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OBJECTIVE—Genes responsible for monogenic forms of dia-
betes have proven very valuable for understanding key mecha-
nisms involved in �-cell development and function. Genetic study
of selected families is a powerful strategy to identify such genes.
We studied a consanguineous family with two first cousins
affected by neonatal diabetes; their four parents had a common
ancestor, suggestive of a fully penetrant recessive mutation.

RESEARCH DESIGN AND METHODS—We performed ge-
netic studies of the family, detailed clinical and biochemical
investigations of the patients and the four parents, and biochem-
ical and functional studies of the new mutation.

RESULTS—We found a novel mutation in the pancreatic and
duodenal homeobox 1 gene (PDX1, IPF1) in the two patients,
which segregated with diabetes in the homozygous state. The
mutation resulted in an E178G substitution in the PDX1 home-
odomain. In contrast to other reported PDX1 mutations leading
to neonatal diabetes and pancreas agenesis, homozygosity for
the E178G mutation was not associated with clinical signs of
exocrine pancreas insufficiency. Further, the four heterozygous
parents were not diabetic and displayed normal glucose toler-
ance. Biochemical studies, however, revealed subclinical exo-
crine pancreas insufficiency in the patients and slightly reduced
insulin secretion in the heterozygous parents. The E178G muta-
tion resulted in reduced Pdx1 transactivation despite normal
nuclear localization, expression level, and chromatin occupancy.

CONCLUSIONS—This study broadens the clinical spectrum of
PDX1 mutations and justifies screening of this gene in neonatal
diabetic patients even in the absence of exocrine pancreas
manifestations. Diabetes 59:733–740, 2010

A
lthough most cases of juvenile-onset insulin-
dependent diabetes are represented by type 1
diabetes, in a subset of patients diabetes occurs
in the neonatal period or very early. A number

of monogenic defects have already been recognized to
underlie these rare cases, and several genes have been
identified. Neonatal diabetes is permanent in approxi-
mately half of the patients and may be caused by muta-
tions affecting genes that play a critical role in �-cell
development, survival, or function. Currently, monogenic
causes are identified in �50% cases of permanent insulin-
dependent diabetes occurring before the age of 6 months
(1). Genes responsible for monogenic neonatal diabetes
have been identified by candidate gene studies (PDX1,
GCK, HNF1B, KCNJ11, and ABCC8), by linkage and
positional gene identification in neonatal diabetes syn-
dromes (EIF2AK3, FOXP3, PTF1A, and GLIS3), or by
linkage and candidate gene study in nonsyndromic neona-
tal diabetes (INS) (rev. in 1,2). While monogenic inheri-
tance is easily suspected in neonatal diabetes occurring in
association with other remarkable clinical features (syn-
dromic diabetes), finding new genes responsible for non-
syndromic monogenic diabetes may be particularly
challenging because these patients may be misclassified as
type 1 diabetic. The observation that HLA class II alleles in
patients with permanent insulin-dependent diabetes pre-
senting before age 6 months was observed to be similar to
that of healthy controls (3,4) strongly supports the hypoth-
esis that most cases of neonatal or very early–onset
diabetes have a different disease etiology than type 1
diabetes.

Genetic study of highly selected families with mono-
genic inheritance is a powerful alternative to identify these
genes. Here, we studied a single extended family with two
related patients affected by neonatal diabetes with no
other clinical features. We showed that a novel homozy-
gous mutation in the PDX1 gene is responsible for diabe-
tes in these patients, and we performed detailed clinical
and functional investigations to determine the mecha-
nisms responsible for this unexpected clinical presenta-
tion for PDX1 mutation.

RESEARCH DESIGN AND METHODS

The family was of Moroccan Caucasian origin and was identified through a
diabetic child with neonatal insulin-dependent diabetes (subject 8), whose
parents were consanguineous. A first cousin of the proband (subject 4) had
similar presenting manifestations and consanguineous parents. Initially, eight
individuals (subjects 1–8) including the two patients, their parents, and
unaffected siblings were studied. Another child (subject 9) was born after the
initial genetic study and was genetically diagnosed prenatally, and clinically
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confirmed subsequently, as nonaffected. The study was explained to the
parents, who agreed to participate in the genetic study and in subsequent
clinical and metabolic explorations and signed informed consents. The study
protocol was approved by the Hospices Civils de Lyon. Blood samples were
obtained on all family members, and DNA was extracted using standard
procedures (see Supplementary Methods, available in the online appendix at
http://diabetes.diabetesjournals.org/cgi/content/full/db09-1284/DC1).
Metabolic investigations. Oral glucose tolerance test (OGTT) and intrave-
nous glucose tolerance test (IVGTT) procedures were performed on the four
parents (subjects 1, 2, 5, and 6) using standard protocols (Supplementary
Methods).
Genetic studies: linkage and mutation screening and analyses. A ge-
nome-wide SNP scan was performed using the Affymetrix 10K microarray
panel. We performed multipoint genetic analyses using Merlin software under
a rare disease recessive model (allele frequency: 0.000001) with complete
penetrance and no phenocopy.

We performed mutation screening by sequencing genomic DNA of patients
and their parents using Big Dye terminator sequencing on an ABI-3730
sequencer (Applied Biosystems). Sequences of primers used for PDX1 se-
quencing are shown in supplementary Table 1. Multiple protein sequence
alignments in the region of the mutation were generated using Polyphen (5).
Plasmid constructs. Full-length mouse Pdx1 cDNA was cloned into the
pcDNA3 mammalian expression vector, in frame with three hemagglutinin
(HA) epitope tags at the NH2-terminus (HA-Pdx1). The E178G mutation was
recapitulated in the mouse sequence by PCR mutagenesis and cloned using the
same strategy (HA-Pdx1 E178G). The constructs were confirmed by sequencing.
Immunofluorescence. Baby hamster kidney (BHK) cells were seeded in
plastic chamber slides and transfected with Pdx1-expression plasmids using
Lipofectamine 2000 (Invitrogen). Forty-eight hours later, cells were fixed with
4% paraformaldehyde and stained with mouse anti-tubulin (Sigma), rabbit
anti-HA (Santa Cruz), and DAPI (nuclei).
Reporter assays. BHK cells were transfected with the indicated combina-
tions of Pdx1-expression plasmids, the Pdx1-responsive somatostatin pro-
moter reporter (TAAT)5-65 SMS-CAT (6), and cytomegalovirus (CMV)-�
galactosidase (internal control). Chloramphenicol acetyltransferase (CAT)
activity was assessed as described previously (7) and normalized to �-galac-
tosidase activity.
Chromatin immunoprecipitation. Min6 insulinoma cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) with 25.5 mmol/l glucose
(Invitrogen) and nucleofected with 2.5 �g Pdx1 expression vectors by
AMAXA. After 48 h, cells were harvested in 1� PBS and chromatin immuno-
precipitation was performed using rabbit anti-HA or purified rabbit IgG (Santa
Cruz), essentially as previously described (8). Chromatin occupancy was
assessed by quantitative PCR using previously described primers that amplify
the Pdx1 autoregulatory region, the insulin promoter, and the albumin
promoter (9). Enrichment is presented as a fraction of input chromatin.

RESULTS

Patient and family description: a single extended
family with two patients with neonatal diabetes. The
family was identified through a patient with neonatal
diabetes and extended to include a first cousin of the
patient with similar presenting manifestations. The par-
ents of each patient were consanguineous, and both
nuclear families were related, with a common ancestor to
all patients’ parents (Fig. 1). Patient 4, a boy, was born
after 39 weeks of pregnancy and was small for gestational
age (birth weight 2,030g [�2 SD] and birth length 45 cm
[�2 SD]). His glycemia was normal at birth and until day
15 of life, when he presented with hyperglycemia at 24.2
mmol/l. Patient 8, a girl, was born after 36 weeks of
pregnancy and was small for gestational age (birth weight
1,700g [�2 SD] and birth length 45 cm [�1 SD]). On the
first day of life, her glycemia was 19.6 mmol/l. Anti-GAD
and islet cell and human insulin antibodies were nega-
tive in both patients. Both patients were treated with an
insulin pump (1.0 units � kg�1 � day�1) and became
euglycemic with excellent linear growth thereafter. A1C
levels were maintained between 7.0 and 9.0% (patient 4)
and 7.0 and 8.0% (patient 8). The parents of these two
children (subjects 1, 2, 5, and 6) were healthy and
nondiabetic.

Based on the family structure (Fig. 1), with parental
consanguinity, a common ancestor to the four parents, and
the absence of clinical manifestations in the parents, we
considered that recessive inheritance of a monogenic
defect was the most likely mode of inheritance for neona-
tal diabetes in this extended family.
Genetic study: a homozygous PDX1 E178G mutation
responsible for neonatal diabetes. Based on the family
structure available at the time of genetic study (eight
individuals), we estimated that the maximum expected
logarithm of odds (LOD) score under linkage would be
3.26. We performed a 10K genome scan and linkage
analysis under a fully penetrant recessive model. We
identified a single region compatible with linkage (LOD
score 3.24) on chromosome 13q12 (Fig. 1). This region
extends over 4.4 Mb, between SNPs rs943721 and
rs723918, and contains 31 genes referenced in NCBI Ref-
Seq, including the PDX1 gene, encoding pancreatic and
duodenal homeobox 1, also known as insulin promoter
factor 1 (IPF1). Homozygous or compound heterozygous
mutations in PDX1 have been previously reported in two
unrelated patients with neonatal diabetes and exocrine
pancreas deficiency due to pancreas agenesis or hypopla-
sia (10,11), and heterozygous mutations are responsible
for maturity-onset diabetes of the young (MODY4) (7,12).
Consequently, and despite the absence of exocrine pan-
creas deficiency in these patients, we considered PDX1 as
a candidate gene for neonatal diabetes segregating in
this family. We sequenced all exons of PDX1, exon-
intron boundaries, and 2 kb of 5� flanking regions in this
family and identified an A641G substitution (RefSeq
NM_000209.3) homozygous in both patients, heterozygous
in the parents, and segregating with the disease in the
homozygous state, resulting in an E178G nonsynonymous
change (RefSeq NP_000200.1) (Fig. 2A). E178G is located
in the second helix of the PDX1 homeodomain, which is an
essential and highly conserved region that mediates DNA
binding to TAAT-rich motifs in PDX1 target genes (6). The
homeodomain also contains a nuclear localization signal
(NLS) (13). The E178G substitution was not found in 368
unrelated Caucasian controls. This amino acid is con-
served among homologous proteins, including in echino-
dermates, hemichordates, mollusks, and annelids (Fig.
2B).
Clinical investigation of homozygous patients. Fol-
lowing the identification of PDX1 E178G homozygous
mutations in the patients, we performed further clinical
and biochemical investigations and abdominal imaging.
Both patients’ weight and length, as well as bone age,
were within normal range at age 47 months (patient 4)
and 48 months (patient 8), with treatment consisting
only of 1.0 units � kg�1 � day�1 insulin (supplementary
Fig. 1).

Biochemical investigations of endocrine and exocrine
pancreas function are summarized in Table 1. C-peptide
secretion following a meal was undetectable, consistent
with marked �-cell deficiency, and glucagon level was
normal or slightly increased, indicating the presence of
functional �-cells. Serum lipase levels were low or unde-
tectable, and stool examination revealed slightly increased
fecal fat excretion, low chymotrypsin, and low elastase
levels, indicating biochemical evidence of some exocrine
pancreas deficiency. IGF-1 levels were very low, and
vitamins A, D, E, and K levels were at the lower limit of the
normal ranges, which is consistent with some degree of
malabsorption. This biochemical evidence of exocrine
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pancreas deficiency contrasts with the absence of detect-
able clinical signs.

Abdominal ultrasound imaging of patient 4 revealed a
normal-sized pancreas, with the presence of a 1.1-cm cyst.

For patient 8, ultrasound imaging revealed a well-individ-
ualized and homogeneous pancreas head but could not
identify the body and the tail (not shown). These results
suggest that PDX1 E178G homozygosity is sufficient for
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FIG. 1. Neonatal diabetes family tree with linkage analysis. Diabetic patients (neonatal diabetes) are shown in black. A unique region of 4.4 Mb
segregates with neonatal diabetes in this family (homozygous red haplotype in patients).
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pancreatic organogenesis. We note that the apparently
reduced-sized pancreas observed in patient 8 was corre-
lated with lower levels of serum lipase and stool chymo-
trypsin and elastase compared with patient 4, although he
remained asymptomatic.

Detailed investigation of the four heterozygous car-
rier parents. Individuals heterozygous for PDX1 muta-
tions associated with neonatal diabetes and pancreatic
agenesis in the homozygous state have been reported to
have early-onset type 2 diabetes (MODY4); mean ages at
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FIG. 2. PDX1 mutation identification in the neonatal diabetes family. A: Sequence of all individuals of the family, including prenatal case (subject
9), showing a homozygous mutation segregating with disease. Positions are given relative to reference sequences NM_000209.3 (cDNA) and
NP_000200.1 (protein). B: Multiple protein sequence alignment of the region of human PDX1-178E, located with helix 2 of the PDX1
homeodomain, showing PDX1 and homologous proteins from various organisms.
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onset were 35 years (range 17–67) (12) and 39–50 years
(11). In contrast, the four parents in our family, heterozy-
gous for the PDX1 E178G mutation, were not diabetic at
the age of examination (30–38 years old) and family
history of type 2 diabetes was unremarkable, based on
information provided by the family: the ten brothers and
sisters of the four parents were healthy and nondiabetic,
and none of the obligate carriers of the PDX1 mutation
(subjects 11, 14, 15, and 18 [Fig. 1]) were reported to be
diabetic. These family members were not available for
study.

To further explore pancreas function in PDX1 E178G
carrier individuals, we performed OGTT and IVGTT in the
four parents of the two patients (Fig. 3). All four parents
had normal fasting plasma glucose and normal glucose
tolerance, with preserved first-phase but reduced late-
phase insulin secretory responses during OGTT (Fig. 3A).
The first-phase insulin secretory response to IVGTT
tended to be low in these parents (25–88 mU/l) and was
very low in the two fathers (subjects 1 and 5; �1st
percentile) (Fig. 3B). Ultrasonography of the pancreas was
normal in the four parents (not shown). The levels of
serum lipase; vitamins A, D, E and K; and IGF1 were within
normal ranges (supplementary Table 2).
E178G does not affect Pdx1 localization. To gain
insight into the milder phenotypic and clinical manifesta-
tions of homozygous and heterozygous individuals for the
PDX1 E178G mutation, compared with previously de-
scribed homozygous and heterozygous individuals carry-
ing other PDX1 mutations (10–12), we performed
functional investigations of this mutation. The homeodo-
main of PDX1 (AA 144–206), which is 100% conserved
between mice and humans, contains the DNA binding
domain and NLS (6,13). The E178G mutation was re-
created in the context of the mouse Pdx1 cDNA sequence.
Both wild-type (WT) Pdx1 and the E178G mutant were
then cloned in frame with an NH2-terminal HA epitope tag
for overexpression and detection in eukaryotic cell lines
(HA-Pdx1 WT and HA-Pdx1 E178G). Upon transfection
into BHK cells, both WT and mutant Pdx1 localized to the
nucleus, with no evidence of cytoplasmic or membrane
staining (Fig. 4). These findings indicate that the E178G
mutation does not result in mislocalization of Pdx1, con-
sistent with its location at the NH2-terminal to the NLS
contained within the third helix of the homeodomain.

E178G reduces Pdx1 transactivation. To determine
whether E178G disrupted the ability of Pdx1 to transacti-
vate target gene promoters, we assessed its activity using
a CAT reporter plasmid harboring the Pdx1-responsive
TAAT1 enhancer of the somatostatin promoter (6). BHK
cells were transfected with the reporter in combination
with HA-Pdx1 WT, HA-Pdx1 E178G, or an empty vector
control (Fig. 5A). As expected, expression of HA-Pdx1 WT
potently induced reporter activation 	12-fold above that
of empty vector control. HA-Pdx1 E178G displayed signif-
icantly reduced activity compared with the HA-Pdx1 WT
protein (sixfold activation over empty vector; P � 0.01
compared with HA-Pdx1 WT). This difference in activity
was not explained by expression level, as Pdx1 protein
level from HA-Pdx1 WT– and HA-Pdx1 E178G–transfected
cells were equivalent in this system (Fig. 5B).
Pdx1 E178G displays normal chromatin occupancy.
Decreased transactivation activity may be explained by
the inability of a transcription factor to access chromatin
around the promoter or enhancers of its target genes. We
addressed this possibility using quantitative chromatin
immunoprecipitation (ChIP) in the mouse insulinoma
�-cell line Min6 to measure HA-tagged Pdx1 protein occu-
pancy of endogenous target gene promoters. HA-Pdx1
occupied two previously established target genes, the
proximal promoter of the insulin gene, and area I of the
Pdx1 gene itself but not the albumin promoter, which
served as a negative control (Fig. 6). We observed similar
specific enrichment for Pdx1 target sequences in immuno-
precipitates from cells expressing HA-Pdx1 and HA-Pdx1
E178G, suggesting that the mutation does not disrupt
normal chromatin occupancy or DNA binding.

DISCUSSION

PDX1 has been well established as a key factor in pancreas
development and function (14,15), with homozygous mu-
tations resulting in pancreas agenesis associated with
neonatal diabetes, intrauterine growth retardation, and
exocrine pancreas deficiency in humans and mice
(10,11,16,17). Only two patients with homozygous or com-
pound heterozygous PDX1 mutations have been described
to date: one with a homozygous frameshift mutation that
prevents translation of the homeodomain and C-terminus
(Pro63fsdelC) (10) and the other with compound heterozy-

TABLE 1
Follow-up examination of endocrine and exocrine pancreas function in neonatal diabetic patients

Patient 4 (male) Patient 8 (female) Normal values

Age at follow-up examination 47 months 28 months
Endocrine pancreas

C-peptide after meal (�g/l) �0.1 �0.1 0.8–4.0
A1C (%) 8.3 7.7 4.0–6.0
Serum glucagon (ng/l) 261 591 5–250

Exocrine pancreas
Fecal fat excretion (g/24h) 3.5 3.2 1–3
Stool chymotrypsin (units/g stools) 5.5 1.5 �8.4
Stool elastase (�g/g stools) 170 20 �200
Serum lipase (units/l) 14 �7 8–78
Vitamin A (�mol/l) 0.7 1.28 0.50–2.40
Vitamin D (nmol/l) N.D. 28 �25
Vitamin E (�mol/l) 22.1 15.2 12.0–28.0
Vitamin K (ng/l) 222 260 100–1,000
Serum IGF1 (�g/l) 43 32 54–194 (male subjects);

62–125 (female subjects)
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gous mutations (E164D and E178K) affecting the home-
odomain (11). Here, we identified a novel homozygous
PDX1 mutation, E178G, which results in a milder syn-
drome, with complete endocrine pancreas deficiency from
birth and prenatally (intrauterine growth retardation) but
with no clinical manifestation of exocrine pancreas dys-
function despite biochemical evidence of subclinical exo-
crine pancreas deficiency and structural abnormalities
detected by ultrasound scan. In our patients, there was
visible pancreatic tissue, although quantitatively reduced
in patient 8, and pancreatic �-cells appeared functional, as
indicated by glucagon secretion. The pancreatic cyst ob-
servation was discordant between the patients and may be
coincidental.

Heterozygous carriers of the PDX1 E178G mutation
were asymptomatic and nondiabetic, contrasting with the
MODY or early type 2 diabetes phenotype reported in
heterozygous carriers of inactivating PDX1 mutations in
humans and in mice (7,12,18–20). The two parents het-
erozygous for PDX1 E164D and E178K mutations studied
by Schwitzgebel et al. (11) had high-normal fasting glucose
at the time of examination, the mother had gestational
diabetes mellitus, and the family showed a significant
history of early-onset type 2 diabetes in relatives (11).
Despite their nondiabetic status and normal glucose toler-
ance, PDX1 E178G heterozygous parents showed low

insulin secretory response during OGTT, and two of the
four parents had very low first-phase insulin response
during IVGTT. Interestingly, detailed metabolic explora-
tions performed in heterozygous PDX1 Pro63fsdelC sub-
jects showed that they had increased insulin sensitivity, in
addition to impaired insulin secretion (18). The normal
phenotype observed in PDX1 E178G heterozygotes may be
the result of slightly impaired insulin secretion compen-
sated by slightly increased insulin sensitivity. Based on
these findings and the unremarkable history of type 2
diabetes in the extended family, it is unlikely that het-
erozygosity for this mutation predisposes one to type 2
diabetes, unless one is at a late or very late age.

Studies of PDX1 mutations found in neonatal diabetic
patients and heterozygous parents suggest that disease
severity is variable and correlates with the nature and
functional consequences of the mutation. Several rare
PDX1 variants have also been identified by sequence
screening in patients selected from multiplex type 2 dia-
betic families, some of which were reported to cosegre-
gate with early-onset type 2 diabetes in a dominant mode
(21–23). A possible role of rare PDX1 variants has recently
been proposed in ketosis-prone diabetes (24). Remark-
ably, exocrine pancreas development and function are
only affected in the most severe mutations in the homozy-
gous state, indicating a greater sensitivity of the endocrine
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compared with the exocrine compartment to PDX1 dys-
function. This concept of differential sensitivity to gene
dosage has been well illustrated in mouse models carrying
various combinations and gradations of Pdx1 mutations,
where homozygosity for hypomorphic Pdx1 mutations
also resulted in a milder phenotype, with development of
a normal-sized pancreas and delayed onset of diabetes
(25,26).

Our functional data indicate a specific effect of E178G
on the transactivation function of PDX1 because neither
nuclear localization nor chromatin occupancy was af-
fected by the mutation. In agreement with our findings for
the E178G mutation, the E178K mutation studied by
Schwitzgebel et al. (11) did not alter nuclear localization
nor the ability of Pdx1 to bind to DNA target sequences, as
assessed by electrophoretic mobility shift assay. Further,
in vitro interactions with NeuroD/Beta2, Foxa2, and Pbx1
were unimpaired. Rather, in functional studies conducted
in BHK cells, Pdx1 E178K displayed reduced transactiva-
tion activity due to a decrease in Pdx1 steady-state protein
levels resulting from impaired protein stability. In our
study, Pdx1 steady state levels were not altered by the
E178G mutation when expressed in the Min6 �-cell line,
which may more closely mimic the situation of primary
�-cells. Taken together, the results support a specific effect
of the E178G mutation on the transactivation function of
Pdx1 independent of subcellular localization, DNA bind-
ing, or expression level, suggesting that this mutation may
alter Pdx1 interaction with cofactors such as NeuroD,
Foxa2, Pbx1, or E47 or a novel factor not yet identified.

Our study extends the phenotypic spectrum of PDX1
mutations and justifies further mutation screening of this

gene in nonsyndromic neonatal diabetic patients. Based
on previous knowledge, such patients are unlikely to have
been tested for PDX1 mutations, in the absence of the
evocative clinical phenotype (1,27), and we recommend
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extending the current practice for molecular diagnosis of
neonatal diabetes to include PDX1 screening.
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