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ABSTRACT

Motivation: With the availability of many ‘omics’ data, such as
transcriptomics, proteomics or metabolomics, the integrative or joint
analysis of multiple datasets from different technology platforms
is becoming crucial to unravel the relationships between different
biological functional levels. However, the development of such an
analysis is a major computational and technical challenge as most
approaches suffer from high data dimensionality. New methodologies
need to be developed and validated.
Results: integrOmics efficiently performs integrative analyses of
two types of ‘omics’ variables that are measured on the same
samples. It includes a regularized version of canonical correlation
analysis to enlighten correlations between two datasets, and
a sparse version of partial least squares (PLS) regression that
includes simultaneous variable selection in both datasets. The
usefulness of both approaches has been demonstrated previously
and successfully applied in various integrative studies.
Availability: integrOmics is freely available from http://CRAN.R-
project.org/ or from the web site companion (http://math.univ-
toulouse.fr/biostat) that provides full documentation and tutorials.
Contact: k.lecao@uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 BACKGROUND
In the context of an integrative systems biology approach, the
simultaneous analysis of two datasets is an important task to better
understand the relationships between different biological functional
levels. For example, it is becoming increasingly clear that the
integration of ‘omics’ data, such as transcriptomics, proteomics
or metabolomics will provide a better understanding of biological
systems. However, the few existing integrative approaches are facing
computational issues because of the ‘large p, small n’ problem as is
the case of canonical correlation analysis (CCA; Hotelling, 1936)
that requires to compute the inverse of singular matrices. Another
challenge is to give interpretable results, i.e. to answer the following
questions (i) which variables from both types are related to each
other and (ii) which relevant variables provide more insight into
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the biological experimental hypotheses? The solution is to perform
variable selection while combining the two types of variables in the
modeled integration process, an issue that is challenging in statistics.
The integration and the selection of two different types of variables
is nowadays an active research subject as data of high dimension are
arising in numerous studies. They require appropriate methodologies
to extract or summarize the relevant information.

To address this problem, we developed and implemented two
useful approaches: a regularized version of CCA to overcome
computational issues in CCA when p>>n (González et al., 2009),
and a variant of partial least squares (PLS) regression (Wold, 1966)
called sparse PLS (Lê Cao et al., 2008, 2009) to simultaneously
integrate and select variables using lasso penalization (Tibshirani,
1996). Both approaches were thoroughly assessed on several
biological studies and were proven to produce relevant results.
integrOmics provides not only various frameworks to efficiently
analyze highly dimensional data but also numerous graphical outputs
to guide the interpretation of the results, as illustrated in the next
sections.

2 METHODS AND IMPLEMENTATION
We denote the two-block data matrices X (n×p) and Y (n×q) with
standardized columns, where the variables p and q are of two different types
(e.g. gene and metabolite expressions) and are measured on the same samples
or individuals n.

CCA and PLS are both exploratory approaches which enable the
integration of two datasets, but they fundamentally differ in essence. CCA
maximizes the correlation between linear combinations of the variables from
each dataset, whereas PLS maximizes the covariance. To be solved, CCA
requires the computation of the inverses of the covariance matrices XX′ and
YY′ that are singular if p >> n. Vinod (1976) and González et al. (2008),
therefore, introduced l2 penalties on the covariance matrices so as to make
them invertible in a ridge CCA (rCCA). On the contrary, PLS circumvents
this ill-conditioned matrices issue by performing local regressions. Both
approaches seek for (i) p- and q-dimensional weight vectors, called canonical
factors or loading vectors, and (ii) n-dimensional vectors, called score
or latent vectors. In order to give interpretable results and remove noisy
variables, Lê Cao et al. (2008, 2009) proposed to add l1 penalizations to
each PLS loading vector, in which the magnitude of the coefficients indicate
the importance of the variables in the integrative model. As a result, many
coefficients in these vectors are set to zero, which naturally allows for a
simultaneous variable selection in the two datasets. Two types of analysis
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were proposed in sPLS: a regression analysis for a causal relationship
between the two datasets, or a canonical analysis for a reciprocal relationship
similar to a CCA framework.

The functions in the CCAR package (González et al., 2008) were rewritten
in integrOmics to standardize the outputs in our package.

The R script below shows the calls in integrOmics for the
nutrimouse data included in the package. The user needs to specify (i)
the number of variables to select in the X and Y datasets with sPLS, or (ii)
the regularization parameters for each dataset with rCCA.

> X = nutrimouse$gene; Y = nutrimouse$lipid
> nutri.spls <- spls(X, Y, ncomp = 2, keepX = c(15,
+ 15), keepY = c(12,12), mode = ‘regression’)
> nutri.rcca <- rcc(X, Y, lambda1 = 0.064,
+ lambda2 = 0.008)

3 SOFTWARE FEATURES
Numerical outputs: numerous criteria are proposed to assess
the quality of the analysis in integrOmics. The Q2 criterion
(Tenenhaus, 1998) can be computed to determine the number of
components to choose from the (s)PLS regression model. The root
mean squared error prediction can be used to choose the optimal
number of variables to be selected using cross-validation. The
user can also estimate the predicted value of a new sample in the
model and regularization parameters in rCCA can be tuned using
cross-validation. Missing values of each dataset can be efficiently
imputed with a singular value decomposition using NIPALS, an
iterative version of principal component analysis (Wold, 1966).

Visualization outputs: focus is also made on visualization to guide the
interpretation of the results. Scatter plots of the score (latent) vectors
from the first dimensions allow the user to identify similarities
between the samples. Often, these similarities (clusters of samples)
were found to have biological meaning (González et al., 2009;
Lê Cao et al., 2009, see Supplementary Material). Further, the
(selected) variables can be represented by projecting them on
correlation circles to highlight their correlation structure (González
et al., 2008, see Supplementary Material). integrOmics also
enables the inference of large-scale association networks between
the two datasets with the use of network graphical displays
(Fig. 1), where the edges represent relevant associations between
the variables (nodes):

> network(nutri.rcca, ncomp = 2,
+ threshold = 0.6)

Interactive graph drawing may be used to include more relationships
in the network. Further examples and outputs can be found on
integrOmics web site.

Versatility of integrOmics: rCCA and sPLS have been
successfully applied in various biological contexts where
p+q>> n. sPLS with regression mode has been applied to integrate
gene expression with metabolite expression, clinical chemistry or
fatty acids measurements, where often p > 5000−22000 and q =
10−150 (Lê Cao et al., 2008). rCCA or sPLS with canonical
mode were applied to relate physicochemical measurements with

Fig. 1. Example of variable visualization outputs with integrOmics.

sensory variables or to relate gene expression measured on different
platforms (p � q > 1500), see Combes et al. (2008), González et al.
(2009), Yergeau et al. (2008) and Lê Cao et al. (2009) for more
details. We are currently investigating the versatility of sPLS to
integrate discrete and continuous variables (e.g. clinical variables
and microarray data in cancer studies) or, in a regression context, to
relate single nucleotide polymorphism to one or several quantitative
or qualitative traits.
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