Supplementary Information

Supplementary Figures

Supplementary Figure S1. Graphical illustration of contig coverage of novel assembled genomes. (a) Contig (red and green bars) positions in relation to the Cocksfoot mild mosaic virus genome (Genbank: EU081018) (CMMV). Red bars correspond to sequences that primarily align to CMMV or other mosaic viruses, but with poor sequence identity. Green bars represent strong homology. (b) Contigs (yellow and blue bars) relative to Human coxsackievirus A22 (Genbank: DQ995647). Contigs 1-2 share homology with A19. Contig 3 displays homology to both A19 and A22, most likely reflecting region conserved between the two viral strains. Contigs 4-6 are more similar to A22 than A19.
a

b

Supplementary Figure S2. Graphical illustration of viral gene expression patterns in HPVpositive COAD, READ, KIRC and BRCA. (a) Viral mRNA from all (top row) and individual COAD as well as individual READ and KIRC aligned to HPV18 (Genbank: NC_001357.1). Low count reads (numbers within brackets) and E1 expression indicate few infected cells and a virus in replicative phase respectively. (b) Viral mRNA from BRCA aligned to HPV2 (Genbank: NC_001352.1). High expression levels of capsid-proteins L1 and L2 suggest late stage of infection and assembly of progeny virions. Colored rows in mRNA pattern profile represent nucleotide mismatches to reference sequence.

The landscape of viral expression and integration in human cancer

Supplementary Figure S3. Graphical illustration of viral gene expression patterns in HBVpositive tumors. Viral mRNA from all (top row) and individual LIHC and KIRC (bottom row) aligned to HBV (Genbank: NC_003977.1) Majority of reads align to HBVgp2 (S-antigen) and HBVgp3 (X-antigen). Colored rows in mRNA pattern profile represent nucleotide mismatches to reference sequence.

Supplementary Figure S4. An HBV-positive KIRC tumor shows a typical KIRC mRNA profile, but with consistent weak induction of LIHC markers. (a) Unsupervised hierarchical clustering of 34 LIHC tumors and 100 KIRC tumors (Pearson's correlation coefficient, and using top 2500 most variable genes based on standard deviation across included samples). The single HBV-positive tumor (TCGA-AK-3455) had a gross expression profile similar to other KIRC tumors. (b) Closer study of TCGA-AK-3455 revealed consistent induction of LIHC marker genes (top 50 genes induced in LIHC relative to KIRC samples). ND, not detected.

The landscape of viral expression and integration in human cancer
a

b

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
NC_001538.1_BKPyVgP5 BLCA_DKA3IT_BKPyVgp5	HDKYLNREESMELHDLLGLERRAHGNLPLHRKAYLRKCKEFHPDKGGDEDKHKRHINTLYKKHEQDYKYHHQPDFGTHSSSEYPTYGTEEHESHUSSFNEKHDEDLFCHEDHFASDEEATADSQHSTPPKK MDKYLNREESHELHDLLGLERARHGNLPLHRKAYLRKCKEFHPDKGGDEDKHKRHNTLYKKHEQDYKYGHOPDFGTHSSSEYPTYGTEELESHHSSFNEKHDEDLFCHEDHFASDEEATADSQHSTPPKK													
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
NC_001538.1_BKPyVgP5 BLCA_DKA3IT_BKPyYgp5	KRKYEDPKDFPSDLHQFLSQAYFSNRTLACFAYYTTKEKAQILYKKLMEKYSYTFISRHHCAGHNIIFFLTPHRHRYSAINNFCQKLCTFSFLICKGYHKEYLLYSALTRDPYHTIEESIQGGLKEHDFS KRKYEDPKDFPSDLHQFLSQAYFSNRTLACFAYYTTKEKAQILYKKLMEKYSYTFISRHHCAGHNIIFFLTPHRHRYSAINNFCQKLCTFSFLICKGYNKEYLLYSALTRDPYHTIEESIQGGLKEHDFN													
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
NC_001538.1_BKPyYgp5 BLCA_DKA3IT_BKPyVgp5	PEEPEETKQYSHKLITEYAYETKCEDYFLLLGHYLEFQYNYEECKKCQKKDQPYHFKYHEKHFANAIIFAESKNQKSICQQAYDTYLAKKRYDTLHHTREEMLTERFNHILDKMDLIFGGHGNAYLEQYM PEEPEETKQYSHKLITEYAYETKCADYFLLLGHYLEFQYNYEECKKCQKKDQPYHFKYHEKHFANATIFRESKNQKSICQQAYDTYLAKKRYOSLHHTREEMLTERFNHILDKMDLIFGAHGNAYLEQYM													
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
NC_001538.1_BKPyYgP5 BLCA_DKA3IT_BKPyYge5	AGYGHLHCLLPKHDSYIFDFLHCIYFNYPKRRYMLFKGPIDSGKTTLAAGLLDLCGGKALNYNLPHERLTFELGYAIDQYHYYFEDYKGTGAESKDLPSGHGINNLDSLRDYLDGSYKYNLEKKHLNKRT AGYAHLHCLLPKMDSYIFDFLHCIYFNYPKRRYHLFKGPIDSGKTTLAAGLLDLCGGKALNYWLPMERLTFELGYAIDQYHYYFEDYKGTGAESKDLPLGHGINNLDSLRDYLDGSVKYNLEKKHLNKRT													
	521	530	540	550	560	570	580	590	600	610	620	630	640	650
NC_001538.1_BKPyYgP5 BLCA_DKA3IT_BKPy Vgp5	QIFPPGLYTMNEYPYPKTLQARFYRQIDFRPKIYLRKSLQNSEFLLEKRILQSGHTLLLLLIHFRPYADFATDIQSRIYELKERLDSEISHYTFSRHKYNICMGKCILDITREEDSETEDSGHGSSTESQ QIFPPGLYTHNEYPYPKTLQARFYRQIDFRPKIYLRKSLQNSEFLLEKRILQSGHTLLLLLIHFRPYADFATDIQSRIYEHKERLDSEISHYTFSRHKYNICHGKCILDITREEDSETEDSGHGSSTESQ													
		660	670											
NC_001538.1_BKPyVgP5 BLCA_DKA3IT_BKPyVgp5	SQCSSQUSDTSAPAEDSQRSDPHSQELHLCKGFQCFKRPKTPPPK													

Supplementary Figure S5. Graphical illustration of viral gene expression patterns in BKVpositive BLCA and protein sequence of BKPyVgp5. (a) Viral mRNA from BLCA-tumor aligned to BKV (Genbank: NC_001538.1). The oncogenic proteins BKPyVgp6 (small Tantigen) and to greater extent BKPyVgp5 (large T-antigen) are mainly expressed in this tumor. Colored rows in mRNA pattern profile represent nucleotide mismatches to reference sequence. (b) Protein sequence of BKPyVgp5 in BLCA compared to reference sequence display five substitutions, but no truncations.

The landscape of viral expression and integration in human cancer

Supplementary Figure S6. Close-up view of selected fusion sites in recurrent genes. Green arrows indicate fusion breakpoints that were fine-mapped with the help of breakpoint-spanning reads (as presented in Supplementary Table 5). Close-up views are shown for select cases, including in-frame fusions. Light blue, viral transcript; red, human transcript; grey, possible positions for breakpoint; orange, amino-acid introduced during fusion.

The landscape of viral expression and integration in human cancer

Supplementary Figure S7. Relative expression of integration target genes in tumors with integration relative to matched normals without integration. We identified a total of 9 cases of viral integration in gene loci for which a matched normal control without integration in the same gene was available. For these genes and tumors, we calculated relative expression levels in the tumors compared to the normals.

The landscape of viral expression and integration in human cancer
a

The landscape of viral expression and integration in human cancer

Supplementary Figure S8. Graphical illustration of viral gene expression patterns in HPVpositive CESC. HPV positive CESC mRNA aligned to (a) HPV16 (b) HPV18 (c) HPV31 (d) HPV33 (e) HPV39 (f) HPV45 (g) HPV52 (h) HPV58 (i) HPV59 (j) HPV68b (k) HPV69 and (l) HPV70 (Genbank accession numbers found in Supplementary Table S1). Colored rows in mRNA pattern profile represent nucleotide mismatches to reference sequence.

The landscape of viral expression and integration in human cancer

Supplementary Tables

Annotated viruses	
Virus type	Genbank
Human papillomavirus type 31	J04353.1
Human papillomavirus type 33	M12732.1
Human papillomavirus type 39	X74479.1
Human papillomavirus type 45	X74481.1
Human papillomavirus type 52	D90400.1
Human papillomavirus type 56	X77858.1
Human papillomavirus type 58	FR751039.1
Human papillomavirus type 59	AB027020.1
Human papillomavirus type 68b	D21941.1
Human papillomavirus type 69	
Human papillomavirus type 70	
Human coxsackievirus A22 strain ban99-10427	

Assembled viruses

Assembled genome 1: Coxsackie-like virus

$$
\begin{aligned}
& \text { TAAGGTACCTATTACAATTACTATAGCACCAATGTGCTGTGAGTTTAATGGGCTCAGATCTCTCACAGTGC } \\
& \text { CTTTCACACAAGGATTACCGGTGATGGCAACACCAGGGTCTAACCAGTTTTTGACATCTGATAACTTCCAA } \\
& \text { TCGCCATGCGCTCTCCCAGACTTTGATGTTACTCCCGAGATACACATACCAGGGGAAGTGAAGAATATGAT } \\
& \text { GGAGCTGGCTGAAATAGATACAATTATCCCTATGAATGCAGTCCCAACCAAAGTAAATACTATGGAAGCAT } \\
& \text { ATCCAATACCTCTAGCAGCAGGGGTGCAGAATAATAACAAATCCATATTTTCAATTAGTTTAAGTCCTGCC } \\
& \text { GCTGATCAGAGATTGTCTAGAACAATGTTAGGTGAAATTCTTAATTACTACACACACTGGACTGGCTCCAT } \\
& \text { TAAATTCACATTCCTATTTTGTGGTAGTATGATGGCCACAGGAAAGTTACTGCTGAGTTACAGCCCCCCAG } \\
& \text { GAGCAAAACCCCCGACGACTAGAAAAGAGGCCATGTTAGGCACACATATTGTGTGGGATTTAGGCTTACAA } \\
& \text { TCCAGTGCAACTATGGTCGCGCCTTGGATTTCAAATGTGAACTACAGGCGTTGTGTCAAAGATGATTTTAC } \\
& \text { AGAAGGTGGTTACATATGCTGCTTCTACCAGACTGCAATTGTAGTGCCTCCAAACACTCCAACGGACATGT } \\
& \text { ATATGCTTGCATTTGTTAGTGCGTGTAATGACTTCTCAGCAAGGCTTTTGAAAGACACTCCATTTGTCGTC } \\
& \text { CAGACCACACCTGTGGCTCGCACTCAGGGGATTGATGATGTTATTGACACAGTCGTAGCTAATGCACTTAA }
\end{aligned}
$$

The landscape of viral expression and integration in human cancer

GGTGTCCATGCCACAAGTACAAGACACCCG
TCAACTCAAAAGAAGTCCCTGCGCTAACTGCTGTTGAGACAGGTGCCACCAGTCAAATAGAGCCTTCAGAT GTGATCGAGACGCGCCATGTCATAAACCAAAGGTTAAGATCAGAATGCACCGTAGAATCCTTCTTTGGAAG ATCTGCTTGTGTGGCCATAATAGGTTTGAGCAACAAGAAGCCCACAGACACCAACGGTAAAGAATTGTTTG CAACATGGCCTATCTCATATCTAGACACATATCAATTGAGGAGAAAGTTGGAGATGTTCACTTACTCTAGA TTTGACATTGAGATGACTTTTGTTGTAACAGAGAGATTCTTTACCTCAACATCTGCAGCTGCTAGGGACTA TGTATACCAGATCATGTATGTGCCACCAGGTGCCCCAATCCCCCAGTCGTGG

CAACCCTTCAATATTTTATACAACTGGAAATGCCAGTCCAAGGATTTCGATCCCGTTTGTAGGCATTGCTG CAGCTTACTCACACTTTTATGATGGTTTCTCCGTAGTCCCTTTCAATTCAGTGGATGCTGGTGCATCCAAC AAGTATGGCTATTCTTCAGTCAATGACTTTGGCACACTAGCGATCAGGATTGTTAACGAATATGACCCAGT AACTATAGATGCAAAAGTTAGGGTGTACCTCAAACCCAAACATGTAAAAGTGTGGTGCCCCAGACCGCCCA GAGCTGTAGCTTACAATGGACCAACTGTGAACTTTTCAGAAAACCCATCAGTCATGACACAGGTTGCTGAT ATCAGAACTTATGGATTTGGACATCAAAACAAAGCAGTCTACACTGCTGGGTACAAAATTTGTAATTATCA TTTAGCCACACCTGAAGACATGGAAAAAGCTGTCAATATCATGTGGGACAGAGATCTCCTAGTCTGTGAGA GTGGTGCTCAAGGCACCGATACCATTGCAAGGTGTTCATGCAAAGCAGGAGTCTACTATTGTGAGTCTAAA AGAAAGTATTATCCAGTTACGGTTTGTGGACCCACATTCCAGTATATGGAGGCTAATGACTTCTACCCACC TAGATATCAATCCCACATGTTAATTGGTTATGGCTTTGCCAACCCTGGTGAC

CAACATGGAGTAATGGGCATCATTACTGCTGGTGGTCAAGGGGTTGTGGCTTTTGCAGACATTAGGGATTT GTACATGTATGAGGAGGAAGCTATGGAACAAGGTGTTTCAGACTATGTTAATAGGTTAGGAATGGCATTTG GTGCCGGTTTTAGTGCTGAAGTAGCAAACAAAATTTCAGAGATTCAAACCACGGTCCAGAGTGTCCTTACA GAAAAGCTCCTGAAGAATCTAATAAAAATTGTTTCAGCTCTTGTTATTGTTGCCAGAAATTATGAAGATTC GATTACAGTACTAGCCACACTTTCTCTATTAGGATGTGACGCCTCGCCGTGGCAATGGCTCAAGGAAAAAC TCTGTAATATGATTGGCATCCCCTACGTCATGAAACAAGGAGATACTTGGCTAAAAAAGTTCACAGAAGCT TGCAATGCCGCCAAGGGGCTGGAGTGGATTGCAAATAAAATTAGTAAATTTATAGATTGGATCAAGGAGAA AGTGCTCCCAGAGGCAAAGGACAAATTGGAGTATCTTTCAAAGATGAAACAACTTGAAATGATAGAAAACC AGATGGCCACGTTACATCAATCATGCCCTAGCCAAGAAGAGCAGGAAGTTCTCTTTAACAACATCAGATGG TTAGCAATAAAGGCAAGAAAGTTTGCGCCCTTGTATGCAGCTGAGGCCCGTAGAATATTTAAGCTAGAAAC ATCCATCAACAATTATGTACAATTCAAGACCAAACACCGCATTGAACCAGTATGTTTGTTGATTCATGGAA CCCCCGGTACAGGCAAGTCGGTTGCTACAGGCCTCATTGGAAGATCAATTGCAAAGCAAGCAAACACCAGT ACTTATTCACTGCCCCCGGATCCTTCACATTTTGATGGCTATAAGCAACAGGGAGTTGTGATTATGGATGA CCTGAACCAAAACCCAGATGGGGAAGATATGAAGTTGTTTTGTCAAATGGTCTCCACAGTGGAGTTCATAC CACCAATGGCCAGCTTGGAGGAAAAGGGAATATTGTTCACCTCAGATTATGTGCTTGCTTCCACCAATTCT AACACAATAACACCTCCCACAGTATCAGCATCTGATGCATTATCTAGAAGATTTGCTTTTGACATGGACAT A

ATACCCAATGTCTGAATATACAACAAAAGGAAAGTTGAACATGGCTTTGGCTACCCAATTGTGTAAAGACT GCCATAAACCAGCAAACTTCTCTACATGCTGCCCCTTGGTGTGTGGGAAAGCTATTCAATTGATGGACAAA AATACCAGGATGAGATACTCTCTGGACCAGATTACCACTATGATGATTAACGAGAGAAATAGGAGGTACAA CATTGGAGGCTGCTTAGAGGCACTATTCCAAGGCCCAATTGAATTCAAAGATCTCAAGATCGATGTGGTTT CCACACCACCGCCCTCAGCAATATCAGACCTGCTCAAATCAGTAGATAATCAGGAGGTTAGGGATTATTGC AAACAACAGGGTTGGGTGGTGGAGATCCCTTCAAATTCTGTCACCATTGAAAGACACATCTCCCGTGCAAC TAGTATTTTACAATCACTCTCCACTTTTGCAGTGGTGGCGGGTATGGTCTATGTAGTTTACAAACTTTTTG CAGGATTTCAGGGCGCATACACAGGACTCCCTAATGCAAAACCAAAAATCCCTACAATTAGAGCAGCCAAA GTTCAAGGACCTGTATTTGATTATGCAGTTGCCATGGCTAAGAAGAATATACTCACTGCTACCACAGAGAA GGGTGAATTCACAATGCTGGGTGTCTATGACAGGGTAGCTGTGCTTCCTACTCACTCAAACCCAGGTGAAA CCATAGTTATATCAGGAAAAGAAGTGAAGATCTTAGATGCTAAAAGATTAGTTGATAGTGATGAAGTTAAC CTTGAAATTACTATTGTAACCTTAGACAGAAATGAAAAGTTTAGGGATATTAGAACTCACTTACCAACCCA AATCCATGAAACTAATGATGCAGTCCTTGCCGTAAACACCTCCAAATTTCCTAACATGTACATTCCAGTTG GATCAGTTATCGAACAGGGTATGCTAAATCTTGGGGGTAGGCCCACAAACAGAACCTTGATGTATAACTTC CCAACCAAGGCAGGACAGTGTGGTGGTGTTCTGATGGCAACTGGCAAAGTGATTGGCATACACGTTGGTGG CAATGGATCACATGGTTTTGCTGCCGCTCTCAAGAGAAGTTACTTCACTGAAGAACAAGGGGAGATCCAGT GGATGAGGCCAAGCAAAGATGCAGGTTATCCCATGATTAATGCACCCTCAAAGACAAA

AAACTAGAACCTAGTGTTTTCTTTGATGTTTTCCCAGGAGAAAAAGAACCAGCTGCTTTAACCAAGAATGA

The landscape of viral expression and integration in human cancer

TCCTAGACTGAAAGTTGATTTCGAAGAAGCCGTCTTTTCCAAATACATTGGGAATAAAATTACAGAGGTGG ATGAGTACATGAAGGAGGCTGTCGATCACTATGCTGGTCAGCTGATGTCCCTTGATATACCTACAGAACAG ATGTGCCTGGAGGATGCCATGTATGGCACAGATGGTCTTGAAGCCCTAGATTTGACAACTAGTGCTGGGTA CCCCTATGTGGCTATTGGAAA
GAAAAAGAGAGACATTCTCAACAAACAAACACGAGACACCAAAGAAATGCAGAAAATGTTAGATAAATATG GAATAAATCTACCATTGGTGACTTATGTTAAAGATGAACTTAGATCCAAATCAAAAGTGGAACAGGGTAAA TCTAGATTGATTGAAGCAAGCTCTTTGAATGATTCGGTTGCTATGAGACAGGCTTTTGGTCACCTATATGC CAAGTTTCACCAGAATCCAGGGATAATAACAGGCTCTGCAGTGGGGTGTGACCCAGATGTCTTCTGGAGTA AGGTGCCAGTGATGTTAGATGGAGAACTCTTTGCTTTTGATTACACAGGTTATGATGCTTCACTCTCTCCA GCTTGGTTTGAAGCCTTGAAAATGGTACTGGAAAAGATTGGCTTTGGTGATCGAGTTGACTTCATAGACTA CTTAAATCACTCACACCACTTATACAGGAACAAATTATACTGTGTTAAAGGTGGAATGCCCTCAGGGTGCT CTGGCACCTCAATATTCAATTCCATGATCAATAACTTGATAATTAGGACACTAATGTTAAAAACTTACAAA GGGGTGGATCTAGACTCTCTCCGTATGGTAGCATACGGGGATGACGTCATTGCATCCTACCCACACAAAAT TGATGCTGGCCTCCTAGCCCAAGCAGGAAAAGACTATGGATTAGTCATGACACCAGCAGATAAGGGTGCTA CCTTCACAGATGTGGATTGGAGCAATGTAACATTCCTCAAAAGATTCTTCAGAGCAGATGAGCAGTATCCT TTCCTTGTTCACCCAGTGATGCCCATGAAAGACATTTATGAATCAATCAGGTGGACCAAAGATCCACGAAA CACACAGGATCATGTCCGATCATTATGCTTATTGGCTTGGCACAATGGAGAAGAAACTTATAACAAATTCC TAGCTCAAATTAGAAGCGTGCCAGTTGGCCGTGCTCTACTCCTACCGGAGTATTCTACTCTGCGCAGGCGC TGGCTCGATTCTTTTTAGAGTGACCCTACCTCACCCGAATTGGCTTGGGTTATGGTGTTGTAGGGGTAAAT TTTCTTTTAATTCGG

Assembled genome 2: Mosaic-like virus

GCTCCTATGGAGTGGCGGGGGGAGCCATCACAGCTCTCACCACCACCAAGCATCTTGGGAGTAAACTCGTG CTCGGAGTCCTAACCGCTGCTAGCATCTATTGTGCAGTCCAGTTGCACATATATGTTTCGTTGGCTAAAAG GCGGCAATTCGATAAGACTCGGTCGGACTTCCTTGAACAACAATACCAGGACATCCTCAAATCAATGGAGG AgCAGAAAGAAAGGGCAACCAGAGAACGGCTAGAAGACTGCCTCACCAAGGAAGTGCTGGAACCGGCCCAA TTAGCAGAAGACGGAACTGTGCTTAAACAAGAAGTGGCACAATACCTTGTCCACGAACACGGTAAGTTTGT CAGGGCCTTAGTCTGCGAGGCTAAGATGGAATTTGGGGGAACCCCAAAGACCACCGAAGCCAACCAACTTG CTGTATGGAGGTTCCTGTACCGAACCTGCGACAAGAGAGGGTTGAATCCAGCTGATGCTCAAAGAAGTATC ACAGCTGCCCTTCCATTCGTCTTCTTGCCCAGTGCCTATGACGAGTCTGCTGCTATCGGGAGAACTTCAGA GGAGACTGCAGAGGCTCTTCGTAGGTACAAGTCTCAATTCACCCAAGACACACCACTTCAAAAATTAGTGT GCAACCCGCTTTCAGGGAAAGCTTGGAGGGCATGGGCACGTAACGTGTTCTATGGAGACCAGG

GAGAGTTGGACGAAGGTCTCCCATATCGTATGAGAAGTTCCTTTCCTACTACACTGGTGGTAAACTCACTA CGTATAGTAGGGCTGTTGATTCCCTCACTGAACGACCAGTCAACAAGGCTGACGCCAAGCTCTCGACATTT GTCAAAGCGGAGAAACTAAACTTGTCTCTGAAGTCTGATCCAGTCCCGCGTGTCATCCAACCCAGACACCC CAGGTACAATGTGGAAGTTGGTAGATATCTCAAACCAATAGAGCACGACATCTACACTGCTATCGACGGGT TATTTGGGTCCAAAACCATTTTCAAGGGACTGTCTGTCGAGGCAATGGGTTCTCTGATCCACCAGAAAATG CGCAAATTCTTGAGGCCGTGCGCTATTGGATTCGACGCCTCTCGCTTCGACCAACACGTGTCTGTAGATGC TCTGAAGTATGAACACTCCATTTACAAGGGAATCTATTCCCACTCCAAAACCCTCAACACCCTACTCAAAT GGCAGATCCATAACAAAGGGGTGGCAATCGCAAAGGATGGGTTTTTCCGATATTCTGTGGATGGGTGCC

GCTGAACTCATCAACAACGGTGATGACAATGTGTTAATTTGCTCGGAGGATGATGAGGAAGTAGTGAAGAG ACACTTGTATGATCACTGGCTCAAGTATGGGTTTGAAGTGGTTGCGGAAGAGCCTGTATATATAACAGAAC AAGTAGAGTTTTGCCAGATGAAGCCTGTGTTTGATGGAACCAACTACGTCATGGTTCGGAAACCCGATGTC TCGATGTCCAAAGATTGTCATAGCATCACCCCATTTTACACTACCAAAACTGCCAAGAAGTGGGTGCATGC CGTCGGAGAATGTGGGCTATCTCTAACTGGAGGCATACCAATCAAGCAAGAGTATTACACGTGTATGATCA GAAATGGCGACCAACATGGGGAAATTGACAAAAGTAAGGAGTTCATTTCAGGGTTTACTCGGCTCAGCAAG TGCAGCAATCGCAAGTATCGACAAATTTCTAGCGAGACCCGATACTCGTTCTACCTGGCCTTTGGTTACAC ACCAGACGAACAGGTAGCTATCGAGAACTACTTCCGGACGCTAGAGTTGCCATGGCACTATGGGCTGTCGG GTACTCCGGCAAGAGCACCTGAATGTCTACTCCTAACTACGATCCCCCAACCACCGACGTTCAACAAGTCA ACACCACAAAGGAGCCACGAGCCCAGCGACAATCAAGCAGGCAACAACTCGCGCACAGCGCCAGCAGAGCA GTGGGACAGAGGACTAACAGTTCTCAGGACACTGCGTCTGCCAATTTCGTGATTGTCGCAGAAAGGGTCGA AGTCACCAACAATTTCAACTTCTAGGCTGGCTACAGGTAAGTGCCACTGTCCAGATTCTCTCTGGACACCA GGACTGCTTGCCATCTGCATAGTCTTAGCCCTTTGCTTGGTGGCTAGATCCACATCTGAACCTCCCATCAT CTCACCTCCAGTCTTCCATACTGTATACCATTGTGAGAAATACCAGAACATCGAGGTTCAGAAATGAATGG

The landscape of viral expression and integration in human cancer

```
CTCCCGTGGTCGTCGTCAACAACCTGCCCCCTCCCGGAACAGTGGCGGCCAGAGAAATCAAGGTTCTCGGC
GCAAGAGTCGTAGAAGCAGATCTGTGGAACGAGCAATGCCAGTTGCCACCTCGTACTCTGTGGGTCCGACG
GGACCCCCGGGCATGGGGAGTAGACAGGGATGGACAAGTTTGGCTCACAAGGAAGTCATACTTCAAGTCAC
TGCTAGTACCAGCAGTGACACCATACTCACCATCCCCGTCATTCCAAACCTGCTCTATCCGCCAGACAGTA
CGACTTATTCCGGACGTGCGAAATTCCTCGCAGGGCACGCCCCACTGTACTCCCAACACAAATGGGACATG
TTGGCATTCCAATGGACACCAAGTTGTCCAACGACTACACCTGGAAACGTGGTTTTGAGGTTCATACCCAA
CTACACCACGCCAACACCAACCAACATGTTAGACACAATGGACAGT
```


Supplementary Table S1. Additional missing genomes added to complement the RefSeq

 viral genome database. Annotated viruses with Genbank accession numbers (top panel) and assembled viruses with contig-sequences (bottom panel).The landscape of viral expression and integration in human cancer

TCGA cancer abbr.	Libraries	Unique samples	Unique tumors	Unique normals	Unique patients		Total reads	Average reads per library	Total nonhuman reads	Average nonhuman reads	Fraction nonhuman candidate reads (\%)	Total viral aligned reads
BLCA	109	109	96	13		962×48	$1.74 \mathrm{E}+10$	$1.59 \mathrm{E}+08$	1.17E+08	1.07E+06	0.7	160094
BRCA	914	914	810	104	805	2x50	$1.55 \mathrm{E}+11$	$1.69 \mathrm{E}+08$	$2.11 \mathrm{E}+09$	$2.31 \mathrm{E}+06$	1.4	3722
CESC	89	89	87	2		872×48	$1.68 \mathrm{E}+10$	$1.89 \mathrm{E}+08$	$1.99 \mathrm{E}+08$	$2.24 E+06$	1.2	3232205
COAD	196	194	194	0	194	1x51	$5.07 \mathrm{E}+09$	$2.59 \mathrm{E}+07$	$2.30 \mathrm{E}+08$	$1.17 \mathrm{E}+06$	4.5	26745
GBM	169	167	167	0	161	2x76	$2.28 \mathrm{E}+10$	$1.35 \mathrm{E}+08$	1.67E+09	9.89E+06	7.3	635
HNSC	345	341	304	37	304	2x48	$5.97 \mathrm{E}+10$	$1.73 \mathrm{E}+08$	$2.84 \mathrm{E}+08$	$8.24 \mathrm{E}+05$	0.5	1540524
KIRC	519	519	453	66	462	22×50	$9.18 \mathrm{E}+10$	$1.77 \mathrm{E}+08$	$1.70 \mathrm{E}+09$	$3.27 \mathrm{E}+06$	1.9	9461
KIRP	74	74	59	15		62 2x48	$1.32 \mathrm{E}+10$	$1.78 \mathrm{E}+08$	$6.96 \mathrm{E}+07$	$9.41 \mathrm{E}+05$	0.5	661
LAML	167	167	167	0	167	2x50	$2.08 \mathrm{E}+10$	$1.25 \mathrm{E}+08$	$6.92 \mathrm{E}+08$	4.14E+06	3.3	2823
LIHC	54	54	34	20		362×50	$8.07 \mathrm{E}+09$	$1.49 \mathrm{E}+08$	$6.36 \mathrm{E}+07$	$1.18 \mathrm{E}+06$	0.8	433531
LUAD	413	412	355	57	355	2x48	$6.04 \mathrm{E}+10$	$1.46 \mathrm{E}+08$	$3.77 \mathrm{E}+08$	$9.14 \mathrm{E}+05$	0.6	2494
LUSC	238	237	220	17	221	12×50	$4.29 \mathrm{E}+10$	$1.80 \mathrm{E}+08$	4.07E+08	$1.71 \mathrm{E}+06$	0.9	25623
OV	420	419	419	0	413	32×75	$7.74 \mathrm{E}+10$	$1.84 \mathrm{E}+08$	$1.93 \mathrm{E}+09$	$4.60 \mathrm{E}+06$	2.5	6854
PRAD	179	179	140	39	142	2x48	$2.99 \mathrm{E}+10$	$1.67 \mathrm{E}+08$	$1.19 \mathrm{E}+08$	$6.66 \mathrm{E}+05$	0.4	484
READ	71	71	71	0		71 1x76	$1.90 \mathrm{E}+09$	$2.68 \mathrm{E}+07$	7.52E+07	$1.06 \mathrm{E}+06$	4.0	1403
SKCM	249	249	249	0	247	2x48	$4.20 \mathrm{E}+10$	$1.69 \mathrm{E}+08$	$1.41 \mathrm{E}+08$	$5.67 \mathrm{E}+05$	0.3	4642
STAD	43	43	43	0		432×50	$6.67 \mathrm{E}+09$	$1.55 \mathrm{E}+08$	$5.50 \mathrm{E}+07$	$1.28 \mathrm{E}+06$	0.8	57463
THCA	279	279	249	30	261	2x48	$5.07 \mathrm{E}+10$	$1.82 \mathrm{E}+08$	$5.36 \mathrm{E}+08$	$1.92 \mathrm{E}+06$	1.1	935
UCEC	321	320	316	4	316	161×76	$1.00 \mathrm{E}+10$	$3.12 \mathrm{E}+07$	$5.07 \mathrm{E}+08$	$1.58 \mathrm{E}+06$	5.1	9450

Supplementary Table S2. Additional statistics and information about RNA-seq libraries included in this study. RNA-seq libraries were generated by the TCGA using the Illumina TruSeq protocol, on tissue samples selected based on stringent quality requirements ($>80 \%$ or $>60 \%$ tumor nuclei, see http://cancergenome.nih.gov/cancersselected/biospeccriteria). Paired-end data was generated on the Illumina HiSeq 2000 platform, while single-end reads (COAD, READ, and UCEC) were generated on the Illumina Genome Analyzer IIx. Read lengths varied between 48 and 76 nt , but were quality-trimmed before further analysis as described in Methods.

The landscape of viral expression and integration in human cancer

ID	HBV genotype
TCGA-BC-A10W-01A-11R-A131-07 Contig: "17270"	C2
$\begin{aligned} & \text { TCGA-CC-5258-01A-01R-A131-07 } \\ & \text { Contig: "15238" } \end{aligned}$	B4
TCGA-CC-5258-01A-01R-A131-07 Contig: "15244"	B4
TCGA-CC-5262-01A-01R-A131-07 Contig: " 8683 "	B
$\begin{aligned} & \text { TCGA-CC-5262-01A-01R-A131-07 } \\ & \text { Contig: "8685" } \\ & \hline \end{aligned}$	B
TCGA-CC-5263-01A-01R-A131-07 Contig: "12025" TCGA-CC5263-01A-01R-A131-07	B
$\begin{aligned} & \text { TCGA-CC-5263-01A-01R-A131-07 } \\ & \text { Contig: "12029" } \\ & \hline \end{aligned}$	B
$\begin{aligned} & \text { TCGA-CC-5263-01A-01R-A131-07 } \\ & \text { Contig: "12051" } \\ & \hline \end{aligned}$	B4
TCGA-CC-5264-01A-01R-A131-07 Contig: "10755"	C1
TCGA-DD-A119-01A-11R-A131-07 Contig: "14856"	B2
TCGA-DD-A119-01A-11R-A131-07 Contig: "14860"	B2
TCGA-DD-A1EI-01A-11R-A131-07 Contig: "21462"	C2
TCGA-DD-A1EI-01A-11R-A131-07 Contig: "21452"	C2
TCGA-DD-A1EL-01A-11R-A155-07 Contig: "3970"	A
TCGA-DD-A1EL-01A-11R-A155-07 Contig: "3974"	A2
TCGA-CC-A1HT-01A-11R-A131-07 Contig: "112109"	E or G
$\begin{aligned} & \text { TCGA-CC-A1HT-01A-11R-A131-07 } \\ & \text { Contig: "112077" } \\ & \hline \end{aligned}$	C or B
$\begin{aligned} & \text { TCGA-CC-A1HT-01A-11R-A131-07 } \\ & \text { Contig: "112009" } \\ & \hline \end{aligned}$	C5
TCGA-DD-A1EA-01A-11R-A131-07 Contig: "13008"	C1

The landscape of viral expression and integration in human cancer

TCGA-DD-A1EA-01A-11R-A131-07 Contig: "12958"	C 1
TCGA-DD-A116-01A-11R-A131-07 Contig: "25740" C 2 TCGA-AK-3455-01A-01R-0864-07 (KIRC) Contig: "18800" C 1 TCGA-AK-3455-01A-01R-0864-07 (KIRC) Contig: "18810" C 1 l	

Supplementary Table S3. HBV genotype classification. Contigs assembled from HBV-positive LIHC and KIRC were phylogenetically analysed. Individual phylogenetic trees were constructed by maximum likelihood analysis after bootstrapping to 1000 replicates using the MEGA5 software (Tamura-Nei substitution setting, bootstrap values shown at nodes). The comparison includes published sequences representing all HBV genotypes and relevant subgenotypes.

The landscape of viral expression and integration in human cancer

Supplementary Table S4. Comparison of integrations detected using RNA-seq with DNAlevel results in 9 virus-positive HNSC tumors with available whole-genome sequencing data. 9 HPV-positive HNSC tumors had available low/medium-coverage whole-genome sequencing (WGS) data (297.4 to 557.9 million reads per sample). WGS datasets were processed with the same pipeline used for RNA-seq. 8/9 RNA-seq-based integrations were supported by at least one discordant read pair in WGS. WGS-based clusters with $>=2$ unique reads are indicated in the table. Integration clusters were grouped by genomic locus (indicated by light/dark blue).

The landscape of viral expression and integration in human cancer

Gene	Virus:gene	Hg19 gene:region	Hg19 breakpoint	Virus breakpoint	Correct orientation	Frame	Fused viral end	Sample ID
MLL4	HBV:GP3	MLL4: Exon	chr19:36214028	1827	Yes	In-frame	$3{ }^{\prime}$	TCGA-CC-5258-01
FN1	HBV:GP2	FN1: Exon	chr2:216248908	460	Yes	In-frame	$3 '$	TCGA-BC-A10W-11
PVT1	HPV:E2	PVT1:Intron	chr8:128869002	3821	Yes	Non-coding	$5 '$	TCGA-BB-7866-01
	HPV:E1	PVT1:Exon	chr8:128867401	883	Yes		$3 '$	TCGA-BB-7866-01
	HPV:L2	PVT1:Intron	chr8:128993412	4385	Yes		5'	TCGA-C5-A1M9-01
	HPV:E2	PVT1:Intron	chr8:128993412	3117	Yes		$3 '$	TCGA-C5-A1M9-01
	HPV:E1	PVT1:Intron	chr8:128944606	881	Yes		$3 '$	TCGA-C5-A1M9-01
	HPV:E6	PVT1:Intron	chr8:128944606	227	Yes		$3 '$	TCGA-C5-A1M9-01
	HPV:E1	PVT1:Exon	chr8:129001407	881	Yes		$3 '$	TCGA-C5-A1M9-01
	HPV:E6	PVT1:Intron	chr8:129001858	217	Yes		5^{\prime}	TCGA-C5-A1M9-01
	HPV:E1	PVT1:Intron	chr8:129001858	880	Yes		5'	TCGA-C5-A1M9-01
	HPV:L2	PVT1:Exon	chr8:128806916	4911	Yes		5^{\prime}	TCGA-C5-A2M1-01
	HPV:E2	PVT1:Exon	chr8:128806916	3739	Yes		5'	TCGA-C5-A2M1-01
	HPV:E1	PVT1:Intron	chr8:128978455	2118	No		5'	TCGA-C5-A1MJ-01
	HPV:E1	PVT1:Intron	chr8:128978455	2118	No		5'	TCGA-C5-A1MJ-01
LOC727677	HPV:E6	LOC727677:Intron	chr8:128404748	226	Yes	Non-coding	5^{\prime}	TCGA-EK-A2H1-01
	HPV:E1	LOC727677:Intron	chr8:128404748	877	Yes		5^{\prime}	TCGA-EK-A2H1-01
	HPV:E2	LOC727677:Intron	chr8:128404748	3631	Yes		5^{\prime}	TCGA-EK-A2H1-01
	HPV:E6	LOC727677:Exon	chr8:128302307	236	Yes		5'	TCGA-FU-A23K-01
	HPV:E1	LOC727677:Exon	chr8:128302307	932	Yes		5'	TCGA-FU-A23K-01
	HPV:E1	LOC727677:Exon	chr8:128302307	1361	Yes		5^{\prime}	TCGA-FU-A23K-01
	HPV:E6	LOC727677:Exon	chr8:128302306	222	Yes		5'	TCGA-FU-A23L-01
	HPV:E1	LOC727677:Exon	chr8:128302306	932	Yes		5^{\prime}	TCGA-FU-A23L-01
	HPV:E6	LOC727677:Intron	chr8:128312059	222	Yes		$5 '$	TCGA-FU-A23L-01
	HPV:E1	LOC727677:Intron	chr8:128312059	932	Yes		5^{\prime}	TCGA-FU-A23L-01
RAD51B	HPV:E1	RAD51B:Intron	chr14:68646030	929	No	N/A	5'	TCGA-EK-A2R8-01
	HPV:E6	RAD51B:Intron	chr14:68646030	230	No	N/A	$5 '$	TCGA-EK-A2R8-01
	HPV:E1	RAD51B:Intron	chr14:68651472	931	No	N/A	5^{\prime}	TCGA-EK-A2R8-01
	HPV:E1	RAD51B:Intron	chr 14:68671846	2669	No	N/A	5'	TCGA-EK-A2R8-01
	HPV:E1	RAD51B:Exon	chr14:69149653	840	Yes	Out-of-frame	$5 '$	TCGA-EK-A2H0-01
	HPV:E7	RAD51B:Exon	chr14:69149653	131	Yes	Out-of-frame	5'	TCGA-EK-A2H0-01
	HPV:E1	RAD51B:Intron	chr14:68701639	881	Yes	N/A	5'	TCGA-BA-4077-01
	HPV:E1	RAD51B:Intron	chr14:68703892	881	Yes	N/A	5^{\prime}	TCGA-BA-4077-01
	HPV:E1	RAD51B:Exon	chr14:68758600	883	Yes	Out-of-frame	3^{\prime}	TCGA-BA-4077-01
	HPV:E6	RAD51B:Exon	chr14:68758600	228	Yes	In-frame	$3 '$	TCGA-BA-4077-01
	HPV:E1	RAD51B:Intron	chr14:68801478	880	No	N/A	5^{\prime}	TCGA-C5-A1BE-01
ERBB2	HPV:E7	ERBB2:Exon	chr17:37873744	576	No	N/A	5'	TCGA-C5-A1M9-01
	HPV:E6	ERBB2:Exon, 5^{\prime} UTR	chr17:37855840	408	Yes	N/A	5^{\prime}	TCGA-DS-AOVM-01

Supplementary Table S5. Detailed mapping of fusion breakpoints in recurrent genes. Integration breakpoints in recurrent genes were further fine-mapped by identification of breakpoint-spanning reads (partly human and partly viral). Where applicable, we determined whether fusions were in-frame or out-of-frame. 2 and 1 spanning reads, respectively, supported sites in $E R B B 2$, while remaining listed sites were all supported by at least 10 reads. In cases where the exact breakpoint could not be determined due to identity between human and viral sequences (at most a 4 nt span), the position closest to human is presented.

