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Abstract

With the world’s population now in excess of 7 billion, it is vital to ensure the chemical and microbiological safety of our
food, while maintaining the sustainability of its production, distribution and trade. Using UN databases, here we show that
the international agro-food trade network (IFTN), with nodes and edges representing countries and import-export fluxes,
respectively, has evolved into a highly heterogeneous, complex supply-chain network. Seven countries form the core of the
IFTN, with high values of betweenness centrality and each trading with over 77% of all the countries in the world. Graph
theoretical analysis and a dynamic food flux model show that the IFTN provides a vehicle suitable for the fast distribution of
potential contaminants but unsuitable for tracing their origin. In particular, we show that high values of node betweenness
and vulnerability correlate well with recorded large food poisoning outbreaks.
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Introduction

By 2030, food demand is expected to increase by 50% [1] and

thus the global food supply is playing an increasingly critical role in

the economical and political landscape [2,3]. The latest deadly

food poisoning outbreaks in 2011 (Escherichia coli in Germany [4],

Listeria monocytogenes in the US [5]) and their economic, political

and social effects clearly illustrated the importance of prompt

tracing of the origin of specific food ingredients. This task is

placing a huge pressure on regulation and surveillance.

Since the 1960-s, global food transport has been increasing at an

exponential rate, faster than food production itself, as illustrated in

Fig. 1, which was generated using ComTrade [6], an agro-food

import-export database of the United Nations (UN). The picture

becomes even more complex if we factor in the growing number of

countries relying on international food trade and, additionally, the

fact that the traded food types have been increasingly moving from

agricultural raw materials and staples towards processed and

branded products. As a consequence, food fluxes between

countries form a complex, dynamic web of interactions referred

here as the International Agro-Food Trade Network (IFTN). For

several countries, this web ensures access to any food item

regardless of season and location. However, it may also present

serious vulnerabilities [7,8,9]. As we show here, the IFTN has

become a densely interwoven complex network [10,11,12,13],

creating a perfect platform to spread potential contaminants with

practically untraceable origins.

Using the ComTrade database [6], we constructed the IFTN

and analyzed its structure and dynamics during the last ten years.

Fig. 2, based on the 1998 data, shows a typical picture of the

IFTN. The nodes of the network represent the countries, while the

directed and weighted edges indicate the food trade fluxes between

the countries. The magnitude of a flux (edge weight) represents the

total value of the annual agro-food trade expressed in current US

dollars (US$) from one country to the other. The size of a node is

drawn proportional to the total import-export value of the

country, while the thickness of an edge is proportional to the

log-value of the food-flux it represents. Colors indicate the

betweenness-centrality values of the nodes and edges as detailed

in the caption of the figure and in the Materials and Methods

section.

Results

General Trends and Structure of the IFTN
The total amount of food-flux in the IFTN grew from

438Billion (B) US$ in 1998 to 1060B US$ in 2008; a 2.3-fold

increase, while the total food production grew only 1.4-fold in the

same period (from 1,400B US$ to 1,780B US$). The density of the

IFTN increased from 25% in 1998 to 33% in 2008 (see the

Materials and Methods). Unlike homogeneous random graphs, the

IFTN has a broad degree distribution, indicating a heterogeneous

network structure [10,11]. The distribution of fluxes (number of

edges with flux values within a given range) can be approximated

by a lognormal distribution (Fig. 3A), implying that this

distribution is also broad, with a fat tail.

A frequently used measure in the structural analysis of complex

networks is the node- or edge-betweenness centrality (see

[11,14,15] and also Materials and Methods). It quantifies how

‘‘central’’ is the position of the node/edge in the network, in the
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Figure 1. The world’s food trade grows faster than the food production. (A) (Log-linear scale). The world’s food production (thin red line),
measured in current Billion US$, doubles in ca. 30 years, while the amount of food transported on the IFTN (linearly fitted small squares, blue)
increases by ca. 10-fold in the same time. (B) (Linear scale). Food ingredients flow at an increasing rate from countries to countries, as shown by the
exponentially increasing [world export]/[world production] ratio calculated from the above data (small squares fitted by an exponential curve). Note
that this ratio is unaffected by the US$ inflation rate. Data obtained from UN databases [6,23].
doi:10.1371/journal.pone.0037810.g001

Figure 2. The complete International Agro-Food Trade Network in 1998. The IFTN is based on reported export, involving N = 207 countries
(nodes) drawn as disks and M = 10645 trade fluxes (those worth more than 1 million US$), drawn as directed edges/links. The top 44 countries with
the largest total trade activity (import+export) and the top 300 largest food-trade fluxes were colored according to their betweenness values (see
Materials and Methods). The rest of the countries and edges are drawn with gray. The sizes of the colored disks are proportional to the logarithm of
their total trade activity, ln(Ei+Ii). The thickness of the directed links is proportional to the log value of the trade flux in that direction, ln(Wij). The
structure of the IFTN was similar throughout 1998–2008.
doi:10.1371/journal.pone.0037810.g002
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sense that high centrality nodes/edges collect large portions of the

traffic through the network. For this reason, they also present the

Achilles’ heel of a network as changes in the status of these nodes

and edges will have the largest effect on the whole system [16,17],

both in connectivity and transport properties. Nodes with top

centrality values play a critical role in the IFTN because any food-

born substance (e.g. chemical or microbiological contamination)

will spread most efficiently through them into the rest of the

network, while tracing the source of such a substance is difficult

due to the large number of network paths running through these

nodes. Fast spread is also facilitated by the small value of the

average shortest path (measured in hop-counts) of the IFTN,

which is L = 1.52. That is, on average, one can reach any node in

less than 2 hops from any other node along shortest trade routes.

Though a single, specific food ingredient may not necessarily

follow the shortest paths in the IFTN (e.g., it could be included

into more complex foods and sent on various routes), the small

value of the average shortest path length is still an indicator of the

close proximity of almost all the nodes, guaranteeing fast spread on

the network.

Figs. 3B,C present histograms of betweenness values for nodes

and edges, respectively. These distributions show that the network

is dominated by a centrally positioned small set of countries (shown

with their 3-letter codes on the figures) and their trade

relationships. Interestingly, despite its relatively small size (com-

pared to other high betweenness countries such as USA or

Germany), The Netherlands, with trades totaling 50B US$ in

imports and 79B US$ in exports in 2008, has assumed a top

centrality position over the years.

Fig. 3D plots all countries by their degrees and the correspond-

ing betweenness values. It shows that countries with high

betweenness also tend to be network hubs in the IFTN, i.e. they

tend to have the largest degrees. However, there are also high

degree countries that do not have high betweenness centrality

values (e.g. Belgium). Note the role of Russia as a ‘‘bridge’’-node,

with a relatively high centrality, but a lower degree. Fig. 3D also

reveals a core group of 7 nodes (within the oval in the picture),

each engaging in trade relations with at least 77% of all the world’s

countries. When combined, they are responsible for 30% of the

total trade flux. These 7 nodes present hotspots for the whole of

the IFTN, as changes in their status would generate the largest

global impacts.

Fig. 4 shows the backbone of the IFTN in 2007. The nodes are

colored according to their betweenness centrality values, just as in

Figure 3. Structural properties of the IFTN. (A) Histogram of fluxes (blue bars) fitted by a lognormal distribution (solid continuous line). The
parameters of the fitted distribution for lnW are m = 7.68 (mean) and s = 3.42 (standard deviation). The flux W is expressed in thousand US$ units. (B)
Histogram of the betweenness centrality values of nodes and (C) edges. (D) A scatter-plot of degree vs. betweenness for every country. The figures
represent the 2007 dataset.
doi:10.1371/journal.pone.0037810.g003
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Fig. 2, but here the node size is proportional to the logarithm of

the total import+export value per capita in that country. Although

USA has the largest betweenness value, the per-capita trade

activity is largest for The Netherlands. Therefore, combining this

with the fact that it has the 4-th largest betweenness, the food

traders of The Netherlands have probably made their country into

the most critical hub of the IFTN. Assuming that this overall

picture of the network is sufficiently representative for food

products that may act as suitable vectors for microbiological or

chemical contaminations, the products that start from or go

through The Netherlands would most efficiently affect the whole

system.

Spread and Tracing on the IFTN
The above observations made about vulnerabilities are based on

graph-theoretical properties of the IFTN. Next, we develop a

dynamic model, by tracking the food fluxes between the countries

(Food Flux Model, or FFM), which will further underscore the

potential of the IFTN to efficiently spread contaminants, and the

poor outlook for their traceability. For brevity, in what follows, by

‘‘contaminated food’’ we mean a food item that contains some

specific substance (such as chemical or microbiological contami-

nation but it could also be common additives, or a subset of

ingredients) to be followed or traced along the food trade

pathways.

The total import (export) into (from) a country i can be written

as: Ii~
P

j,j=i Wji and Ei~
P

j,j=i Wij respectively. Suppose that a

country i produces an amount of Pi of a certain food, out of which

Pi
(in) is consumed there, while the rest Pi

(out) is exported (Fig. 5), and

thus Pi = Pi
(in) +Pi

(out). Let ri denote the fraction of the imported

food, which is passed on to other countries (via resale, repackaging,

or after processing it into more complex food items). We can

estimate the ri fractions as follows. The fraction of imported and

produced food that is locally consumed (obtainable from the

FAOSTAT food balance sheets [18]) can be written as ai = (1–

ri)Ii/Pi
(in). If we assume that consumption is proportional to the size

of the population of a country (at least for the highest trade activity

countries shown in Fig. 4), we can write: (1–ri)Ii+Pi
(in) = cPi, where c

is the typical value (in US$) of food consumed by a person in a year

in the country i with a population of Pi.

We estimated the value of c, for the backbone of the IFTN, to be

at around 104 US$. This value is fairly constant over the

backbone-countries. The reason is that these countries are

approximately on the same level of economic development, and

there is a low degree of variance between the shares of foods. (The

analysis can, of course, readily be repeated with country-specific c

values). From the above two equations it follows that.

Figure 4. The backbone of the IFTN based on the 2007 dataset. The backbone is formed by the top 44 nodes (countries) with the largest total
trade activity (import+export). Nodes and edges are both colored by their betweenness values; the thickness of the directed edges is proportional to
the natural logarithm of the trade value in that direction, as in Fig. 2. The size of a node, in this figure, is proportional to the logarithm of the per
capita trade activity, i.e. ln[(Ei+Ii)/Pi] where Pi is the population size of the country i. Countries are labeled by their 3-letter ISO 3166 codes.
doi:10.1371/journal.pone.0037810.g004

Figure 5. Schematics for the Food Flux Model. Country i with
population of Pi has a total yearly agro-food import Ii , out of which riIi is
exported, and (1-ri)Ii is consumed locally. A specific food ingredient to
be tracked is produced in this country in the value of Pi from which
Pi

(out) will be included into its total export Ei , while Pi
(in) is consumed

locally. The parameter c represents the average value (in US$) of the
food consumed by a person in a year.
doi:10.1371/journal.pone.0037810.g005
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ri ~ 1 cai�P i= 1zaið ÞIi½ �:

Suppose that a country s produces an amount of Ds from a

specific food ingredient and passes it to its neighbors in the IFTN

at rates proportional to the food-fluxes (Wsj) towards those

neighbors. A fraction rj of that ‘‘contaminated’’ food, namely

rjDsWsj/Es is then exported towards the neighbor j, while the rest,

(1–rj)DsWsj/Es is consumed locally. The following recursion then

describes the way food ingredients spread on the IFTN:

DiDs(n z 1) ~
X

j,j=i
rjDjDs(n)

Wji

Ej

, ð1Þ

where n denotes the number of export steps, Di|s(n) the amount (in

dollar value) of food containing the ingredient in question, arriving

into country i on the n-th step (this also allows for re-appearance in

the same country), given it started from country s, and the

summation is over all the neighbors j of i in the IFTN. The amount

of food D
(in)
iDs (n) consumed in country i that contain the tracked

ingredient can be obtained from the recursion

D
(in)
iDs (nz1) ~ D

(in)
iDs (n)z(1{ri)DiDs(nz1) ð2Þ

The initial conditions for (2) are given as Di|s(0) = 0 if i?s and

Ds|s(0) = bEs, where b represents the contaminated fraction of the

export from country s. We chose D
(in)
iDs (0)~0 for all i.

We simulated and recorded the contamination spread for n = 5

steps, from every one of the top 44 countries with the largest trade

activity as shown in Fig. 4. After the simulations, we selected the

top ten (s,t) source-target pairs with the largest contamination

Dt|s(n) at the target country; see Table 1. Germany came out with

the largest potential for contaminated food import with The

Netherlands as the source of the contamination.

Considering the above mechanism as a worst-case scenario, we

may assess how a contamination starting from a source country s

affects the global population. This can be quantified via

Rs(n)~
P

i D
(in)
iDs (n), which we call the contamination impact.

Fig. 6A shows the top 14 countries by their Rs(n) value, as function

of export steps, n.

We can also define a vulnerability measure Vi(n) for a country i,

as the average impact generated by other countries as if the

contamination started from there, where the average is taken over

all sources s. That is Vi(n)~ 1
n

P
s D

(in)
iDs (n) (Fig. 6B). As seen in

Figs. 6A,B, the ranking for the countries with the highest impact

and vulnerability values is practically independent of n, the

number of export steps. As the diameter of the IFTN is small,

contamination can spread very efficiently, and thus already modest

values of n will start capturing the effects on the whole network.

The betweenness-based top lists in Figs. 3C,D correlate well

with the top lists of Figs. 6B,C, which was obtained using the FFM.

In particular, the USA, The Netherlands and Germany repeatedly

emerge among the top hotspots for contamination impacts. Fig. 6C

shows a scatter-plot of ‘‘vulnerability vs. betweenness’’ for the 44

countries studied. Encircled symbols show that high vulnerability

and betweenness values (see Table 1) correlate well with recorded

large food poisoning outbreaks.

Note that, although our predictions are based on coarse data,

the developed models can be certainly refined once higher

resolution data (food types, time-scales etc) becomes available.

Discussion

The World Trade Web (WTW) has been extensively analyzed

by network methods, for example in [19] and [20]. Our aim was

not to repeat it for a subset of the WTW, but to demonstrate that

the trends shown in Fig. 1 cannot be sustained if both free trade

and the demand for biotracing are to be met. During a food

poisoning outbreak the first and most important task is to identify

the origin of the contamination. Delays in this task can have severe

consequences for the health of the population and incur social,

political and economical damages with international repercus-

sions. A case in point is the consequences of the three weeks delay

in identifying the origin of the E. coli contamination in Germany in

June 2011 [4].

Note that our study does not predict an increase in the number of

food poisoning cases but that, when it happens, there will be

inevitable delays in identifying the sources due to the increasingly

interwoven nature of the IFTN. That is, even if food contamina-

tion was less frequent, for example due to better local control of

production, its dispersion/spread is becoming more efficient. In

particular, our study identifies critical spots in the network that

may seriously hamper future biotracing efforts. Although the

analysis presented here is based on coarse data representing

aggregated food fluxes, it can also aid with biotracing, in a

‘‘Bayesian approach’’ sense by providing a list of most probable

sources and pathways to be used as starting points.

Recently there have been calls for an interdisciplinary approach

[7] to monitor, understand, and control food trade flows as it

becomes an issue no longer affecting just single countries, but the

global livelihood of the human population. Such an approach

would facilitate a better understanding of the IFTN, especially if it

is broken down into time-scales, food types and their interdepen-

dencies. This would: 1) contribute to protection against outbreaks

and intentional attacks; 2) help devise better traceability methods

and thus increase consumer confidence; 3) allow for a better

distribution of food and thus reduction of wastage [21], estimated

to be about 30 – 40% globally [2]; 4) increase the reliability and

stability of supply systems; and 5) help decrease the environmental

burden of food production and distribution logistics. Such an

interdisciplinary approach is entirely within the means of the state-

of-the art of science and technology, if supported by detailed and

Table 1. Largest Dt|s(n) contamination values and the
respective source-target pairs using the 2007 dataset in the
Food Flux Model.

SOURCE TARGET Dt|s(n) (Million US$)

The Netherlands Germany 6.48

USA Japan 6.46

Canada USA 6.05

USA Canada 5.24

USA USA 4.97

France Germany 4.93

The Netherlands UK 4.63

Germany Germany 4.24

The Netherlands France 4.40

The Netherlands USA 4.02

Parameters used for the simulation: b = 0.001 and n = 3.
doi:10.1371/journal.pone.0037810.t001
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systematic data collection. The role of state and interstate

organizations (e.g. EU, UN) is essential in this. Although much

of the food commerce and trade happens through the private

sector, information collection and sharing should be incentivized

to generate the data needed for an in-depth knowledge of the

structure and dynamics of the IFTN, to ensure the safety and

security of the global food system.

Materials and Methods

Data Sources and Analysis
The data used for this study was obtained from the ComTrade

web site of the UN [6]. The HS-02 classification system was used

to select the product codes 01–24, in the query, as these are related

to food. The records used in our study were those reporting the

values of certain food categories imported/exported from one

country to another, expressed in current US dollars (US$). Since

the total (worldwide) import must equal the total export, these

were also compared/checked and no significant differences were

found. Our calculations are based on records when the reporting

country was the exporter.

Betweenness Centrality (BC)
BC is a measure that rates the importance of the position of a

node or an edge in the network with respect to transport through

the whole network. While this is usually done with shortest paths

on a graph, here we used a weighted betweenness definition that

takes into account the fluxes through edges [22]. For betweenness

calculations, the weight of a link is defined as its resistance to

transport, and one searches for lowest total weight (resistance)

paths from a node m to a node n within the network. The weight of

the directed link (i,j) is defined as wij = 2ln (Wij/Wmax), where

Wmax~ max
k,l

Wkl is the largest flux in the network. Using this

logarithmic form, the weights are all positive and additive along a

path. If smn(i) denotes the number of lowest total weight (LTW)

paths from node m to node n that are passing through i, and smn

denotes the total number of LTW paths running from m to node n,

the betweenness centrality of node i is defined as

Bi~
P

m,n smn(i)=smn (a similar definition holds for an edge).

Graph Density
The density of a directed graph r is given by the ratio r = M/

[N(N-1)], between the number of edges it has, M, and the number

of edges it could possibly have, N(N-1), where N is the number of

nodes. For 2007, we have N = 202 and M = 13534 giving a graph

density of r = 0.33 (33%), meaning that the graph is not sparse,

but rather interconnected.

Food Flux Model Parameters
Using the fluxes and population sizes directly from the 2007

data, we calculated the fraction aiPi/(1+ai)Ii for each country. The

ratios obtained were exponentially distributed, with values

between 0 and 0.003 [person/US$]. For the backbone countries,

they were typically small, less than 0.0002, due to the large fluxes

assigned to these countries. The obtained fractions were used to

calculate the values of ri = 1– [caiPi/(1+ai) Ii ], using a constant for

the parameter c (per person food consumption in a country in a

year, expressed in US$). In reality, it varies from country to

country but here, as a first approach, we chose a single value

representative for the backbone of the IFTN, which indeed,

involves countries at similar levels of economic development. This

did not affect the results significantly because the fluxes between

countries that are not part of the backbone represent a negligible

portion of all fluxes in the network. The ranking of countries based

Figure. 6. Spread analysis based on the Food Flux Model. (A)
Evolution of the contamination impact Rs(n) and (B) vulnerability Vi(n),
for the top 14 countries as function of the export steps, n. (C)
‘‘Vulnerability vs. betweenness’’ scatter plot for the 44 countries with
the largest trade activity. Countries with significant food poisoning
cases in the last 15 years are indicated by encircled symbols. In
particular: the 2011 Listeria outbreak in the USA, from produce, causing
29 deaths [5]; the 2011 E. coli outbreak in Germany, from red beet
sprout, with 46 deaths and 4000 diagnosed cases [4]; the Salmonella
outbreak in 2005 in The Netherlands with 165 diagnosed cases [24]; the
1996 E. coli outbreak in the UK with 512 confirmed cases, 17 deaths
[25]; the 2008 Listeria outbreak in Canada with 57 diagnosed cases and
27 deaths [26]; the 1996 E. coli outbreak in Japan, from radish sprout,
with 2 infant deaths and more than 5000 hospitalized [27].
doi:10.1371/journal.pone.0037810.g006
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on their Ri and Vi values proved to be robust for a wide range of

values for the parameter c (10, c ,105 US$). For the simulation

results shown we used c = 104 US$. On the other hand, the

ranking of the countries proved to be highly sensitive to the

distribution of the aiPi/(1+ai)Ii fractions; for which, however, we

used data from UN databases.

The second model parameter, b, was used to define initial

conditions for the simulation. It represents the fraction of the

exported food that is contaminated. The value of this parameter

would depend on the actual contamination; however we use it as a

simple multiplying factor which had no effect on the overall

ranking. Here we chose b = 0.001. Had we chosen for example

b = 0.01, the values in Table 1 would have been 10 times larger,

but there would have been no other changes.
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