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Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis
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ABSTRACT
Background: Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS),
often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased
in daughters of affected women is through exposure to elevated androgens in utero.
Hyperandrogenemic conditions have serious health consequences, including increased risk for
hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce
hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant.
Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis
caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of
prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of
testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then
completed a gut microbiota and cardiometabolic profile of the adult female offspring.

Results: The metabolic assessment revealed that adult PNA rats had increased body weight and
increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in
inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart
rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative
abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae,
and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also
had an increased relative abundance of bacteria associated with biosynthesis and elongation of
unsaturated short chain fatty acids (SCFAs).

Conclusions: We found that prenatal exposure to excess androgen negatively impacted
cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart
rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of
bacteria involved in metabolite production of short chain fatty acids. These results suggest that
early-life exposure to hyperandrogenemia in daughters of women with PCOS may lead to long-term
alterations in gut microbiota and cardiometabolic function.
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Background

Exposure to androgens can have a powerful effect on a
developing female fetus. In humans, placental aromatase
deficiency or congenital adrenal hyperplasia can expose
the fetus to excess endogenous androgens.1-5 In the case
of gestational hyperandrogenemia, polycystic ovary syn-
drome (PCOS), gestational luteoma6, or hyperreactio
luteinalis,7 the fetus may also be exposed to high levels
of testosterone from the maternal circulation.8,9

Hyperandrogenism during pregnancy causes fetal virili-
zation,10,11 intrauterine growth restriction,12 and low
birth weight.13 These prenatal complications positively
correlate with the development in adulthood of hyperin-
sulinemia14,15 and metabolic disorders such as obe-
sity,16,17 hypertension,18 and PCOS.19,20 Similar findings
of obesity, hyperleptinemia,21 and hyperinsulinemia
(19) have been shown in rats and other animals exposed
to excess androgens in utero.22
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In rats, gestational days 10–20 are the equivalent of
the second trimester of human pregnancy.23,24 During
this period, testosterone peaks between days 17–19.25,26

Excess prenatal androgens (PNA) during this period
induce a hypertensive phenotype in adulthood that is
characterized by impaired blood flow in the vascular
endothelium12, increased blood volume27, and increased
blood pressure in adult females andmales.28,29 However,
the mechanism by which androgens induce this hyper-
tension is not clear. Interestingly, studies of microbial
transplantation have demonstrated that the microbiome
affects blood pressure.30

The microbiome exhibits alterations in PCOS
patients and in animal models of excess androgens.
Recent studies have found that the profiles of bacterial
abundance exhibit similarities between the orders Clos-
tridales and Bacteroidales.22,31,32 Obese and non-obese
women with PCOS had enriched Bacteroidetes and a
decreased abundance of Akkermansia (of the phylum
Verrucomicrobia), Alistipes, Corprococcus, and Rumi-
nococcus.33 Akkermansia prevalence decreased in diet-
induced obesity rats and was inversely correlated with
peripheral inflammation in adipose tissue.34 Alistipes, a
bile acid-tolerant bacteria from the genus Bacteroi-
detes, was decreased in letrozole-treated PCOS mice.
In addition, abundance of Alistipes positively corre-
lated with fecal levels of short-chain fatty acids
(SCFAs)35¡37, which are thought to reduce obesity and
insulin resistance.38,39 Finally, a decrease in bacteria of
the genus Coprococcus and Ruminococcus were both
associated with activation of the hypothalamus-pitui-
tary-adrenal axis and stress-induced depression.40,41

Recent evidence also suggests that these microbial
alterations may drive some of the metabolic derange-
ments associated with PCOS. In an aromatase inhibi-
tor-induced PCOS model, fecal microbial transplant
from control animals alleviated symptoms associated
with androgenization such as acyclicity, weight gain,
and hyperleptinemia in adult rats.42 Therefore, under-
standing the origins of dysbiosis in PCOS may be cru-
cial to preventing and treating this disorder.

How and when the changes in the microbiota occur
in hyperandrogenemic states is currently unknown. Pre-
vious studies have found that colonization of the gut
microbiota begins in utero43, although growth of bacte-
rial populations that dominate during adulthood begins
within a few days after birth.44 Further bacterial diver-
gence occurs after puberty, suggesting that hormonal
milieu can influence the microbiome. Interestingly,

microbial transplantation of male cecum gut flora to
females increases serum testosterone levels in both sham
and ovariectomized females.45 Based on these accumu-
lated findings, we hypothesize that the hypertension
seen in PCOS has early origins in dysbiosis caused by in
utero exposure to androgen excess. As a first step to test-
ing this hypothesis, we examined whether in utero expo-
sure to maternal hyperandrogenemia can persistently
alter the microbiome of female rat offspring and lead to
hypertension in adulthood.

Materials and methods

Animals

Male and female Wistar rats (approximately
11–12 weeks of age) were purchased from Charles
River Laboratories and housed within the Department
of Laboratory Animal Resources Facility of the Uni-
versity of Toledo College of Medicine and Life Scien-
ces, Toledo, Ohio, USA. The animals were on a 12-hr
light-dark room schedule and fed ad libitum. Female
rats were paired with males for two days and sepa-
rated. Pregnancy was determined by identification of a
vaginal plug; that day was designated gestational day
1. The method for prenatal androgen exposure model
is described in previous studies.20 Briefly, pregnant
dams were subcutaneously injected on gestational day
20 under isoflurane with 5mg/kg of body weight with
testosterone cypionate (Sigma-Aldrich) in sesame oil
or vehicle (sesame oil only). A schematic of the experi-
mental design and animal timeline can be found in
Fig. 1. Only female offspring were used for metabolic,
cardiovascular, and gut microbiota profile studies.

Metabolic phenotype assessment

Glucose tolerance tests (GTT) and Insulin tolerance
tests (ITT) were performed at PND120 (VEH, n D 7;
PNA, n D 7) as previously described.46,47 Body weight
was measured monthly from PND120 to PND240
(VEH, n D 12; PNA, n D 10).

Cardiac histology

For animals used in cardiac histology and gene
expression analyses, sacrifice occurred at PND 240
(VEH, n D 4; PNA, n D 4). Hearts were removed and
weighed immediately after sacrifice. The heart was
then cut on the short-axis exposing the right ventricle,
left ventricle, and papillary muscles and then placed
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into 10% formalin for 24 hours and 70% ethanol
before embedding into paraffin blocks and sectioning
at a thickness of 5–7 microns. The sections were then
stained with hematoxylin, eosin, and Masson’s
Trichrome. All photographs were taken at 4X magnifi-
cation with a Bio-Tek Cytation 5 automated micro-
scope (Bio-Tek, Winooski, Vermont, USA) provided
by The University of Toledo Advanced Microscopy &
Imaging Center (Toledo, Ohio, USA). Quantitation
was performed using Image J Image Processing and
Analysis.48

Radiotelemetry

Radiotelemetry transmitter implantation surgeries
were performed on PND 120 (VEH, n D 12; PNA,
n D 10) female rats as previously described.49,50

Briefly, the animals were surgically implanted with a
radiotelemetry transmitter (Data Sciences Interna-
tional, St. Paul, Minnesota, USA) through the femoral
artery. The device was further advanced through to
the lower abdominal aorta. The animals were left
undisturbed for four days in singly-housed cages
before data collection began. Systolic blood pressure,
diastolic blood pressure, mean arterial pressure, and

heart rate were collected using a moving average every
hour for 40 hours.

Hormone analysis

Serum was collected from PND120 animals for hor-
mone level analysis by testosterone ELISA
(Calbiotech, El Cajon, California, USA, #TE187S-100)
and PND180 animals for hormone level analysis of
estradiol (Calbiotech, El Cajon, California, USA,
#ES180S-100) as previously described.51 Follicle stim-
ulating hormone and luteinizing hormone were mea-
sured in serum at PND180 using the Millipore
Pituitary Panel Multiplex kit by The Ligand Assay &
Analysis Core of the Center for Research in
Reproduction at The University of Virginia School of
Medicine.

Fertility assessment

Vehicle and PNA animals were paired with males for
four days and separated. The sight of a vaginal plug
was designated Gestational Day 1. After 13–15 days of
gestation, pregnancy was confirmed by palpation of
abdominal region of pregnant dams. Animals were
allowed to give birth and the pups were counted and

Figure 1. Schematic of Experimental Design and Animal Timeline. The animals were separated into two experimental cohorts: cardiovas-
cular and fertility. The cardiovascular cohort experiments were performed from PND 120 to PND 240. Metabolic phenotype includes
monthly body weight measurements, fecal sample collection at PND 120 (VEHD 10, PNAD 10), insulin tolerance tests (ITT), and glucose
tolerance tests (GTT) (VEH D 12, PNA D 10). Cardiovascular function included Radiotelemetry performed at PND 120 (VEH D 12,
PNA D 10), mRNA of the left ventricle of the heart at PND 240 and cardiac histology for assessment of cardiac hypertrophy (VEH D 4,
PNA D 4). Renal function included serum and urine assays performed at PND 180 (VEH D 10, PNA D 10). The fertility cohort experi-
ments were performed at PND 120 and PND 180. These experiments included ovarian histology at PND 120 and serum hormone analy-
sis of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) (VEH D 12, PNA D 10). At PND 180, serum was
collected for hormone levels of estradiol (E2), vaginal cytology was collected for assessment of estrus cycles (VEH D 12, PNA D 10).
Finally, fertility tests were performed to determine pregnancy rates (VEH D 14, PNA D 8).
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sacrificed. Successful pregnancy was defined by the
delivery of pups while unsuccessful/failed pregnancies
were defined by the sighting of a vaginal plug but no
presence of fetal pups at gestational day 13–15 with
palpation or no delivery after 23–25 days of gestation.

Quantitative RT-PCR (qRT-PCR)

Approximately 15 mg of frozen left ventricle, ovarian
tissue, inguinal white adipose tissue, and interscapular
brown adipose tissue were separately homogenized in
Trizol Lysis Reagent with the Qiagen TissueLyserLT.
RNA was extracted using the Qiagen RNeasy Mini Kit
and nucleic acid concentration was quantified with
the NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE). cDNA was synthe-
sized with the High-Capacity cDNA Reverse Tran-
scription Kit (Cat No. #: 4368814, Applied
Biosystems). The following thermal-cycling settings
were used: Step 1: 25�C for 10 minutes, Step 2: 37�C
for 120 minutes, Step 3: 85�C for 5 minutes, and Step
4: 4�C for no more than 1 hour. After thermal-cycling,
the sample was diluted with 80 mL of RNAse-Free
dH2O and frozen at ¡20�C until further analysis with
qRT-PCR. PCR amplification of cDNA was performed
by quantitative RT-PCR with the TrueAmp SYBR
Green qPCR SuperMix (Smart Bioscience, Maumee,
OH). The sequences of primers used for qRT-PCR
experiments are listed in Table 1.

Fecal sample collection

Fresh fecal samples were collected at PND240 and
stored in ¡80�C.

DNA Extraction and Quantification

Fecal samples (n D 20) were shipped to Wright Labs,
LLC. Nucleic acid extractions were performed on
approximately 0.25 g of each sample using a MoBio
Powerfecal DNA Isolation kit following the manufac-
turer’s instructions (MoBio Carlsbad, California,
USA). The vortexing step was performed using the
Disruptor Genie cell disruptor (Scientific Industries,
Bohemia, NY). The resulting genomic DNA was
eluted in 50 ml of 10 mM Tris. The Qubit 2.0 (Invitro-
gen) Fluorometer according to the Protocol of the
dsDNA High Sensitivity option was then utilized to
quantify total DNA.

16S rRNA Gene PCR Amplification

Illumina iTag Polymerase Chain Reactions (PCR)
were performed at a total volume of 25 mL for each
sample and contained final concentrations of 1X PCR
buffer, 0.8 mM dNTP’s, 0.625 U Taq, 0.2 mM 515F
forward primer, 0.2 mM Illumina 806R reverse bar-
coded primer and »10 ng of template DNA per
reaction. PCR was carried out on a MJ Research
PTC-200 thermocycler (Bio-Rad, Hercules, California,
USA) using the following cycling conditions: 98 �C for
3 min; 35 cycles of 98 �C for 1 min, 55 �C for 40 s,
and 72 �C for 1 min; 72 �C for 10 min; and kept at
4 �C. PCR products were visualized on a 1% CYBRsafe
E-gel.62

Library purification, verification, and sequencing

Pooled PCR products were gel purified using the Qiagen
Gel Purification Kit (Qiagen, Frederick, Maryland,
USA). Clean PCR products were quantified using the
Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,
CA), and samples were combined in equimolar
amounts. Prior to submission for sequencing, libraries
were quality checked using the 2100 Bioanalyzer DNA
1000 chip (Agilent Technologies, Santa Clara, CA).
Pooled libraries were stored at ¡20 �C until they were
shipped on dry ice to the California State University
(North Ridge, CA) for sequencing. Library pools were
size verified using the Fragment Analyzer CE
(Advanced Analytical Technologies Inc., Ames IA) and
quantified using the Qubit High Sensitivity dsDNA kit
(Life Technologies, Carlsbad, CA). After dilution to a
final concentration of 1 nM and a 10% spike of PhiX
V3 library (Illumina, San Diego CA), pools were dena-
tured for 5 minutes in an equal volume of 0.1 N NaOH,
then further diluted to 12 pM in Illumina’s HT1 buffer.
The denatured and PhiX-spiked 12 pM pool was loaded
on an Illumina MiSeq V2 500 cycle kit cassette with 16S
rRNA library sequencing primers and set for 250 base,
paired-end reads.

Quality filtering and operational taxonomic unit
(OTU) selection

Paired-end sequences were trimmed at a length of
250 bp and quality filtered at an expected error of less
than 0.5% using USEARCH v7.63 After quality
filtering, reads were analyzed using the QIIME 1.9.0
software package ([62, 64]. Chimeric sequences were

GUT MICROBES 403



identified using USEARCH61.65 A total of 680,091
sequences were obtained after quality filtering and chi-
mera checking. Open reference operational taxonomic
units (OTUs) were picked using the USEARCH61
algorithm, and taxonomy assignment was performed
using the Greengenes 16S rRNA gene database (13–5
release, 97%).66 Assigned taxonomy were organized
into a BIOM formatted OTU table and summarized
within QIIME 1.9.0.

Alpha diversity analysis

Alpha diversity plots were generated within the Phylo-
seq sequence analysis package using a rarified OTU
table.67 Rarefaction was conducted on sequences
across all samples to a maximum depth of 20,923
sequences. Alpha diversities were then collated and
plotted using observed species richness.

Beta diversity analysis

Principal coordinates analyses (PCoA) plots and
ANOSIM tests for significance were generated from a
weighted UniFrac distance matrix made within
QIIME 1.9.0 from a CSS normalized OTU table.68

Taxonomic comparisons

Assigned taxonomy were organized into a BIOM for-
matted OTU table and were summarized within
Qiime-1.

LefSe analysis of enriched taxa

Relative abundances of taxa were multiplied by 1 mil-
lion and formatted.69 Comparisons were made with
“Sample Type” as the main categorical variable
(“Class”). Alpha levels of 0.01 were used for both the
Kruskal–Wallis and pairwise Wilcoxon tests. Linear
Discriminant Analysis (LDA) scores greater than 3.0
are displayed.

Predictive functional analysis

PICRUSt functional predictions were generated from
a closed-reference OTU table generated within
QIIME-1.9.0. Relative abundances of predicted func-
tional genes were multiplied by 1 million and format-
ted.69 Comparisons were made with “Group” as the
main categorical variable (“Class”). Alpha levels of
0.05 were used for both the Kruskal–Wallis and

pairwise Wilcoxon tests. Linear Discriminant Analysis
(LDA) scores greater than 2.0 are displayed.

Principal coordinates analysis (PCoA) plots

Principal Coordinates Analysis (PCoA) plots were used
to visualize differences in weighted Unifrac distances of
fecal samples from PNA (P) and VEH (V) cohorts.
Points clustered more closely together are more similar
in terms of phylogenetic distance, whereas points that
are distant from each other are phylogenetically dis-
tinct. Samples cluster significantly based on their spe-
cific grouping (ANOSIM pD 0.002).

Relative abundance graphs

Taxonomic relative abundance graphs were prepared
using operational taxonomic units and classification
of microbiome populations into respective taxonomic
phyla, order, family, and genus. Graphs were then pre-
pared in GraphPad Prism 7 using relative abundance
percentage of bacteria within control and prenatal
androgen (PNA) groups.

Statistical analysis

All graphs were created with GraphPad Prism 7
(GraphPad Software, San Diego, CA). Data is reported
as the mean and standard error of the mean. Data
were analyzed using student’s t-test for statistical sig-
nificance and reported as follows: p � 0.05 (�), � 0.01
(��), and � 0.001 (���).

Results

We first tested whether PNA treatment induced meta-
bolic dysfunction in adulthood. Between PND 120 to
PND 240, the body weight of the PNA animals was
significantly higher than in control animals (Fig. 2a).
After observing increased body weight, we investi-
gated glucose and insulin sensitivity with glucose
(GTT) and insulin tolerance tests (ITT). Insulin toler-
ance testing (ITT) revealed higher plasma glucose lev-
els at 30 minutes and 60 minutes after intraperitoneal
injection of insulin in the PNA animals, suggesting
some degree of insulin resistance (Fig. 2b). Glucose
clearance was not impaired in the PNA rats (Fig. 2c).
However, the increased body weight within the PNA
animal group led us to question whether there was dif-
ferential mRNA expression of adipokines within the
peripheral adipose tissue depots of the interscapular
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brown adipose tissue (iBAT) and inguinal white adi-
pose tissue (iWAT) (Fig. 2f–k). We found significantly
increased mRNA expression of adipocyte binding pro-
tein 2 (ap2), adiponectin (AdipoQ), and leptin (Lep)

within the iWAT of the PNA animals, but similar
expression of the markers within iBAT.

We next tested whether PNA treatment induced
reproductive dysfunction in adulthood. We found that

Figure 2. Metabolic Assessment: Body Composition, Glucose and Insulin Tolerance Tests, mRNA Expression of Adipokines within Adi-
pose Tissue. (a) Body weight was measured from PND 120 to PND 240. (b) Glucose tolerance test (GTT) was performed at PND150 with
intraperitoneal injection (IP) of dextrose and plasma glucose levels were recorded for time 0 to 120 minutes. (c) Insulin tolerance test
(ITT) was performed at PND150 with IP injection of insulin and plasma glucose levels were recorded for time 0 to 90 minutes. (d) Area
under the curve (AUC) for GTT was calculated for all plasma glucose levels between 0–120 minutes (e) Area under the curve (AUC) for
ITT was calculated for all plasma glucose levels between 0–90 minutes. Bars represent mean and lines represent standard error (SEM);
(f) iBAT aP2 mRNA expression, g) iWAT aP2 mRNA expression, (h) ibAT AdipoQ mRNA expression, (i) iWAT AdipoQ mRNA expression, (j)
iBAT Lep mRNA expression, (k) iWAT Lep mRNA expression. The tissue was dissected from sacrificed animals at PND120 and the sample
size was n D 6–7 animals per group (VEH or PNA). Bars represent means and the lines represent the standard error of the mean (SEM).
Symbols in either black (VEH) or red (PNA) represent the distribution of relative expression (RQ) values within each group. All genes
were normalized to the RQ of 18S.
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early androgenization reduced the number of primor-
dial, preovulatory, and the overall number of follicles
within the ovaries of the PNA animals (Fig. 3a–c).
Over a period of nine days, the PNA animals spent a
significantly longer duration within the metestrus/
diestrus stage of the estrus cycle (Fig. 3d–e) and a
shorter period in estrus (Fig. 3f). There were no differ-
ences in time spent in proestrus. However, the PNA
animals had a significantly lower pregnancy success
rate after being paired with males for four days.
Approximately 13% (VEH, n D 14; PNA, n D 8) of
the PNA animals became pregnant compared to 57%
of the vehicle animals (Fig. 3g). Previous reports have
found altered reproductive hormone levels in this
model between PND 75-PND 90.20 In our animals, we
found no difference in the serum estradiol (Fig. 3h),
testosterone (Fig. 3i), or FSH levels (Fig. 3j) of the
VEH and PNA animals. Surprisingly, while the ratio
of LH to FSH was unaltered, serum LH levels were sig-
nificantly lower in the PNA animals (Fig. 3k).

Given reports of increased hypertension rates in
obese women with PCOS18,70, we examined blood
pressure in this model. Telemetry revealed that blood
pressure was increased in PNA animals. Overall, sys-
tolic, diastolic and mean arterial blood pressures were
higher in the PNA rats, particularly at night
(Fig. 4a–c). Interestingly, heart rate was decreased in
both day and night recording obtained from the PNA
rats compared to the VEH group (Fig 4d). The BPM
was significantly decreased between hour 8–12, and
from hour 20–28 for the PNA rats. The heart rate was
440 § 31 BPM for the vehicle group and 406 § 25
BPM (Fig. 4d). Mean locomotor activity was also sig-
nificantly reduced within the PNA animal group
(Fig. 4e). Despite the lower heart rates, the increases
observed in blood pressure in the PNA group are
notable. The overall increased systolic and diastolic
blood pressure places the PNA animals in the range of
uncomplicated stage I hypertension (between 140/90
to 150/99 mmHg).71,72

PNA animals showed significantly increased
thickness of left ventricle (LV) anterior muscle wall
(Fig. 5a), posterior muscle wall (Fig. 5b), and
decreased left ventricle CSA (Fig. 5c). There were
no differences observed in the wall thickness of the
right ventricle between the inner endocardium and
the outer epicardium (Fig. 5d–e). Masson’s Tri-
chrome staining of the short axis view of the rat
hearts with angulation revealed the right ventricle,

left ventricle, and papillary muscles (Fig. 5g, 5h)
which allowed for measurements of the wall thick-
ness and cross-sectional area. Next, we performed
quantitative RT-PCR experiments to test for
mRNA expression of sex steroid receptors and bio-
markers of cardiovascular health to confirm if there
was differential expression of markers associated
with the development of cardiac hypertrophy and
hypertension.56,60,73,74 Androgen receptor (Fig. 6a)
mRNA expression was upregulated in the left ven-
tricle of the PNA hearts while ERa and ERb
expression (Fig. 6b–c) was not significantly differ-
ent in expression levels. ANP and BNP were not
increased in the left ventricle of the PNA animals
(Fig. 6d–e). However, mRNA expression of renin
(REN) was increased in the left ventricle of PNA
animals (Fig. 6f).

Kidney weight, urine output, urine microalbumin
levels were similar between vehicle and PNA animals
(Fig. 7a–c). However, we found decreased creatinine
levels in urine (Fig. 7d). Measurement of the microal-
bumin to creatinine ratio (p D 0.070), and serum cys-
tatin C (p D 0.057) appeared higher in the PNA
animals, but did not reach significance (Fig. 7e–f).
These findings suggested an early-stage, impaired
glomerular filtration.

Having established cardiometabolic dysfunction in
our model, we looked for evidence of microbiome altera-
tions using fecal samples obtained at PND 180. A profile
of the fecal microbiota was produced at the phyla, order,
family, and genus level for over 33,000 sequences found
within the vehicle and PNA group after quality filtering
of 20,923 to 64,164 sequences per sample. Each sample
had a sequencing depth of over 1,000 sequences and
were organized into CSS Normalized Operational Taxo-
nomic Unit (OTU) Tables that included known infor-
mation for kingdom, phylum, class, order, family, and
genus. This information was then used to determine the
total number of OTUs found within each sample at the
various levels of classification and relative abundances
was reported in percentages. We found the top 10 most
abundant phyla were Actinobacteria, Bacteroidetes,
Firmicutes, Proteobacteria, Verrucomicrobia, Teneri-
cutes, Fusobacteria, Planctomycetes, Nitrospirae, and
Spirochaetes (Supplemental Table 1). Bacteria found
within the phyla Verrucomicrobia (V, 0.38%; P, 8.30%;
p D 0.001) Proteobacteria (V, 2.63%; P, 5.29%;
p D 0.044), and Planctomycetes (V, 0.00%; P, 0.06%;
p D 0.002) were significantly enriched within the fecal
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microbiota of the PNA rats. Bacteria found within the
phyla Fusobacteria (V, 0.53%; P, 0.26%; p D 0.005) and
Spirochaetes (V, 0.03%; P, 0.02%; pD 0.042) were signifi-
cantly decreased while there were no differences found in

bacteria at the phylum level for Firmicutes, Bacteroidetes,
Actinobacteria, Tenericutes, andNitrospirae.

After we determined the most abundant phyla, we
focused our subsequent analysis on the relative

Figure 3. Fertility and Serum Hormone Analysis. (a) Hematoxylin and eosin stained ovary of female vehicle rat at PND 120; (b) Hematoxylin
and eosin stained ovary of female PNA rat at PND 120; (c) Total follicle count of primordial, primary, preantral, antral, preovulatory, corpora
lutea, and total follicle count; (d) Estrous cycle data for nine consecutive days of vaginal smearing of vehicle (n D 12) rats; (e) Estrous cycle
data for nine consecutive days of vaginal smearing of and prenatal androgen rats (n D 11); (f) Duration of estrus cycle and number of days
spent in each stage for PNA animals compared to vehicle; (g) Pregnancy success rates for vehicle (n D 14) and PNA (n D 8) rats at PND
180; (h) Serum beta-estradiol levels for VEH and PNA animals measured in picograms per milliliter at PND 180; (i) Serum testosterone levels
for VEH and PNA animals measured in nanograms per milliliter at PND 120; (j) Serum follicle stimulating hormone (FSH) levels for VEH and
PNA animals measured in nanograms per milliliter in animals at PND 180; (k) Serum luteinizing hormone (LH) levels for VEH and PNA ani-
mals measured in nanograms per milliliter in animals at PND 180; and (l) LH:FSH ratio measured for animals at PND 180.
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abundances of bacteria found within Actinobacteria
(Fig. 8a), Bacteroidetes (Fig. 8b), Firmicutes (Fig. 8c),
Proteobacteria (Fig. 8d), Verrucomicrobia (Fig. 8e).

Actinobacteria

Bifidobacteriales was the only order that was significantly
reduced within the PNA animals (Fig. 8a, Supplementary
Table 2). At the family level, bacteria from Yaniellaceae,
Geodermatophilaceae, Microbacteriaceae, Nakamurella-
ceae, Corynebacteriaceae, Promicromonosporaceae, and
Nocardiaceae were significantly enriched within the
PNA animal fecal microbiota. Bacteria from Brevibacter-
iaceae and Dermabacteraceae were significantly
decreased within the PNA fecal microbiota. At the genus
level, bacteria from Yaniella, Rathayibacter, Modesto-
bacter, Microbispora, Arthrobacter, Frigoribacterium,
Cellulomonas, Aeromicrobium, Xylanimicrobium, and
Rhodococcus were significantly enriched within the PNA

animal fecal microbiota. Bacteria from Bifidobacterium,
Corynebacterium, Brevibacterium, Brachybacterium,
Adlercreutzia, and Rothia were significantly decreased
within the PNA fecal microbiota.

Bacteroidetes

There were no significant differences observed within
the relative abundance of bacteria from the orders Bac-
teroidales, Flavobacteriales, Cytophagales, Sphingobacter-
iales, and Saprospirales in the PNA animal fecal
microbiota profile (Fig. 8b, Supplementary Table 3).
We then further analyzed the individual families within
each order to determine if there was differential abun-
dance of bacteria. We found that at the family level,
bacteria from Rikenellaceae, Paraprevotellaceae, and an
unknown family within Bacteroidetes were significantly
enriched within the PNA group fecal microbiota. Bacte-
ria from Bacteroidaceae, Odoribacteraceae, and S24-7

Figure 4. Radiotelemetry Blood Pressure, Heart Rate, and Locomotor Activity. Radiotelemetry analysis was performed for moving aver-
ages every hour for 28 hours with standard error calculated for each hour. The shaded areas on the graph represent night hours. (a) Sys-
tolic blood pressure (SBP), (b) diastolic blood pressure (DBP), (c) Mean arterial pressure (MAP), (d) heart rate (BPM), and (e) locomotor
activity.
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were significantly decreased. At the genus level, bacteria
from Rikenella, Paraprevotella, and Tannerella were sig-
nificantly enriched within the PNA animal fecal micro-
biota. Bacteria from Bacteroides, Odoribacter, and
Parabacteroides were significantly decreased within the
PNA fecal microbiota.

Firmicutes

At the order level, bacteria from Thermoanaerobacterales
were significantly enriched and Erysipelotrichales and
Turicibacterales were significantly decreased within the

PNA fecal microbiota (Fig. 8c, Supplementary Table 4).
At the family level, bacteria from Peptococcaceae, Eubac-
teriaceae, Carnobacteriaceae, Tissierellaceae, Streptococ-
caceae, Veillonellaceae, Coprobacillus, and Leuconos
tocaceae were significantly enriched within the PNA ani-
mal fecal microbiota. Bacteria from Ruminococcaceae,
Lachnospiraceae, Clostridiaceae, Erysipelotrichaceae,
Dehalobacteriaceae, Lactobacillaceae, and Mogibacteria-
ceae were significantly decreased within the PNA fecal
microbiota. At the genus level, bacteria from RC4-4,
Anaerofustis, Faecalibacterium, Blautia, Granulicatella,
Roseburia, Jeotgalicoccus, Peptoniphilus, Veillonella,

Figure 5. Cardiac morphology and gross anatomical measurements. (a) left ventricle (LV) anterior muscle wall; (b) LV posterior muscle
wall; (c) left ventricle cross sectional area (CSA); (d) intraventricular septum (e) right ventricle (RV) inner endocardium to outer epicar-
dium measurement; (f) right ventricle cross sectional area (CSA); (g) Masson’s trichrome stain of short-axis cut with angulation to expose
left ventricle papillary muscles and apex of right ventricle (RV) of VEH female rat; (h) Masson’s trichrome stain of short-axis cut of heart
with angulation to expose left ventricle papillary muscles and apex of right ventricle of PNA female rat.

Table 1. Quantitative real-time PCR primers.

Gene Forward (50>30) Reverse (50>30) Reference

18S GAGGTGAAATTCTTGGACCGG CGAACCTCCGACTTTCGTTCT 52

aP2 AGCGTAGAAGGGGACTTGGT ATGGTGGTCGACTTTCCATC 53

AdipoQ GGGAGACGCAGGTGTTCTTG CTGAATGCTGAGTGATACATGTAAGC 54

AR CCCATCGACTATTACTTCCC TTACGAGCTCCCAGAGTCAT 55

ANP GCCGGTAGAAGATGAGGTCA GGGCTCCAATCCTGTCAATC 56

BNP ATCTGTCGCCGCTGGGAGGT GGATCCGGAAGGCGCTGTC 56

ERa GGCTACGTCAAGTCGATTCC ATCTTGTCCAGGACTCGGTG 57

ERb CTCACGTCAGGCACATCAGT TGTGAGCATTCAGCATCTCC 58

Lep AGACCATTGTCACCAGGATCAAT CCCGGGAATGAAGTCCAAA 59

PKCd ACAGAAGAAGCCCACCAT GAACTCAGCCTTCCCGTT 60

Ren ATGCCTCTCTGGGCACTCTT GTCAAACTTGGCCAGCATGA 61

18S, Ribosomal 18S; aP2, adipocyte binding protein 2; AdipoQ, adiponectin; AR, Androgen receptor; ANP, Atrial natriuretic peptide; BNP,; ERa,; ERb, Estrogen
receptor beta; PKCd, Protein kinase C delta; and Ren, Renin.
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Streptococcus, Oribacterium, Sporosarcina, Lactococcus,
Selenomonas, Weissella, and Exiguobacterium were sig-
nificantly enriched within the PNA animal fecal micro-
biota. Bacteria from Ruminococcus, Staphylococcus,
Clostridium, Facklamia, Dehalobacterium, Lactobacillus,
and Dorea were significantly decreased within the PNA
fecal microbiota.

Proteobacteria

At the order level, bacteria from Chromatiales, Rhodo-
spirillales, Sphingomonadales, Rhodobacterales, Caulo-
bacterales, BD7-3, Rickettsiales, MIZ46, Legionellales,
Alteromonadales, and an unknown order within the
phylum Proteobacteria were significantly enriched
within the PNA animal fecal microbiota (Fig. 8d, Supple-
mentary Table 5). Bacteria from Burkholderiales, Pseudo-
monadales, Enterobacteriales, and Neisseriales were
significantly decreased within the PNA fecal microbiota.
At the family level, bacteria from Moraxellaceae, Rhodo-
bacteraceae, Sphingomonadaceae, Caulobacteraceae,
Comamonadaceae, Sinobacteraceae, Rhodospirillaceae,
Piscirickettsiaceae, Hyphomicrobiaceae, and Coxiellaceae

were significantly enriched within the PNA animal fecal
microbiota. Bacteria from Enterobacteriaceae and Neis-
seriaceae were significantly decreased within the PNA
fecal microbiota. At the genus level, bacteria from
Sphingobium, Kingella, Mycoplana, Aggregatibacter, Ster-
oidobacter, Methylibium, Buchnera, Bilophila, and Arco-
bacter were significantly enriched within the PNA
animal fecal microbiota. Bacteria from Sutterella, Neisse-
ria, and Pseudomonas were significantly decreased
within the PNA fecal microbiota.

Verrucomicrobia

At the order level, bacteria from Verrucomicrobiales
were significantly enriched within the PNA animal
fecal microbiota (Fig. 8e, Supplementary Table 6). At
the family level, bacteria from Verrucomicrobiaceae
were significantly enriched within the PNA animal
fecal microbiota. At the genus level, bacteria from
Prosthecobacter were significantly enriched within the
PNA animal fecal microbiota. Bacteria from Akker-
mansia were significantly decreased within the PNA
fecal microbiota.

Figure 6. mRNA Expression of Sex Steroid Receptors, Cardiac Hypertrophy Markers, and Renin within Left Ventricle (LV) of the Heart. (a)
AR, androgen receptor mRNA expression; (b) ERa, estrogen receptor alpha mRNA expression; (c) ERb, estrogen receptor beta mRNA
expression; (d) ANP, atrial naturetic protein mRNA expression; (e) BNP, B-type (brain) naturetic protein mRNA expression; (f) Ren, renin
mRNA expression. All genes were normalized to 18S expression. All bars represent the mean values of relative expression (RQ) and lines
represent standard error of the mean.

410 S. B. SHERMAN ET AL.



As the next step towards understanding whether dys-
biosis contributes to the PCOS-like phenotype of these
animals, we analyzed the potential function of bacteria
found in their gut (Supplemental Table 7). A predictive
function analysis associates microbiome bacteria and
bacterial enzyme metabolites with a general function or
disease. The values for each group are the average opera-
tion taxonomic units (OTU) and are derived from differ-
ent bacteria classified into order, family, or genus based
on their similarity.75 The predictive functional analysis
revealed that the dysbiosis seen in prenatal androgen
exposed animals was associated with adipokine produc-
tion, prostaglandin activity, gastric mucosal secretion,
and signaling pathways of growth factors recruited for
cell proliferation and activity of epithelial cells through-
out the gastrointestinal tract. PNA animals had an
increased number of bacteria associated with overall
amino acid (AA) metabolism, especially increased beta-
alanine, arginine, proline, lysine, phenylalanine, and
tryptophan metabolism.

Alpha diversity analysis (Supplemental Figure 2a)
was performed utilizing Phyloseq sequence analysis

on the samples to determine the species richness and
evenness, or number of bacterial species within the
fecal sample and the distribution of bacterial taxon-
omy, respectively.76 Alpha diversity revealed that the
PNA animals had a higher average of species richness.
Beta diversity analysis (Supplemental Figure 2b) was
performed utilizing principal coordinate analyses plots
to illustrate the phylogenetic distance of the bacterial
communities of the fecal samples. The beta diversity
analysis revealed that both cohorts had distinct clus-
tering, however the PNA animal samples were further
apart.

Discussion

Androgen excess disorders like PCOS affect between
5–20% of reproductive age women worldwide.42,77

PCOS has been linked to metabolic syndrome particu-
larly insulin resistance78 and hypertension.79¡82 When
a pregnant mother with PCOS is subsequently diag-
nosed with hyperinsulinemia, hypertension, or hyper-
androgenemia during pregnancy this increases

Figure 7. Renal Function Assessment of Serum Cystatin C and Urine Microalbumin and Creatinine. (a) paired kidney weight was mea-
sured immediately after dissection. (b) urine output was calculated from 24-hour urine volume in milliliters divided by body weight in
grams, divided by 24-hours. (c) urine creatinine was measured from 24-hour fasting urine. (d) microalbumin was measured from 24-
hour fasting urine. (e) microalbumin/creatinine ratio. (f) cystatin C concentration was measured using serum collected from PND180
animals.
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Figure 8. Relative abundance of bacteria within the most abundance phylum: Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria,
and Verrucomicrobia. Relative abundance of bacteria at the phylum, order, family and genera levels were determined using operational
taxonomic units for each. The graphs represent the percentages for the relative abundance of bacteria from the total OTU of each phy-
lum, order, family, or genera.
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maternal and fetal morbidity and mortality.83¡85 The
likelihood of developing obstetric complications dur-
ing pregnancy such as gestational diabetes, preeclamp-
sia, and early termination of pregnancy increase.86¡89

While the etiology of metabolic derangement in PCOS
women and their offspring is not well understood, this
study describes a profile of cardiometabolic dysfunc-
tion that is associated with gut microbiota dysbiosis in
offspring exposed to androgens prenatally.

Exposure to androgens in utero can cause repro-
ductive consequences for the female human fetus
depending on the extent of the exposure.90,91 In the
male human fetus, testosterone production by the tes-
tis is detectable at 9 weeks and peaks between 12 to
14 weeks.92 Testosterone (T) levels then fall sharply,
so that by the 20th week the fetal serum testosterone is
back to sexually indifferent levels. In contrast, the
female gonads produce few sex steroids during devel-
opment. T-levels present up through the 14th week
will masculinize the reproductive organs. High levels
of T throughout the critical period will masculinize
basal LH release during adulthood and eliminate the
ability of the GnRH circuitry to generate a preovula-
tory surge in response to estradiol. T exposure within
a narrower window around the normal T peak will
masculinize sexual behavior and the brain regions that
control it94,95 In contrast, low doses of T throughout
this critical window will have no effect on genitalia,
behavior, or adult basal LH release, but will partially
impair LH surges.96

Our study has shown that prenatal exposure to
excess androgens in late gestation negatively impacts
metabolic profile into adulthood and impairs fertility
likely by suppressing LH release. Early androgeniza-
tion was sufficient to disrupt insulin sensitivity and
increase body weight. PNA rats developed obesity
with increased serum glucose levels after ITT, indicat-
ing impaired insulin sensitivity. They also showed
increased mRNA expression of adipokines within
iWAT. The inguinal fat depot of rodents is similar to
the gluteofemoral subcutaneous depot in humans and
this fat depot is more sensitive to insulin in
humans97,98, however the effect in rodents has been
found to be inconclusive. In obese women, there is
increased 17b-hydroxysteroid dehydrogenase type 5
activity within subcutaneous fat depots compared to
visceral fat depots indicating increased androgen syn-
thesis within subcutaneous depots.99 Increased mRNA
expression of adipokines within iWAT has also been

associated with LPS-induced inflammation and
required for healthy adipogenesis after acute inflam-
mation.100 However, the release of leptin from white
adipose tissue has been associated with increased risk
for developing hypertension.101 Upregulation of adi-
pokine mRNA in peripheral adipose tissues has been
associated with PCOS, obesity, and hyperinsuline-
mia.102,103 Future directions for our studies could
investigate the synthesis and release of androgens and
adipokines into circulation and determine whether
this also contributes to hyperandrogenemia or
increased risks of cardiovascular disease in women
with PCOS and other disorders that fall under meta-
bolic syndrome.

We also found increased blood pressure and
reduced heart rate in PNA exposed rats, providing the
first evidence in an animal model that early androgeni-
zation in uteromay increase risk of the development of
hypertension and disrupt autonomic control of heart
rate. We found that androgen receptor within the left
ventricle was increased in the PNA animals, however
we did not investigate cardiac insulin sensitivity and
propose this as a future direction. Reduced insulin sen-
sitivity or upregulated expression of androgen receptor
within the heart has been found to impair cardiac func-
tion.104,105 The upregulation of androgen receptor that
we observed within the PNA heart may alter the elec-
trophysiology of the cardiomyocytes of the left ventri-
cle by altering expression of receptors involved in the
regulation of membrane potential.106,107 Androgens
may promote the development of cardiomyopathy by
upregulating potassium channel regulatory subunits
and reducing cardiomyocyte repolarization.108,109

Indeed, the enlarged walls and decreased cross-sec-
tional area of the left ventricle in the PNA animals
resembles early-stage concentric cardiac hypertrophy,
although mRNA expression of markers of cardiac
hypertrophy were unchanged in PNA animals. Support
for this possibility is provided by previous studies in
which antiandrogenic treatment attenuated cardiac
hypertrophy.110,111

Cystatin C is a low molecular weight protein (MW:
13.3 kDa) from the family of cysteine protease inhibi-
tors that is found in all nucleated cell types including
cardiac muscle.112,113 Cystatin C is freely filtered by
the glomeruli, reabsorbed by tubular epithelial cells,
and broken down; therefore, increased concentrations
of Cystatin C in serum is related to impaired glomeru-
lar filtration.114¡116 It is also associated with increased
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left ventricular mass, a precursor to cardiac left ven-
tricular hypertrophy (LVH)117, which is associated
with increased risk of hypertension.118 Our findings
suggest that the kidneys of PNA animals may have
impaired glomerular filtration as evident by increased
serum cystatin C.

Models of excess sex steroid hormone synthesis
have found that the gut microbiota profile is altered
by excess androgens. In letrozole-induced PCOS mod-
els, gut microbiota exhibited a deficiency in bacteria
from the genera Clostridium, Lactobacillus, Rumino-
coccus but an enrichment of Prevotella with no differ-
ences observed in bacteria from Bifidobacterium,
Enterococcus, and Bacteroides.42 Another letrozole-
induced PCOS model displayed an increase in bacteria
of the genera Alistipes, Allobaculum, Blautia, and
Ruminococcaceae.35 Neonatal exposure to a single-
injection of testosterone increased the concentration
of Ruminococcus and Coprococcus—two bacteria
involved in bile acid synthesis and found to be
increased in the gut of prediabetics.22,119

In the current study, hypertension within the PNA
group was accompanied by dramatic changes in the
gut microbiota profile. The fecal microbiota of PNA
animals contained higher abundance of bacteria com-
monly associated with steroid hormone synthesis,
including bacteria from the families Nocardiaceae120

and Clostridiaceae.121,122 In addition, PNA animals
have significantly increased abundance of fecal bacte-
ria associated with cardiovascular function including
cardiac muscle contraction, proximal tubule bicarbon-
ate reclamation, and the renin-angiotensin (RAS) sys-
tem. In previous studies of the fecal microbiota of
hypertensive rats, Allobaculum, Aggregatibacter, and
Sutturela were enriched however, we found that only
Aggregatibacter was enriched and Allobaculum and
Sutturela were significantly decreased in relative abun-
dance within the fecal microbiota of the PNA animals;
these bacteria are associated with glucose metabolism
and the specific role is unknown.123¡125

We found that the gut microbiota profile resem-
bles the profile of both patients and other animal
models of PCOS; specifically the gut of androgenized
women and female rats was found to be depleted of
bacteria from Akkermansia, Bacteroides, Lactobacil-
lus, Clostridium.33,42 Administration of Akkermansia
as a probiotic was shown to improve the intestinal
barrier of the gut by increasing the expression of
mucin 2 within the colon.126 A decreased abundance

of Akkermansia within the colon of PCOS patients
and our prenatal androgen model may be associated
with impaired mucosal maintenance. After treatment
with Metformin, the gut microbiota of patients with
PCOS became enriched with Akkermansia, bacteria
that may be associated with glucose homeostasis.127

These gram-negative bacteria are associated with
increased production of the bacterial metabolite,
lipopolysaccharide (LPS) and induce T cell-mediated
immune responses.128

PNA animals had an increased number of bacteria
associated with biosynthesis and elongation of unsatu-
rated short chain fatty acids (SCFAs), such as acetate,
butyrate, and propionate. These metabolites from the
fermentation of nondigested carbohydrates are
absorbed by colonocytes within the cecum and
colon.129¡131 After absorption, SCFAs are processed
in the liver for use in gluconeogenesis and lip-
ogenesis.132¡135 Interestingly, dietary supplementation
with SCFAs has been shown in rodents to promote a
switch from lipid synthesis to oxidation and to protect
against obesity and insulin resistance.38,39 Bacteria
from the family Enterobacteriaceae, particularly
Escherichia coli, have been associated with increased
systemic lipopolysaccharides136, increased risk of
obesity, inflammation, reduced glomerular filtration
rate, increased serum cystatin C and insulin
resistance.71,137,138

Actinobacteria, Bacteroidetes, and Firmicutes were
the most abundant phylum of bacteria found within
the fecal microbiota of the control and PNA group. In
the phylum Actinobacteria, bacteria from the families
Coriobacteriaceae, Cellulomonadaceae, and Micrococ-
caceae share the highest abundance in both the control
and PNA groups, however the PNA groups have
increased abundance of Nocardioidaceae—bacteria
that was absent in the vehicle group. Other bacteria
families such as S24-7 and Odoribacteraceae from the
order Bacteroidales were virtually absent within the
PNA group. These two families contain bacteria
associated with butyrate-production and are found in
low-abundance in sedentary women, hypertensive
Dahl salt-sensitive rats, and HFD mice fecal
microbiota.30,139,140

Gram-positive bacteria, such as bacteria from the
family Lachnospiraceae, have been implicated in the
development and manifestation of ulcerative coli-
tis.141,142 When the colonic epithelial barrier is dis-
rupted, a negative immune response is triggered after
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exposure to Lachnospiraceae.143 Our study shows a
significantly decrease in the OTU of bacteria from
Lachnospiraceae, but other gram-positive bacteria
such as Peptococcaceae, Eubacteriaceae, Tissierellaceae,
Streptococcaceae, Veillonellaceae, Coprobacillus, and
Leuconostocaceae were all significantly increased in
abundance within the gut microbiota of PNA animals.
The role of gram-positive bacteria and the disruption
of the colonic epithelial cell permeability will require
further investigation to determine which particular
bacteria induce peripheral inflammatory responses in
tissues such as the heart, brain and adipose.

Further investigation is needed into when PNA
treatment alters gut microbial proliferation and
whether early exposure to the maternal microbiota
plays an important role. The maternal vaginal or gut
flora may influence the development of gut microbial
colonization. Mothers with hyperandrogenemia may
also expose their fetus to high serum testosterone lev-
els that alter the differentiation of gut epithelial cells
and regulate their permeability or functionality. In
addition, recent studies have shown that maternal
antibodies alter postnatal immunity by increasing aryl
hydrocarbon receptors for maternal bacterial metabo-
lites.144 Additional study is needed into the role of ste-
roidogenesis and gut epithelium function in the
developing fetus.

In sum, our study is the first to document
hypertension and gut microbiota dysbiosis in a
rodent model of prenatal hyperandrogenemia. It
also substantiates the powerful and long-lasting
effect of sex steroids on microbiome composition
and metabolic homeostasis. Understanding the rela-
tionship between fetal developmental programming,
metabolic dysfunction, and gut microbiota dysbiosis
is a critical step in developing potential treatment
options or preventative therapies for the offspring
of women who exhibit hyperandrogenemia during
pregnancy.
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