted, t is time, and the

inactivation rate (k) is

k~{

ln (
Nt

N0
)

t
~{

ln St

t
ð7Þ

where N0 and Nt are the numbers of IAVs at t = 0 and time t, and St is

the survival rate, or viability (%) at time t. Accordingly, we computed

k for each RH from the St data reported by Harper [12] using the

SLOPE function in Excel 2007 (Table 3). The equation of the least-

squares linear regression between k and RH is shown in Eq. 2.

Concentration of infectious IAVs indoors
The model for estimating the concentration of infectious IAVs

assumes that they are emitted from a cough and instantaneously

well-mixed within the whole indoor space such that IAV

concentrations in the room and outlet air are the same. The

IAVs are subjected to removal by ventilation, inactivation, and

gravitational settling. Droplet size transformation is assumed

complete at time zero, and Deq was used for the calculation.

Assuming the inlet air contains no IAVs, the change of IAV

concentration with time is modeled as:

dC

dt
~{(

v

H
zlzk)C ð8Þ

where C is the infectious IAV concentration in the room and

outflow (# m23); v is the gravitational settling velocity calculated

by Stokes law based on Deq; H is assumed to be 2.5 m in this study;

l is the air exchange rate assuming no recirculation; and k is the

inactivation rate given by Eq. 2.

At time zero, IAVs are released from a cough, and the initial

concentration of IAVs associated with droplets in the ith size bin,

Ci,0 (# m 23) is

Ci,0~0:778|6:3|10{3|(
p

24
|

D4
i,upper{D4

i,lower

Di,upper{Di,lower

)(
ni

V
) ð9Þ

where 0.778 is the initial survival rate (i.e., the average survival

rate at 1 s according to the results of Harper [12]); 6.361023 is the

IAV concentration in respiratory fluid (# mm23) obtained by

assuming that the respiratory fluid contains the same concentra-
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tion of IAV as in nasal washes of infected persons (6.360.36106

median tissue culture infectious dose (TCID50) mL21 [49]) and

that 1 TCID50 equals 1000 virus particles [50]; the term in the first

set of parentheses is the mean droplet volume for the bin; Di,upper

and Di,lower are, respectively, the upper and lower diameters of the

ith size bin (mm); ni is the droplet count for the ith size bin given in

Eq. 4, and V is the room volume (assumed to be 50 m3). The

solution for C is given in Eq. 3.

Removal efficiency of settling, ventilation, and
inactivation

Removal efficiency in this study refers to the percentage of IAVs

removed by a certain mechanism (i.e., settling, ventilation,

inactivation, or a combination of these three) at a given time

and RH. In Figure 5, removal efficiencies of settling (Esettling),

ventilation (Event), and inactivation (Einactivation), and total removal

efficiency (Etotal) are calculated by Eq. 10–13:

Esettling~1{ exp ({
v

H
t) ð10Þ

Event~1{ exp ({lt) ð11Þ

Einactivation~1{ exp ({kt) ð12Þ

Etotal~1{ exp½{(
v

H
tzlzk)t� ð13Þ
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