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Abstract

Background: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to
therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated
with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase
proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the
innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate
and severe Colon-26 (C26)-carcinoma cachexia.

Methodology/Principal Findings: Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family
cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both
were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was
associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes,
including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and
STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen
and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer.

Conclusions/Significance: These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer.
Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular
link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These
results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes
expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into
acute phase proteins and exported into the blood.
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Introduction

Cachexia, or progressive wasting of fat and skeletal muscle

despite adequate nutrition, is a pervasive and devastating

complication of cancer [1,2,3]. Cachexia afflicts more than half

of all cancer patients and results in weakness, diminished quality of

life, poor response to therapy, and susceptibility to illness.

Moreover, cachexia itself is responsible for 25–30% of all

cancer-related deaths [1,2]. Currently, there are no approved,

effective treatments for muscle wasting in cancer.

Clinically, cancer cachexia is defined as weight loss of at least

5% in the presence of underlying illness with associated muscle
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weakness, fatigue, anorexia, low lean body mass and abnormal

biochemistry, including increased inflammation, anemia and low

serum albumin. Weight loss of 5%, 10% or 15% total body weight

is referred to as mild, moderate or severe cachexia, respectively,

and both weight loss and the rate of weight loss correlate positively

with mortality [4]. The etiology of cachexia is multi-factorial.

Although a subset of patients experience early satiety and

anorexia, studies have demonstrated that nutritional intake in

cachectic patients should be sufficient to maintain body weight,

but they lose weight regardless [5]. As well, cachectic patients can

be hypo-, normo-, or hyper-metabolic with respect to resting

energy expenditure, suggesting that alterations of metabolic rate

alone cannot be responsible for the observed loss of body mass [2].

Furthermore, tumor competition for metabolic fuels is an

unsatisfactory explanation of cachexia, both because pinpoint

tumors can produce cachexia and because human tumors of 500 g

or larger do not necessarily induce wasting [6].

The systemic metabolic derangements noted in cancer cachexia

are also observed with other forms of systemic inflammation [7].

Cytokines, including Tumor Necrosis Factor (TNF)/cachectin,

interleukin (IL)-1a, IL-1b, interferon-c, and IL-6 have been

implicated in cachexia both through experimental manipulation in

mouse models and by association of serum levels in patients with

cachexia [6,7]. IL-6 is a multifunctional cytokine involved in a

variety of host defenses and pathological processes [8]. Others and

we have shown that IL-6 administration to mice is sufficient to

induce wasting of muscle and fat stores and in the most severe

cases, ultimately death [9,10,11,12,13,14]. As well, IL-6 plays a

substantial role in inducing cachexia in mice bearing the colon-26

cancer cell line and the uterine cancer line, Yomoto, as

administration of IL-6 blocking agents reduce muscle wasting in

those models [15,16,17,18]. Serum IL-6 is a sensitive predictor of

weight loss, including in patients with advanced small cell lung

cancer [19] and colon cancer [20]. IL-6 and other gp130 ligands

such as LIF and CNTF are thought to mediate cachexia through a

combination of anorexia, lipid catabolism, insulin resistance, and

effects on protein synthesis and degradation. However, the

molecular pathways regulated by IL-6 in skeletal muscle that lead

to muscle wasting are unknown.

IL-6 acts on cells by binding the IL-6 receptor a-chain (IL-6Ra),

also known as gp80, either in its membrane-bound or soluble

form, inducing dimerization of gp130 and activation of its

associated Janus kinases (JAKs), which tyrosine phosphorylates

gp130 [21]. These events result in the activation of two major

signaling pathways, STAT3, and the mitogen-activated protein

kinase (MAPK/ERK) cascade. STAT3 activation by tyrosine

phosphorylation leads to dimerization and nuclear translocation,

DNA binding and modulation of gene expression. In cooperation

with c-Jun and various forms of the transcription factor CAAT

enhancer-binding protein (C/EBP), IL-6 signaling through

STAT3 up-regulates acute phase response protein gene expression

in the liver. The acute phase response is a generalized response of

the innate immune system, consisting of some 40 genes up-

regulated up to several thousand-fold upon stimulation [22].

Tisdale and Fearon with co-workers have linked cancer

cachexia with persistent elevations in acute phase response

proteins in serum [23,24,25]. Approximately 50% of all cancer

patients demonstrate increased serum acute phase response

proteins at the time of cancer diagnosis, and the percentage of

cancer patients with an elevated serum acute phase response

increases with disease burden and stage [24,26]. Elevated levels of

fibrinogen are observed in many malignancies, including lung and

melanoma, and increased expression correlates with a bleak

outcome [27,28]. Current models posit that tumor and host

derived factors induce proteolysis in order to fuel a chronic hepatic

acute phase response. Production of acute phase response proteins

in the liver requires catabolism of structural proteins in skeletal

muscle as a source of amino acids. Given the differences in amino

acid utilization in muscle proteins versus acute phase reactants, up

to 2.6 g of muscle protein or 12 g of muscle tissue may be wasted

to synthesize 1 g acute phase response proteins [29].

We sought to determine potential relationships between

elevated cytokines, the acute phase response and wasting in

cancer. Here we report characterization of the serum cytokines

and the muscle transcriptome in the colon-26 adenocarcinoma

model of cancer cachexia. We provide evidence of STAT3

activation, target gene expression and the acute phase response in

both liver and skeletal muscle in these mice, providing a molecular

link between these observed phenomena.

Results

Colon26 model of cancer cachexia
Implantation of colon-26 (C26) adenocarcinoma cells into

Balb/c or CD2F1 mice is a classic model of cancer cachexia

[30,31]. As in most cancer patients, food intake is not reduced in

C26 cachexia and IL-6 levels are elevated [30]. Interventions that

reduce IL-6 in this model also inhibit wasting [15,16,17,18]. In our

hands, CD2F1 female mice injected with C26 cells experienced

progressive declines in total body weight (Figure 1A-B). Mice were

sacrificed at 10% weight loss (19 days after injection) and 15%

weight loss (24 days), reflecting moderate and severe cachexia. The

decline in total body weight was accompanied by a proportion-

ately greater loss of muscle mass (Figure 1C). Quadriceps weight

decreased 23.7% ( p,0.001 vs. PBS-injected controls) in

moderately cachectic mice and 24.4% ( p,0.001) in severely

cachectic mice. Similarly, gastrocnemius muscle weights declined

25.2% ( p,0.001) in moderate cachexia and 30.0% ( p,0.001) in

severe cachexia. Such declines in muscle mass are known to result

from increased protein degradation due to an activation of the

proteolytic machinery [32] as well as from loss of specific muscle

proteins, such as Myosin Heavy Chain (MyHC) [33]. Consistent

with a loss in muscle protein, soluble quadriceps protein content

(that measured in standard protein extracts) was reduced in both

disease states (Figure 1G). Moreover, MyHC was significantly

reduced in both moderate (269%, p,0.01) and severe (281%,

p,0.01) cachexia (Figure 1E–F).

In contrast to muscle wasting, total liver mass increased 17.3%

( p,0.01) in moderate cachexia and 36.4% (p,0.001) in severe

cachexia (Figure 1D). Tumor size also increased with time and

wasting (Figure 1D), as did spleen size (data not shown).

Plasma analyte profiling of both moderately and severely

cachectic mice revealed that circulating levels of IL-6 and three

other gp130 ligands, IL-11, leukemia inhibitory factor (LIF) and

Oncostatin M were significantly increased in tumor-bearing mice

(Table 1). Levels of Tumor Necrosis Factor (TNF), IFN-c and IL-

1a, three other cytokines frequently associated with cachexia, were

significantly elevated as well. Serum levels of the IL-6 responsive

acute phase reactants fibrinogen, haptoglobin and Von Will-

ebrand Factor were also markedly induced in response to the

tumor. Unlike in humans, C Reactive Protein (CRP) is not an

acute phase protein in mice and was not elevated in cachexia. This

elevation of plasma IL-6 and the acute phase response proteins,

combined with the increase in liver mass are consistent with the

known effects of IL-6 in mediating the hepatic acute phase

response [13,34,35,36,37]. These results in mice with C26 tumors

parallel the association of the IL-6 and acute phase response with

muscle wasting in cancer patients.

Acute Phase Response in Cancer
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Transcription profile of the C26 model of cancer cachexia
We sought to identify changes in muscle gene expression

associated with wasting. Microarray analysis and data normaliza-

tion was performed on RNA isolated from the quadriceps of mice

with moderate or severe C26 cachexia and non-tumor bearing

controls. Unsupervised hierarchical classification of the samples

clearly distinguished control muscle, moderately wasted and

severely wasted samples (Figure 2A).

Statistical analysis was performed to identify genes exhibiting

significant changes in expression during cachexia. Among 45,281

transcripts, 1607 genes were found to be differentially expressed in

moderate cachexia and 1328 in severe wasting (–2# fold change

$2, p,0.05) (Figure 2B). Overall, 700 genes were expressed in

common in moderate and severe cachexia, of which all but 5 were

regulated in the same direction in both groups (Table S2). The top

30 genes by fold-change regulated in each of moderate and severe

Figure 1. Characterization of C26 cachexia. A, B, Body weight changes for control mice and for mice injected with C26 tumor cells. Mice
euthanized on day 19 had lost ,10% body weight, considered moderate cachexia. Mice euthanized on day 24 had lost ,15% body weight,
considered severe cachexia. C, Significantly decreased quadriceps and gastrocnemius weights were observed with C26 cachexia. Differences were not
significant in muscles from moderate versus severe cachexia. D, Liver weight and tumor weight both increased with severity/duration of cachexia. E,
Representative Western blotting for Myosin Heavy Chain (MyHC) in quadriceps muscle from both control and tumor bearing mice. F, Densitometric
quantification of the Western blotting for MyHC protein shows a marked reduction in both moderate (269% vs. controls) and severe (281% vs.
controls) cachexia. G, Total protein content in quadriceps muscle from control and tumor-bearing mice. Protein content is significantly reduced in
both moderate (27% vs. controls) and severe (213% vs. controls). n = 4–5 per group; **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0022538.g001
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cachexia are shown in Tables 2 and 3. Of the remainder, 907 were

unique to moderate cachexia (Table S3) and 628 to severe

cachexia (Table S4). Similarity of gene expression between the two

groups was highly significant ( p = 1.0 e-323). Despite the many

significantly changed genes, most genes commonly considered to

be ‘‘housekeeping’’ genes and used for normalization strategies

were not different among groups. Specifically, gylceraldehyde-3-

phosphate dehydrogenase (GAPDH), beta-actin (ACTB), b-actin

(ACTB), 18S RNA (RN18S), aldolase (ALDOA, ALDOB,

ALDOC) and most tubulins (TUBA2, TUBB1, TUBB2a,

TUBB2c, TUBB3, TUBB4, TUBG1, TUBG) were unchanged.

Known muscle growth regulatory genes
Muscle wasting of virtually all etiologies is associated with

increased expression of skeletal muscle ubiquitin E3 ligases,

Trim63/Murf-1 and Fbxo32/Atrogin-1 [38,39,40]. Both were

markedly increased in our microarray analysis, with a greater

increase in Trim63/Murf-1 versus Fbxo32/Atrogin-1 and higher

expression in moderate versus severe wasting (Figure 3). These

trends were confirmed by quantitative real-time RT-PCR. Muscle

atrophy is also associated with reduced expression of RNAs

encoding structural proteins. Indeed, by microarray and qRT-

PCR, cardiac alpha actin and myosin heavy chain 8 were down

regulated, more so in severe versus moderate wasting. These

results are consistent with reports from others in C26 cachexia

[33].

Pathway analysis
In order to identify molecular pathways regulated in response to

C26-induced cachexia, gene profiles from quadriceps of control,

moderate and severe cachexia were analyzed using NextBio

(Figure 4). Of the top 20 Broad MSigDB canonical pathways up-

regulated in both moderate and severe colon-26 cachexia, eight

were related to inflammation, including the complement and

coagulation pathways, IL-6, STAT3, JAK-STAT, cytokine and

Toll-like receptor pathways. Pathways related to the proteasome,

mitogen activated protein kinase (MAPK), the cell cycle, muscle

contraction, epidermal growth factor, ErbB and mTOR signaling

were also increased.

The top canonical pathways down-regulated were related to

skeletal muscle contraction, peroxisome proliferator-activated

receptor-c coactivator-1a, calcium regulation, extracellular matrix

interactions, skeletal myogenesis, and insulin and WNT signaling,

among others.

STAT3 activation and target gene expression in C26
cachexia

Given the prominence of the cytokine/IL-6/STAT3 pathways

in the microarray analysis, we sought to characterize expression of

STAT3 interacting genes in our model. Genomatix Bibliosphere

was used to generate a list of the 124 documented physical and

functional interactions with STAT3 in diverse systems (Table S5).

Of those, 26 genes showed significant regulation in the moderate

and severely wasted samples (Figure 5A).

We also asked whether STAT3 target genes were also induced.

Examination of the literature resulted in identification of 186

validated STAT3 target genes identified in several different species

and systems (Table S6) [41,42,43,44,45,46]. Of those, 39 were

expressed in either moderate or severe cachexia or both

(Figure 5B).

Among the known STAT3 targets increased in quadriceps in

moderate and severe cachexia were STAT3 itself and the

transcription factor CCAAT/enhancer-binding protein d (C/

EBP d) [47]. Both transcription factors participate in induction

and maintenance of acute phase response gene expression,

including fibrinogen, serum amyloid A, haptoglobin, and lipid

binding protein [47–48] [22]. C/EEBPd has also been shown to

induce expression of myostatin [49], a negative regulator of muscle

mass [3,50]. Microarray results were confirmed by qPCR and

demonstrated robust induction of STAT3, C/EBPd and acute

phase response genes in moderate and severe cachexia. STAT3

also is known to induce expression of its own feedback inhibitor,

Suppressor of Cytokine Signaling-3 (SOCS3). Indeed, SOCS3 was

increased at the mRNA level in cachexia (Figure 5C).

Table 1. Increased serum cytokines and acute phase response proteins with Colon-26 cachexia.

Normal Moderate Cachexia Severe Cachexia

gp130 Ligands

IL-6 (pg/ml) ,LOW. 104641*** 120622***

IL-11 (pg/ml) ,LOW. 20106122*** 318061424*

LIF (pg/ml) 15706170 19976165* 21376172*

OSM (ng/ml) ,LOW. 0.12160.060* 0.22060.024***

Other cachexia-associated cytokines

TNF (ng/ml) ,LOW. 0.06360.006* 0.04960.005*

IL-1a (pg/ml) 62617 204690 21460***

IFN-c (pg/ml) ,LOW. 2967.7** 1568**

Acute phase proteins

Fibrinogen (mg/ml) 30,80066,350 165,333621,455** 159,667658,586***

Haptoglobin (mg/ml) 1761.3 164611.5*** 173620.1***

Von Willebrand factor (ng/ml) 75636.7 322649.7*** 359665.6**

*P,0.05.
**P,0.01.
***P,0.001 versus normal. No differences between moderate and severe cachexia were statistically significant. ,LOW. indicates below the level of detection.
doi:10.1371/journal.pone.0022538.t001
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All this robust STAT3 target gene expression suggested that

STAT3 activity was increased in cachexia. STAT3 is activated in

part by phosphorylation at Y705, which induces dimerization,

nuclear translocation and DNA binding [51,52]. Western blotting

analysis of muscle extracts showed increased pY705-STAT3 levels

in both quadriceps and gastrocnemius of mice bearing the C26

tumor, in both moderate and severe cachexia (Figure 5 D).

Analogously, a marked increase in pY705-STAT3 levels was

Figure 2. Overlapping patterns of gene expression in skeletal muscle in C26 cachexia. A, Heat map of quadriceps gene expression in C26
cachexia showing distinct clustering of genes by experimental groups. Samples are normalized to the controls. Blue indicates down-regulated genes,
yellow up-regulated genes, and black no change. Only genes with P,0.05 by one-way ANOVA are shown. B, Comparison of gene expression in
moderate and severe C26 cachexia (NextBio).
doi:10.1371/journal.pone.0022538.g002
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observed in the liver (Figure 5 D–F). Interestingly, SOCS3 was

found to be only minimally up regulated at the protein level in

moderate cachexia in quadriceps and not at all in quadriceps in

severe cachexia, while it was down-regulated in gastrocnemius

samples in both moderate and severe cachexia (Figure 5 E–G). In

contrast, SOCS3 was unchanged in liver samples from both

control and cachectic mice (Figure 5 E–G). Consistent with

increased muscle pY705-STAT3 levels, overall increased nuclear

pSTAT3 levels and myonuclei localization were observed in

muscle from mice with C26 cachexia (Figure 6A–B).

Skeletal muscle is a major contributor for acute phase
response production

Given the robust induction of acute phase gene RNA in cachexia

(Figure 5), we sought to confirm expression at the protein level. By

Western blotting analysis, levels of the secreted protein fibrinogen in

quadriceps extracts were increased 2–12 fold in mice with C26

cachexia versus controls, depending upon which band is quantified

(Figure 7A). In liver, fibrinogen protein levels were increased 2–5 fold

(Figure 7A). Measuring fibrinogen signal against a standard curve of

purified murine fibrinogen, normal quadriceps contained approxi-

mately 0.9 ng fibrinogen per mg of protein, while quadriceps in C26

cachexia contained 1.9 ng/mg (Figure 7B), a ,2-fold increase. Normal

liver contained 1.8 ng/mg fibrinogen, while liver in C26 cachexia

contained 5.2 ng/mg fibrinogen, a ,3-fold increase. Fibrinogen

expression was also increased in quadriceps as well as liver in response

to administration of IL-6 (Figure 7B), suggesting this may be a general

response to conditions of high IL-6 and not limited to cancer.

These results in Figure 7A and 7B indicate that the magnitude

of fibrinogen induction and synthesis in quadriceps is similar to

that in the liver. Fibrinogen expression was also increased in

gastrocnemius in moderate and severe cachexia (Figure 7C),

indicating that fibrinogen is likely widely expressed in skeletal

muscle. Protein levels of SAA1 were also increased in quadriceps

and gastrocnemius by Western blotting analysis, suggesting that

skeletal muscle might express proteins for most or all of the acute

phase response genes induced at the mRNA level.

Cultured skeletal muscle fibers express acute phase
response proteins in response to IL-6 or STAT3 activation

Despite the induction of fibrinogen and SAA mRNA in muscle,

the protein levels of acute phase proteins in skeletal muscle extracts

theoretically could be due to contaminating plasma. In order to

further test our hypothesis that fibrinogen is produced directly from

Table 2. Top 30 genes regulated in quadriceps in moderate C26 cachexia.

Gene Gene Description p-value Fold Change

Fga fibrinogen alpha chain 0.0007 61.0

Itih3 inter-alpha trypsin inhibitor, heavy chain 3 0.0003 59.2

Otop1 otopetrin 1 5.50E-05 259.2

Egln3 EGL nine homolog 3 7.40E-05 55.6

Ucp1 uncoupling protein 1 (mitochondrial, proton carrier) 0.0176 244.1

Anxa13 annexin A13 0.0158 34.8

Pdzd7 PDZ domain containing 7 0.002 234.7

Trim7 tripartite motif-containing 7 0.0017 231.3

Saa1 serum amyloid A 1 0.008 29.9

Cxxc6 tet oncogene 1 0.0243 229.6

Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 0.001 229.6

Il1r2 interleukin 1 receptor, type II 0.0068 26.6

Doc2b double C2, beta 0.0075 25.6

Snf1lk salt inducible kinase 1 0.001 25.4

Apoa1 apolipoprotein A–I 0.0124 24.5

Mmd2 monocyte to macrophage differentiation-associated 2 0.0059 224.4

Aldh1a7 aldehyde dehydrogenase family 1, subfamily A7 0.0044 224.4

Ambp alpha 1 microglobulin/bikunin 0.0239 22.1

Aqp4 aquaporin 4 0.0352 221.1

Scgb3a1 secretoglobin, family 3A, member 1 0.0014 21.1

Dynlrb1 dynein light chain roadblock-type 1 6.40E-05 220.6

Lypd6 LY6/PLAUR domain containing 6 0.0365 218.9

Cxcl13 chemokine (C-X-C motif) ligand 13 0.0162 18.6

Tmem118 ring finger protein, transmembrane 2 0.0369 218.5

Scg3 secretogranin III 6.20E-05 218.3

Plcd4 phospholipase C, delta 4 0.0284 217.9

Lrrc38 leucine rich repeat containing 38 0.016 217.3

Maff v-maf musculoaponeurotic fibrosarcoma oncogene family, protein F 0.0068 17.2

Hpx hemopexin 0.0018 17.1

doi:10.1371/journal.pone.0022538.t002
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skeletal muscle following activation of the IL-6/STAT3 pathway,

we infected C2C12 murine myotube cultures with a recombinant

adenovirus expressing a constitutively activated form of STAT3,

cSTAT3 [53], along with GFP as a marker. Western blotting of

C2C12 extracts 48h after infection demonstrated significant

elevation of fibrogen in Ad-cSTAT3-GFP cultures versus Ad-GFP

cultures (+86% vs. GFP, p,0.01; Figure 8A). In order to determine

whether fibrinogen was produced after IL-6 challenging, C2C12

myotubes were exposed to murine recombinant IL-6 for up to 48 h.

This resulted into an overall increase in fibrinogen, both in the

cellular compartment by Western blotting (Figure 8B) and in the

culture medium by ELISA (Figure 8C). These experiments show

that even in the absence of other cell types and tissues, skeletal

muscle cells respond to IL-6 and activation of STAT3 by

synthesizing acute phase protein RNAs and proteins for secretion.

Discussion

We sought to mimic the high serum IL-6, acute phase response

and muscle wasting of patients with cancer cachexia. We chose

C26 adenocarcinoma, which exhibits increased circulating levels

of IL-6 that coincide with muscle wasting [15]. Certain clones of

the C26 that do not cause cachexia coincidently do not produce

IL-6 [54,55,56]. Consistent with a causative role in muscle wasting

in humans, circulating IL-6 has been reported to be a marker of

weight loss in patients afflicted by various forms of cancer [19].

Moreover, direct administration of IL-6 to mice induces systemic

muscle wasting. The consistency of such muscle wasting across

various routes of IL-6 administration, including by direct injection

of recombinant IL-6 [11], by transgenesis [57], by implantation of

osmotic pump delivering recombinant IL-6 [13], by injection of

IL-6 expressing CHO cells into athymic nude mice [12–13], and

by transfection of plasmid DNA encoding IL-6 [14,58], testifies to

the potency by which IL-6 causes the cachectic phenotype.

Regardless, IL-6 is likely not the only cytokine mediating muscle

wasting in cancer or even in the C26 model. Inhibition of IL-6

only partially rescues muscle wasting in the C26 model, causing

some to conclude that IL-6 is only one of several players involved

in the C26 model and cannot by itself induce the full cachectic

syndrome [16]. The other cytokines we observed increased in C26

mice that might also play a role in muscle wasting include IL-6-

family ligands such as LIF, as well as TNF-a, IFN-gamma, all of

Table 3. Top 30 genes regulated in quadriceps in severe C26 cachexia.

Gene Gene Description p-value Fold Change

Nnat neuronatin 1.40E-05 296.2

Cilp2 cartilage intermediate layer protein 2 0.0002 239.4

Lcn2 lipocalin 2 0.007 33.1

Saa1 serum amyloid A 1 0.0107 33.0

Gm1611 gene model 1611, (NCBI) 0.0015 232.9

Itih3 inter-alpha trypsin inhibitor, heavy chain 3 0.0004 29.9

Scgb3a1 secretoglobin, family 3A, member 1 0.0007 29.1

Rsph1 radial spoke head 1 homolog (Chlamydomonas) 1.50E-09 228.4

Cxcl13 chemokine (C-X-C motif) ligand 13 0.0086 24.0

Lypd6 LY6/PLAUR domain containing 6 0.0044 222.2

Aqp4 aquaporin 4 0.0024 221.1

Myoz3 myozenin 3 0.008 220.6

Plcd4 phospholipase C, delta 4 0.0389 220.4

Actc1 actin, alpha, cardiac muscle 1 0.0004 219.4

Kcng4 potassium voltage-gated channel, subfamily G, member 4 0.0006 218.4

Rapgef6 Rap guanine nucleotide exchange factor (GEF) 6 0.0099 218.1

Serpina3m serine (or cysteine) peptidase inhibitor, clade A, member 3M 0.0058 16.2

Csf2rb2 colony stimulating factor 2 receptor, beta 2, low-affinity (granulocyte-macrophage) 0.0285 15.7

D0H4S114 DNA segment, human D4S114 0.0004 215.7

Itih4 inter alpha-trypsin inhibitor, heavy chain 4 0.0001 15.7

Vsig4 V-set and immunoglobulin domain containing 4 0.0138 15.45

Mmd2 monocyte to macrophage differentiation-associated 2 0.0358 215.4

Il1r2 interleukin 1 receptor, type II 0.0173 15.2

Pld5 phospholipase D family, member 5 0.0068 213.9

Mt2 metallothionein 2 0.0184 13.9

Adamts4 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 4 0.0003 13.0

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N 0.0048 13.0

Gdap1 ganglioside-induced differentiation-associated-protein 1 0.0181 212.6

3526401B18Rik RIKEN cDNA 3526401B18 gene 0.0048 212.6

Chad chondroadherin 0.0023 212.6

doi:10.1371/journal.pone.0022538.t003
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which can induce cachexia independently. Zhou et al. recently

hypothesized IL-6 might serve only a marginal role in cachexia

[59]. Consistent with prior studies [60], they reported that

myostatin inhibition using a soluble receptor-fusion protein

developed by Lee et al. [61] reduced muscle loss in the C26

model. Serum IL-6 levels in such mice were not different from

control treated C26 mice. As well, the authors were unable to

induce muscle loss in mice given recombinant IL-6 by osmotic

pump. They conclude that muscle depletion in cancer cachexia

might depend upon myostatin and related ligands rather than on

pro-inflammatory cytokines alone. An alternative interpretation of

those data, however, is that myostatin inhibition results in muscle

hypertrophy, which balances IL-6 or other cytokine-induced

muscle wasting. Secondly, it is also likely that the authors failed to

Figure 3. Expression of known genes in muscle growth regulation in C26 cachexia. A, Expression of the ubiquitin ligases, Fbxo32/Atrogin-1
and Trim63/MuRF1 are induced by microarray and qPCR analysis. Expression of genes encoding muscle structural proteins, including ACTA1 and
MHY8 are decreased. B, Gene expression patterns in C26 cachexia mapped onto a schematic of muscle growth regulation pathways. Genes with
demonstrated growth-promoting activity in muscle are shown in green, growth inhibitory genes in red. The number on the left represents fold-
change in moderate cachexia and right in severe cachexia, with the arrow indicating the direction of the change. Genes with no values were either
not changed or not present in the dataset.
doi:10.1371/journal.pone.0022538.g003
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achieve a sufficient dose of IL-6 to effect wasting. They used

human IL-6, which has a 5- to 10-fold lower activity than murine

IL-6 on murine cells [62], at levels 40-60-fold less than those

reported to induce severe wasting [13]. (The ED50 for recombi-

nant human IL-6 in the T1165.85.2.1 mouse plasmacytoma assay

is 0.2–0.8 ng/ml, while it is 0.02–0.06 ng/ml for recombinant

murine IL-6.) Thus the preponderance of evidence indicates that

IL-6 can cause muscle wasting. Whether the effect is direct or

indirect is still unclear and what mechanism leads to muscle

wasting is still unknown.

Here we document that the STAT3 pathway is activated in

skeletal muscle in C26-bearing mice and that expression of

STAT3 target genes including the acute phase response genes are

activated. Among the STAT3 target genes significantly induced

was SOCS3, a classical feedback inhibitor of STAT3 activation.

STAT3 induces expression of SOCS3 which binds to activated

JAKs and receptors to inhibit STAT3 activation in at least three

ways: by preventing binding of STAT to activated receptors, by

binding and inhibiting activated JAKs and by targeting JAKs and

receptors for degradation [63]. Thus high levels of SOCS3 protein

should inhibit STAT3 activation. In contrast to the high SOCS3

mRNA levels in muscle, however, we observed little to no increase

in SOCS3 protein either in muscle or in liver. This lack of SOCS3

protein explains in part how high pSTAT3 levels could persist

regardless of high SOCS3 RNA levels and how sustained STAT3

activation might continue to drive muscle wasting while ostensibly

activating its inhibitor.

Emerging data indicate that SOCS3 is regulated transcription-

ally, but also post-transcriptionally and post-translationally. TNF

stabilizes SOCS3 mRNA elicited by lipopolysaccharide [64,65].

N-terminal truncated splice variants of SOCS3 generated under

stress conditions show greater stability than full-length, revealing

an important role for transcriptional control of SOCS3 [66].

Furthermore, Jak-mediated phosphorylation of SOCS3 at two

tyrosine residues in the conserved SOCS box, Tyr204 and

Tyr221, fully destabilizes SOCS3 protein and activates its

proteasome-mediated degradation, while, on the contrary, a

phosphorylation-deficient mutant of SOCS3, Y204F/Y221F, can

remain stable in the presence of activated Jak2 and receptor

tyrosine kinases [67,68]. These results indicate that JAK/STAT

activation drives not only SOCS3 mRNA expression, but also its

proteolytic degradation. Recently, a reduction in SOCS3 levels

has been found to be associated with, and even preceding, a

decrease in MyHC in an experimental model of muscle unloading

[69]. Taken together, these observations suggest that SOCS3 may

not be present in sufficient quantities to inhibit STAT3 activation

in cachectic muscle. Thus stabilization of SOCS3 protein might

represent an intervention for muscle wasting with high IL-6.

In this experimental work we also confirm that at least two acute

phase response proteins, fibrinogen and SAA1 are expressed in

muscle, and that in the case of the former, at levels about half of

that expressed in the liver. The significance of these results is at

least three-fold. First, they establish skeletal muscle as an

important source of acute phase protein synthesis. Second, they

establish a molecular link between the observations of high IL-6,

increased acute phase response proteins and muscle wasting in

cancer. Third, they suggest a molecular mechanism through which

STAT3 might causally influence muscle wasting by altering the

profile of genes expressed and mRNAs translated in muscle.

Generally, the acute phase response is considered to be hepatic

in origin, although several reports document expression of acute

phase response genes in lung and mammary tissue [70–71]. Our

results indicate that skeletal muscle may be a major physiological

source of acute phase response proteins, both at baseline and in

pathological conditions of high IL-6, including cancer. Skeletal

muscle constitutes ,40% of total body weight, while the liver is

10-fold smaller, at 4.5-5%. If the relationship of fibrinogen content

we observed is representative of other acute phase response

proteins, muscle might be the greater source of acute phase

proteins, synthesizing about 5-times the protein produced in the

liver. Thus skeletal muscle might be a key player in innate

immunity.

In addition to its functional and metabolic roles, skeletal muscle

is the major protein reservoir in the body. Under disease

conditions, the mobilized free amino acids can also be utilized

for metabolism of vital organs such as the liver, heart, brain or

lung [72]. Highly plastic, skeletal muscle proteolysis has been

proposed to be the main source for free amino acids for the hepatic

acute phase response. Prolonged synthesis of acute phase response

proteins, such as fibrinogen, is metabolically expensive and might

induce nutritional deprivation of skeletal muscle [25]. Calculation

by others suggest that catabolism of 2.6 grams of muscle protein is

required to produce 1 gram of fibrinogen [25,29]. As our

experiments suggest, in addition to providing amino acids to the

liver for production of acute phase response proteins, the skeletal

muscle itself synthesizes acute phase response proteins. Indeed, we

have shown the production and the release of fibrinogen from

muscle in vitro in C2C12 myotubes following activation of the

STAT3 signaling pathway. STAT3 is the main in vivo inducer of

hepatic acute phase response expression [73], thus STAT3 is a

strong candidate for mediating the muscle acute phase response.

Inflammation and correspondingly increased acute phase

response protein levels are a hallmark of cancer cachexia. It has

been hypothesized that hepatic synthesis of positive acute phase

response proteins using amino acids liberated from skeletal muscle

proteins is a major driver of skeletal muscle proteolysis, although

the nature of the signal mediating both processes was not

suggested [25]. Our findings show that IL-6 apparently mediates

both the hepatic and skeletal muscle acute phase response through

STAT3 activation in cancer, thereby positioning the IL-6/STAT3

pathway as a potentially important target to reduce skeletal muscle

wasting. STAT3-mediated production of acute phase response

proteins could represent a major re-prioritization of protein

synthesis in skeletal muscle, away from structural proteins and

towards secreted proteins. Given the enhanced proteolysis of

structural proteins in cachexia, freed amino acids may be

synthesized into acute phase response proteins. Ultimately this

would drain protein reserves in skeletal muscle and thus represents

a causal mechanism for muscle wasting in cancer.

STAT3 activation has also been observed in muscle in other

experimental models of cancer cachexia with high IL-6, namely

ApcMin/+ mice [74]. Extending these observations to other settings

of muscle wasting and elevated IL-6 and related cytokines, STAT3

activation might also mediate muscle loss in obesity [75], advanced

Figure 4. C26 cachexia pathway analysis. A. The top 20 Broad MSigDB canonical pathways significantly up-regulated in moderate and severe
cachexia versus controls. Pink bars (upper axis) represent the significance of the overlap. The triangles (moderate cachexia) and circles (severe
cachexia) (lower axis) denote the number of genes differentially expressed in that pathway. Red arrows indicate pathways related to IL-6/STAT3/
inflammation. B, The top 20 Broad MSigDB canonical pathways significantly down-regulated in moderate and severe cachexia versus controls. Green
bars (upper axes) represent the significance of the overlap. The triangles (moderate cachexia) and circles (severe cachexia) (lower axis) as above.
doi:10.1371/journal.pone.0022538.g004
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age or sarcopenia [76], inflammatory myopathies [77], burn [78],

and other diseases.

Methods

Mice
All animal procedures were approved by the University of

Miami Institutional Animal Care and Use Committee under

protocols 08–174 and 10–071. CD2F1 mice were purchased from

Charles River Laboratory. Colon26 cells (a gift from Dr. Donna

McCarthy) were cultured in Advanced RPMI 1640 medium

supplied with 10% fetal bovine serum and 1% penicillin/

streptomycin and maintained in a 5% CO2, 37oC humidified

incubator. Cells were passaged when sub-confluent, and 16106

cells per mouse were injected subcutaneously (56105 cells in each

flank). Mice were weighed daily then euthanized under isoflurane

anesthesia. Tissues were collected and weighed then snap frozen in

liquid nitrogen. Quadriceps and liver samples in Figure 6 for IL-6

treatment were generated as in [13,35,36,79,80].

Cell cultures
Murine C2C12 skeletal myoblasts (ATCC, Manassas, VA,

USA) were grown in high glucose Dulbecco’s Modified Eagle’s

Medium (DMEM) supplemented with 10% FBS, 100 U/ml

penicillin, 100 mg/ml streptomycin, 100 mg/ml sodium pyruvate,

2 mM L-glutamine, and maintained at 37uC in a humidified

atmosphere of 5% CO2 in air. For the experiments, cells were

seeded at 35000/cm2 to obtain full confluence 24 h later.

Differentiation to myotubes was induced by shifting confluent

cultures to DMEM supplemented with 2% horse serum. The

medium was changed every 2nd day, and within 5 days most of

the cells were fused to form myotubes. Cells were then exposed to

either Ad-CMV-GFP or Ad-cSTAT3-GFP (Vector Biolabs,

Philadelphia, PA, USA) or treated with IL-6 (100ng/ml; R&D

Systems, Minneapolis, MN, USA) for up to 48 h. Samples were

then collected after each time point and used for further analyses.

ELISA
Aliquots (150 ml) of culture supernatant from C2C12 myotubes

exposed to IL-6 were collected at every time point. Fibrinogen

levels were then assayed using the AssayMax Mouse Fibrinogen

ELISA kit (AssayPro, St. Charles, MO, USA) following the

instructions provided by the manufacturer.

Serum Analyte Profiling
All samples were stored at 280uC until tested (Rules Based

Medicine, Austin, TX). Platelet poor plasma samples were thawed

at room temperature, vortexed, spun at 13,000 x g for 5 minutes

for clarification and 150 mL was removed into a master microtiter

plate. Each sample was introduced into the capture microsphere

multiplexes of the RodentMAP 2.0, thoroughly mixed and

incubated at room temperature for 1 hour. Multiplexed biotiny-

lated reporter antibodies were then added, mixed and incubated

for an hour at room temperature. Multiplexes were developed

using an excess of streptavidin-phycoerythrin solution. Analysis

was performed in a Luminex 100 instrument and the resulting

data stream was interpreted using proprietary data analysis

software developed at Rules-Based Medicine and licensed to

Qiagen Instruments. Unknown values for each of the analytes

localized in a specific multiplex were determined using 4 and 5

parameter, weighted and non-weighted curve fitting algorithms

included in the data analysis package.

RNA extraction and quantitative Real-Time PCR
(qRT-PCR)

Total RNA was extracted from flash frozen quadriceps using

TRIzol as previously described [81,82]. Total RNA was quantified

with a Nanodrop 8000 Spectrophotometer (Thermo Scientific,

Wilmington) and its quality was assessed with a Bioanalyzer 2100

using the RNA 6000 Nano kit (Agilent, Santa Clara, CA). First-

strand cDNA was synthesized from total RNA using the

SuperScript First-Strand Synthesis System with SuperScript II

reverse transcriptase, according to the manufacturer protocols

(Invitrogen, Carlsbad, CA). The generated cDNA was used as a

template in real-time PCR reactions with QuantiTect SBR-Green

PCR master-mix (Bio-RAD) and were run on a Bio-Rad MyIQ

machine. Quantitative Real-time PCR reactions consisted of 1x

SybrGreen Supermix (Bio-Rad), 0.25 mmol/L forward and

reverse primers, and 10 ng cDNA. Cycling conditions consisted

of a three-step amplification and melt curve analysis using the iQ5

Real-time PCR detection System (Bio-Rad). Relative gene

expression was normalized by dividing the specific expression

value (starting quantity, ng) by the glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) expression value and calculated using

the 2-dDCT method [83]. Primer sequences are provided in Table

S1.

Microarray
Biotinylated cRNA was prepared using the Illumina TotalPrep

RNA Amplification Kit (Ambion, Inc., Austin, TX) according to

the manufacturer’s instructions, starting with 400 ng total

quadriceps RNA. Successful cRNA generation was checked using

the Bioanalyzer 2100. Samples were added to the BeadChip after

randomization using the randomized block design to reduce batch

effects. Hybridization to the MouseWG-6 v2.0 Expression

BeadChips (Illumina, Inc., San Diego, CA), washing and scanning

were performed according to the Illumina BeadStation 500

manual (revision C). The resulting raw microarray data were

generated using Illumina BeadStudio. GeneSpring GX 7.3 was

used for data normalization, statistical analysis (ANOVA, t-test)

and hierarchical clustering. Only genes that were detected present

(Illumina detection call p,0.01) in at least one group (control,

moderate cachexia or severe cachexia) were included in the

analysis. NextBio Professional and GeneGo Metacore were used

for gene and pathway analysis. Genomatix Bibliosphere was used

to generate a list of STAT3 associated genes.

All microarray data are MIAME compliant and have been

deposited in the Gene Expression Omnibus (GEO) Database

Figure 5. STAT3 and its target genes are activated in muscle in C26 cachexia. A: Heat map of gene expression changes of Stat3 and co-
cited gene products, as identified by Genomatix Bibliosphere. Blue indicates down regulated genes, yellow up regulated, and black no change. Only
genes with P,0.05 by one-way ANOVA are shown. B: A subset of STAT3 target genes identified through the literature are differentially regulated in
moderate and severe cachexia versus controls. C: STAT3 and its target genes SOCS3 and CEBPD are increased at the mRNA level by microarray and
qPCR. D: Protein levels for p-STAT3 and STAT3 in protein extracts from quadriceps, gastrocnemius and liver evaluated by Western blotting analysis. E:
SOCS3 protein levels. F: quantitative analysis of p-STAT3/STAT3 and p-STAT3/GAPDH ratio (expressed as fold-change vs. controls). G: quantitative
analysis of SOCS3 protein levels (expressed as fold-change vs. controls). GAPDH was used as an internal reference to confirm equal loading. n = 3–5
per group; *P,0.05, **P,0.01, ***P,0.001 vs. Controls, $P,0.05 vs. moderate.
doi:10.1371/journal.pone.0022538.g005
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(NCBI) as Series GSE24112. Reviewers can access the data

anonymously at the following link: http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token = bpyvjkkekkwswxk&acc = GSE24112.

Western Blotting
Total protein extract was obtained by homogenizing either

skeletal muscle or C2C12 myotube samples in RIPA buffer

(150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1%

SDS, and 50 mM Tris, pH 8.0) added with a protease inhibitor

cocktail (Roche, Indianapolis, IN, USA). Nuclear extracts resulted

from homogenization of muscle tissue in ice cold 10 mM HEPES,

pH 7.5, containing 10 mM MgCl2, 5mM KCl, 0.1 mM EDTA

pH 8.0, 0.1% Triton X-100, 0.1 mM phenylmethanesulfonyl

fluoride [PMSF], 1 mM DTT, 2 mg/ml aprotinin, 2 mg/ml

leupeptin. Samples were then centrifuged (5 min, 3000 g), pellets

resuspended in ice cold 20 mM HEPES, pH 7.9, containing 25%

glycerol, 500 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA,

pH 8.0, 0.2 mM PMSF, 0.5 mM DTT, 2 mg/ml aprotinin,

2 mg/ml leupeptin, and incubated on ice for 30 min. Cell debris

were removed by centrifugation (5 min, 3000 g) and the

supernatant collected and stored at –80uC. Protein concentration

(for both total and nuclear extracts) was determined using the

Bradford protein assay method (Thermo Fisher Scientific,

Suwanee, GA, USA).

Either total or nuclear protein extracts (30 mg) were then

electrophoresed in gradient SDS gels. Gels were transferred to

nitrocellulose membranes. Membranes were blocked with 1X

TBS, 0.1% Tween-20 (TBST) with 5% w/v Bovine Serum

Albumin (BSA) at room temperature for 1 hour, followed by an

overnight incubation with diluted antibody in blocking buffer at

4uC with gentle shaking. After washing with TBST, the membrane

was incubated at room temperature for 1 hour with a goat

polyclonal anti-rabbit IgG secondary antibody conjugated to

horseradish peroxidase (HRP) (sc-2313, Santa Cruz Biotechnology

Inc., Santa Cruz, CA). Membranes were visualized with enhanced

chemiluminescence (Pierce SuperSignal Pico or Femto) followed

by exposure to film. Antibodies were pSTAT3 (9145), STAT3

(9132), GAPDH (2118), Histone H3 (4499) from Cell Signaling

(Beverly, MA), and SOCS3 (Abcam 3693), Fibrinogen (Dako

A0080), and SAA1 (R & D Systems AF2948). Mouse fibrinogen

for quantitation was from Oxford Biomedical Research.

Immunofluorescence
Cryosections (8 mm) from gastrocnemius muscles of both

controls and C26-bearing mice were fixed in 3% formaldehyde,

permeabilized in PBS-Triton 0.1% and incubated with pSTAT3

primary antibody (9145, Cell Signaling) overnight at 4uC. After

three washes in PBS (5 min each), sections were incubated with

Figure 6. STAT3 nuclear localization is increased in the muscle of C26-bearing mice. A, p-STAT3 protein levels are increased in nuclear
extracts prepared from quadriceps of severely cachectic C26 tumor-bearing mice compared to controls. n = 5 per group. B, Immunofluorescence
analysis performed reveals increased pSTAT3 localization in myonuclei of gastrocnemius from severely cachectic C26 tumor-gearing mice (green).
Nuclear staining is shown in blue (DAPI).
doi:10.1371/journal.pone.0022538.g006
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Figure 7. Robust expression of acute phase response proteins in skeletal muscle versus liver in C26 cachexia. A. Western blotting and
quantitation of fibrinogen levels in control and C26 quadriceps and liver. Data (mean 6 SEM) are expressed as relative densitometry value. **P,0.01,
***P,0.001. B, Western blotting analysis of fibrinogen standard proteins and quadriceps and liver extracts for control, CHO-IL6 injected nude mice
and C26 injected CD2F1 mice. Quantitation was performed on the band indicated by the arrow. Data (means 6 SEM) are expressed as ng fibrinogen /
mg protein. *P,0.05, **P,0.01, ***P,0.001. C, Western blotting analysis demonstrates significantly increased fibrinogen and SAA1 protein levels in
quadriceps and gastrocnemius in moderate and severe C26 cachexia. *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0022538.g007
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the fluorescent secondary antibody (Alexa Fluor 488, Invitrogen,

Carlsbad, CA, USA) in common antibody diluent (BioGenex, San

Ramon, CA, USA) for 1 h at room temperature (RT) in the dark.

After being washed three times with PBS (5 min each), sections were

counterstained with DAPI and mounted with ProLong Gold

Antifade mounting medium (Invitrogen, Carlsbad, CA, USA).

Images were collected with constant exposure time across samples.

Statistical analysis
All results were expressed as means 6 SEM. Representative

Western blots show independent samples. Quantitation of the

band intensities was performed using the ImageJ software (US

National Institutes of Health, Bethesda, MD, USA). Significance

of the differences was evaluated by analysis of variance (ANOVA)

followed by Tukey’s test for experiments with more than 2 groups

or by Student t-test between 2 groups.
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blotting analysis and quantitation of fibrinogen in C2C12 myotubes infected with Ad-cSTAT3-GFP or Ad-GFP as control. Fibrinogen expression was
increased consistent with the increase in the levels of STAT3. **P,0.01, ***P,0.001 vs. GFP. B, Western blotting analysis and quantitation of
fibrinogen expression in C2C12 treated with IL-6 (100 ng/ml) for 1, 24, 48 h. GAPDH was used as loading control. Increased expression of fibrinogen
was observed at each time point after IL-6 treatment. Data (means 6 SEM) are expressed as relative densitometry value. ***P,0.001 vs. respective
controls. C, Fibrinogen levels by ELISA of the conditioned medium of C2C12 exposed to IL-6 for 30 min, 1, 6, 24, 48 h. Fibrinogen levels were
significantly elevated after 6, 24 and 48 h of IL-6 treatment. Data (means 6 SEM) are expressed as ng/ml. **P,0.01, ***P,0.001 vs. controls (C).
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