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Abstract: Trap based surveillance strategies are widely employed for monitoring of invasive
insect species, aiming to detect newly arrived exotic taxa as well as track the
population levels of established or endemic pests. Where these surveillance traps have
low specificity and capture non-target endemic species in excess of the target pests,
the need for extensive specimen sorting and identification creates a major diagnostic
bottleneck. While the recent development of standardised molecular diagnostics has
partly alleviated this requirement; the single specimen per reaction nature of these
methods does not readily scale to the sheer number of insects trapped in surveillance
programmes. Consequently, target lists are often restricted to a few high-priority pests,
allowing unanticipated species to avoid detection and potentially establish populations.

DNA metabarcoding has recently emerged as a method for conducting simultaneous,
multi-species identification of complex mixed communities, and may lend itself ideally
to rapid diagnostics of bulk insect trap samples. Moreover, the high-throughput nature
of recent sequencing platforms could enable the multiplexing of hundreds of diverse
trap samples on a single flow cell, thereby providing the means to dramatically scale-
up insect surveillance in terms of both the quantity of traps that can be processed
concurrently, and number of pest species that can be targeted. In this review of the
metabarcoding literature, we explore how DNA metabarcoding could be tailored to the
detection of invasive insects in a surveillance context and highlight the unique technical
and regulatory challenges that must be considered when implementing high-
throughput sequencing technologies into sensitive diagnostic applications.
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Response to Reviewers: Dear Editor,
We thank the reviewers for their constructive and helpful comments. Since our
previous submission our manuscript has been updated to incorporate the reviewers’
suggestions, the particulars of which we have listed below:

•We have expanded the breadth of our literature search, including further references
uncovered through this process and those suggested by the reviewers.
•We have updated Figure 1 to reflect this expanded search, and it now includes
citations from Crossref and Pubmed in addition to Scopus.
•We have condensed the discussion of alternative loci, as well as PCR free
approaches and instead refer to in-depth reviews on the topics.
•We have added discussion of the limitations of multi-locus approaches in relation to
assigning taxonomy and added an additional box that covers the use of multi-locus
approaches for capturing markers beyond taxonomic inference, for example the
parallel identification of vectored pathogens in modular metabarcoding assays.
•We have further covered the MGI/BGI sequencers in our discussion of sequencing
platforms and Table 2 as per your suggestion and also have covered the recently
released PacBio Sequel II.
•We have added additional detail in the Background and throughout the manuscript on
the implications of barcoding for biosecurity law
•We have revised the taxonomic assignment and technical replicates sections to
address important advances highlighted by the reviewers.
•Finally, we have updated Figure 2 to summarise our vision for how metabarcoding can
be applied to insect pest surveillance and to include further aspects discussed in this
manuscript such as technical replicates, controls, long read sequencing, additional loci,
and interpretation of results.
We believe these changes address the primary concerns of the reviewers. Please find
detailed responses to the specific comments of the reviewers below.

Reviewer #1: Piper et al. present a thorough review on DNA metabarcoding applied to
high throughput insect surveillance. The text is well written and it does not contain any
major flaw, so I think it is a good contribution to the literature. The authors should
nevertheless be aware that similar reviews -although not dedicated to insect
surveillance- already exist in the bibliography (two recent examples that the authors
omitted: Deiner et al. 2017 Mol Ecol; Alberdi et al. 2019 Mol Ecol Res). These reviews
cover some redundant issues, which could enable reducing the length of this article in
some sections, but also contain some contents and ideas that have not been added to
this article and might be worth referencing in the context of high throughput insect
surveillance (e.g. using replicated restrictively to gain confidence on the identified taxa
and reduce the risk of false positives).

Response:  We have highlighted other reviews of the wider metabarcoding literature in
the background, including the suggested references. In the quality assurance section
of the manuscript we have further expanded on some of the ideas suggested in these
references, including the benefits of additive or restrictive processing of replicates.

Reviewer #2: The manuscript is a review on the usage metabarcoding in the context of
insect control, biosurveillance, and with a special emphasis on pests. It is an important
contribution for control agencies around the world who require more throughput in their
analysis of invasive species that can be carried in imports and movement of goods. It is
also a good contribution to entomologists and molecular biologists looking to
incorporate metabarcoding of these taxa into their research. The review includes
mostly all steps involved in metabarcoding for surveillance purposes, from selecting a
marker to quality assurance. In my opinion, the paper is presented in a coherent and
organized manner. However, there are a few points that I consider will make the
manuscript stronger, and that it would widen the reach of the paper. I would like to see
a wider scope in their searching method (there are a few references missing that I think
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will improve the manuscript). I also will like to see thorough discussion on the current
state of affairs in international law about biosecurity and pest management , since this
directly affect the applicability of barcodes in this context. Finally, the manuscript will
benefit to have a figure perspectives and conclusions that summarize the author's
vision on how to apply barcodes for bio-surveillance. Below more specific comments:

Response: We have expanded our literature search beyond the Scopus database and
added further relevant references that were previously missed. We have added an
additional paragraph to the introduction to address the current state of affairs in
international biosecurity law since the introduction of the WTO agreement on Sanitary
and Phytosanitary measures and provided additional detail throughout the manuscript
where a particular aspect of the metabarcoding approach may be impacted by current
regulatory frameworks. We agree that summarising our vision of how metabarcoding
should be applied in a figure would benefit the manuscript. However, rather than
adding an extra figure we have updated figure 2 to better summarise our vision for how
samples a range of insect surveillance activities could be fed into the same core
metabarcoding diagnostic assay, with the results informing relevant management
actions. We have further updated this figure to include diagrams relating to quality
control and long read sequencing.

* Typo in line 73
* Adjust Table2 column width
* In line 152 you make reference to figure 2 when you meant figure 3
* As before but in lines 167 and 168

Response: We thank the reviewer for bringing these mistakes to our attention and they
have been corrected.

* It is not clear how can you obtain minimal amplification bias. This is not even clear in
the cited articles, and one of them (ref. 83) even explicitly says that it requires in vitro
validation and "as many primers might not be suitable for DNA metabardocing due to
low base degeneracy, potentially high primer bias or critical design flaws". Therefore
the sentences of lines 194-198 is a bit misleading and should be reworded, despite the
following sentence introducing other sources of bias.

Response: We have reworded this to state: This bias is thought to mainly arise from
primer-template mismatches, particularly at the 3’ end of the primer where extension
takes place (Piñol et al 2015, 2019) and therefore comprehensive in-silico evaluation
should be conducted at the beginning of a project to ensure primer sequences are
appropriate for the underlying target community (Rennstam Rubbmark et al 2018,
Bylemans et al 2018 Ficetola et al 2010). Where mismatches with certain taxa are
predicted to occur, inclusion of degenerate bases can overcome taxonomic bias
inherent to a specific primer sequence (Elbrecht et al 2017), however  high levels of
degeneracy can also lead to undesirable off-target amplification or formation of dimers
(Mioduchowska et al 2018, Marquina et al 2018) which will require further laboratory
validation to detect (Clarke et al 2014, Elbrecht et al 2017)

* Despite the argument about avoiding PCR is compelling, I believe that the author's
"over-endorsement" of the micro-array chips is a big leap. It is especially difficult to
deliver the appropriate probes when good references are not present, as is one of the
arguments of the paper.

Response: We have condensed this section and removed some of the discussion on
microarrays and hybrid capture, instead referring to the in-depth reviews of Mamanova
et al 2010 and Jones et al 2015 on the topic of PCR free targeted enrichment
approaches. We have also raised a further consideration that implementation of PCR-
free sequence enrichment may require overcoming further regulatory hurdles as
opposed to the already wide acceptance of PCR amplification within diagnostic
protocols.

* For an interesting discussion on index-switching (discussed around line 257), you can
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include https://doi.org/10.1111/1755-0998.12928

Response: We thank the reviewer for highlighting this paper, and we have added the
reference to the manuscript

* Despite that the authors mentioned different sequencing platforms, they seem to
restrict their discussion of "demultiplexing and sequence quality trimming" to Illumina
pair end reads. They should include at least a paragraph regarding the rest of the
platforms discussed

Response: In the interest of article length, rather than adding an additional paragraph
we have adapted the current paragraph to be more generic to all the sequencers
discussed. Overall the process is reasonably similar between Illumina and other
modern platforms, with the exception being the need to assemble consensus
sequences prior to quality trimming if using PacBio CCS or another third-party
consensus method for Nanopore. We have also highlighted that quality trimming using
error profiles is a coarse filtering process where parameters should be carefully
considered, particularly for higher error rate nanopore reads. We have further added
diagrams in figure 2 to help highlight the differences between analysis of
metabarcoding data from short and long read platforms.

* I think that referencing 150 in line 374 sounds like Elbrecht et al. 2018 used zero-
radius OTUs (ZOTU) to investigate intraspecific variation. It is a bit misleading since
they used a 3% threshold after the ZOTU inference, essentially making it not an ESV.
Some clarification would be needed.

Response: We have clarified that use of denoising algorithms (rather than ESVs per
se) provide the ability to investigate intra-specific variation as they don’t impose the
arbitrary similarity threshold which define OTUs. This single nucleotide resolution
enables binning sequences into ‘amplicon sequence variants’ that retain precise
haplotype information that can be necessary for diagnostics of closely related taxa or
tracking an invasion and act as a consistent label between analyses. We now
reference Marshal & Stephien 2019 who use the fine-scale resolution provided by
ASV’s to infer population histories of an invasive species.

* Fix reference 167

Response: We thank the reviewer for noticing the error in reference 167 and it has
been corrected.

* The authors should be careful with the statement " makes the classification process
more robust to pervasive issues of missing and mis-annotated data in reference
database". While is true that some ML implementations give some sort of confidence
levels in the taxonomic hierarchy, it is not true that it would be less influenced by
misannoations and missing references. In fact, most implementations of the Naive
bayes will return NA when no significant match with the training set is found. Also,
mislabels in the training set will lead to erroneous prediction
(https://doi.org/10.1613/jair.606) and is an ongoing challenge in ML to detect mislabels
(https://doi.org/10.1007/978-3-319-58628-1_43)

* The statement "In cases where there may be ambiguity due to imperfect reference
data and multiple taxonomic outcomes obtain similar probabilities, the sequence may
still be robustly assigned to a higher taxonomic rank (e.g. family) [76], providing
important information about sample composition and possible presence of novel taxa"
is also problematic in my view. The text suggest that Naive bayes by itself has this
property, which is not true. Only specific implementations and variations of the
algorithm have it. The paper would benefit from exploring this further.

Response to both of the above: We agree with the reviewer that this section of the
manuscript unintentionally conflates the specifics of the RDP implementation of naïve
Bayes algorithm with the broader concept of probabilistic approaches to sequence
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classification. We have now revised the taxonomic assignment section so that
Paragraph 1 introduces the general approaches to sequence classification (Sequence
similarity, sequence composition, phylogenetic, or a hybrid of these) and then refers to
other reviews and comparisons of these methods. The remainder of paragraph 1
focuses on the problem of over-classification using the popular BLAST best-hit
assignment method. Paragraph 2 now focuses more broadly on the importance of
using methods of classification that return a confidence score, which is particularly
important for metabarcoding applications where management decisions are based on
appropriate assignment of a taxonomic name to sequence reads.

* Some important development is missing in the taxonomic assignment section. The
probabilistic method Protax (DOI: 10.1093/bioinformatics/btw346,DOI: 10.1111/2041-
210X.12721). Also Axtner et al. (doi: https://doi.org/10.1101/345082) preprint contains
a very robust workflow for eDNA, and I think you can extract important information from
their discussion. Protax do not require a complete database, gives hierarchical
probability of assignment and has a very elegant mathematical framework. It would be
a shame if it is not included in your review (or at least mention it to the public).

Response: We agree with the reviewer that we have overlooked the importance of
PROTAX method for sequence classification. In paragraph 2 of the taxonomic
assignment section we now introduce the PROTAX method and discuss its
advantages, in particular the ability to model probability that a sequence belongs to
species that exist in Linnaean taxonomy but not in the sequence reference database,
as well as modelling the probability that a sequence comes from a taxa novel to both
the reference sequence database and reference taxonomy. In box 1 we further
highlight the ability of PROTAX and other methods to set a prior weighting for certain
sequences, which could be useful when combining high confidence in-house
sequences with more variable quality public sequences, or when the endemic diversity
for the target region is well characterized.

*I disagree with the authors when they say "While the importance of technical
replication for increasing detection probability is generally agreed upon [31,178,179],
replicates reduce throughput without providing further independent data points [26].
Instead, with metabarcoding removing one of the major roadblocks to large-scale
surveillance, more biological replicates from more frequent and intensive trapping
could be used. Considering biological replication is particularly important as regardless
of the effectiveness of the metabarcoding diagnostic assay if an insect is not caught in
a trap it does not necessarily mean absence in the area". While I agree on the
importance of biological replication (and my argument is never against that), technical
replicates are of utmost important, especially when dealing with rare species and
invasive species. Even if the entire labwork is done in pristine condition, with close to 0
bias, the resulting sequences vary dramatically between replicates. Also, technical
replicates inform you of the overall quality of your survey, and allows you to model or
correct for biases that might have occur. I think it would be a disservice to the
community to let a statement that disregards technical replicates pass. Please consider
revising this point.

Response: We agree with the reviewer that we have discounted the importance of
technical replication too far. This section has been revised and we have emphasised
the importance of technical replication to counter stochasticity during PCR and library
preparation and identify laboratory cross-contamination in the case that replicates
show significant dissimilarities in taxonomic composition. We then contrast additive and
restrictive processing of replicates, and suggest it may be best to include a minimum
number of technical replicates to allow a majority rules approach (i.e. 2/3 replicates
count as a detection) to balance the positives of both approaches. We then suggest
the use of site occupancy models to determine the appropriate number of both
biological and technical replicates required to reach the desired statistical power for the
survey.

* In line 541, there is something missing after "similar"
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Response: We have corrected this to read: “similar standardisation of metabarcoding
protocols”

* While I liked and agree with the idea exposed between the lines 541 and 550, the
references cited proposed in silico mock communities. Despite this is necessary, I think
the authors should also push for the usage of a standard and diverse mock community.
The analyses of in silico mock communities and the real mock communities have
shown important differences between the two.

Response: We have suggested the use of standard and diverse mock communities,
alongside computational datasets for benchmarking, and have given the example of
the ZymoBIOMICS microbial mock community standards, which are used in the
microbiome sequencing field to allow more realistic benchmarking of both laboratory
and bioinformatics methods than can be provided by in-silico mock communities alone.

* Although Scopus is a large database, it missing a significant amount of citations. I
would encourage the authors to widen their scope to other sources. R has a very good
package called fulltext that encompasses multiple sources.

Response: The literature search has been expanded beyond Scopus and figure 1 has
been recreated to also include citations listed on Crossref, and Pubmed, resulting in an
addition of 16 citations for years prior to 2019. We have also included all 2019
publications to date, adding an additional 257 citations to this figure and resulting in the
use of Nanopore sequencing and Illumina NovaSeq now being represented in Fig1b.
The methods section and Supplementary 1 have been updated to include the new
methods involved in the creation of this figure.

We thank the reviewers for their insightful and constructive comments, which have
helped us improve the manuscript.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely

Yes
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identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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ABSTRACT  16 

Trap based surveillance strategies are widely employed for monitoring of invasive insect species, 17 

aiming to detect newly arrived exotic taxa as well as track the population levels of established or 18 

endemic pests. Where these surveillance traps have low specificity and capture non-target 19 

endemic species in excess of the target pests, the need for extensive specimen sorting and 20 

identification creates a major diagnostic bottleneck. While the recent development of 21 

standardised molecular diagnostics has partly alleviated this requirement; the single specimen per 22 

reaction nature of these methods does not readily scale to the sheer number of insects trapped in 23 

surveillance programmes. Consequently, target lists are often restricted to a few high-priority 24 

pests, allowing unanticipated species to avoid detection and potentially establish populations.  25 

DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-26 

species identification of complex mixed communities, and may lend itself ideally to rapid 27 

diagnostics of bulk insect trap samples. Moreover, the high-throughput nature of recent 28 

sequencing platforms could enable the multiplexing of hundreds of diverse trap samples on a 29 

single flow cell, thereby providing the means to dramatically scale-up insect surveillance in terms 30 

of both the quantity of traps that can be processed concurrently, and number of pest species that 31 

can be targeted. In this review of the metabarcoding literature, we explore how DNA 32 

metabarcoding could be tailored to the detection of invasive insects in a surveillance context and 33 

highlight the unique technical and regulatory challenges that must be considered when 34 

implementing high-throughput sequencing technologies into sensitive diagnostic applications.  35 

Keywords: 36 

Biosecurity, Alien species, Biosurveillance, Early detection, Bioinformatics, Reference database, 37 

Quality assurance, Controls, Validation, Non-destructive 38 
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BACKGROUND  39 

Increasing globalisation of trade and tourism along with changing climates are expected to 40 

further increase the rate of biological invasions over coming decades [1–3]. Insects form a 41 

dominant component of this global spread of invasive species [4], posing a major threat to 42 

agroecosystems [5], the environment [6] and human health [7] through disruption of ecological 43 

networks, plant herbivory and the transmission of pathogens and disease [8]. Once established in 44 

a new environment, ongoing containment and control of invasive insect pests imposes 45 

significant costs to industry, government and private landowners [8] and consequently major 46 

efforts are made to forecast incursion risk [9–11] and implement quarantine of entry pathways 47 

[12–14]. Despite these measures, the exponential increase in global movement of food, 48 

commerce, and humans complicates traceability and makes quarantine inspection of more than a 49 

fraction of arriving cargo an impossible task [15,16]. Therefore, proactive post-border 50 

surveillance within agricultural and natural landscapes is becoming an increasingly important 51 

component of effective biosecurity programmes, aiming to detect invasive species early before 52 

populations escalate or spread and eradication becomes unfeasible [17–19].  53 

Insect invasions can initiate and disperse across vast and highly heterogenous landscapes [20], 54 

and therefore surveillance programmes often involve extensive trapping conducted across a 55 

range of spatial scales, from large geographic areas to precise crop monitoring activities within 56 

agricultural properties [21]. As it is generally unclear whether a new introduction has occurred, or 57 

what species it may be, surveillance programmes can extend over many years and target diverse 58 

taxonomic groups [22,23]. In many cases surveillance traps will capture non-target endemic 59 

species in vast excess of the target pests and the sheer number of specimens that need to be 60 

sorted through and identified by highly-trained entomologists forms a major diagnostic 61 

bottleneck. While insect diagnostics still largely relies on traditional morphological examination 62 

[24], in recent years this has been supplemented by a range of molecular techniques that allow 63 
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standardised identification of a wide range of taxa without specialist taxonomic expertise (Table 64 

1). DNA barcoding in particular has become a central component of the modern diagnostic 65 

toolbox, due to the ability to compare a single unknown specimen against many potential species 66 

in a single assay, and standardised protocols that allow transparent and objective comparison of 67 

specimen identifications between laboratories, regulatory agencies and trading partners [24–26]. 68 

Despite these advantages, the time-consuming process of conducting single PCR and sequencing 69 

reactions on individual specimens has restricted the use of DNA barcoding to confirming the 70 

identity of specimens already deemed suspect by prior morphological sorting, or for 71 

identification of taxa or life stages where a taxonomic key may not be available or key diagnostic 72 

structures are degraded or missing [24,27]. Without access to a scalable and cost effective 73 

diagnostic method for large trap catches, current surveillance programmes generally do not 74 

identify all specimens to species level [23,28]. Instead, target lists are confined to relatively few 75 

priority pest species identified by previous risk assessment [9] or statistical methods are used to 76 

select only a subset of specimens for species level identification [29]. These restrictions can result 77 

in unanticipated or cryptic invasive species that are not being actively monitored for, to go 78 

undetected [30]. 79 

In order to overcome the limitations of current identification methods for processing large 80 

numbers of specimens, recent studies have looked to high-throughput sequencing (HTS) 81 

technologies to allow DNA barcode-based identification to be conducted in a massively-parallel 82 

manner. This process, termed “metabarcoding” [31] or “marker gene sequencing” [32], generates 83 

a large number of individual barcode sequences in a single reaction, enabling the simultaneous 84 

identification of individuals in large mixed communities [33,34], such as a trap sample containing 85 

many different insect species. The ability to rapidly and cost effectively survey biodiversity has 86 

led to metabarcoding being taken up across numerous fields of applied ecology [34–37], 87 

including the identification of invasive species (Fig 1A) [33,38–40]. By identifying both endemic 88 
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and potential exotic species in a bulk DNA analysis approach, metabarcoding can remove the 89 

time-consuming specimen sorting required by previous molecular and morphological diagnostic 90 

methods, and allow detection of not just key pests but also other unanticipated species that are 91 

not being actively searched for [38,41,42]. This aspect is particularly advantages for the detection 92 

of environmental threats, as when considering impacts beyond just agriculture and the time lag 93 

that can occur between introduction of a new species and perceptible damage to the 94 

environment [43], there are far more invasive species of threat than can be identified by risk 95 

assessment and incorporated into target lists [23,44]. A further advantage arises from the ability 96 

of HTS to count occurrences of specific sequences in a mixed sample [45] potentially allowing 97 

simultaneous pest identification and population size estimation. Finally, the rapidly increasing 98 

output of HTS technologies enables multiplexing of hundreds of trap samples in a single 99 

sequencing run, providing an avenue to dramatically scale up insect surveillance to the level 100 

required for effective, affordable and proactive management response. 101 

Despite the advantages that metabarcoding may offer to insect surveillance programs, uptake of 102 

new diagnostic tools into operational use depends on more than just the cost-effectiveness of the 103 

tool, but also on factors such as ease of use, accuracy, reproducibility, perceived usefulness to the 104 

end users as well as compatibility with existing policy frameworks [46,47]. With the introduction 105 

of the World Trade Organisation Agreement on the Application of Sanitary and Phytosanitary 106 

measures (SPS) came new obligations for exporting nations to demonstrate freedom of a 107 

geographic area from particular pests using scientifically rigorous surveillance practices [48]. This 108 

agreement has in turn led to harmonisation of routine diagnostic procedures into internationally 109 

standardised protocols to ensure that all end users are aware of the particulars involved and 110 

therefore committed to accepting any risk management actions that arise through its use [46,49]. 111 

The SPS agreement recognises the International Plant Protection Convention (IPPC) and the 112 

World Organisation of Animal Health (OIE) as the internationally recognised standard setting 113 
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bodies for plant and animal health respectively [48], and adoption of new standards stems from 114 

exhaustive workgroup efforts by these agencies [13,50]. While the opportunities that HTS 115 

approaches could offer has been widely recognised by the diagnostics community [51,52], due to 116 

the relative infancy of the technology standards and guidelines around their use is a rapidly 117 

evolving space and validated protocols do not yet exist. Despite this, there is flexibility within the 118 

SPS framework for trading partners to introduce novel sanitary or surveillance procedures if it 119 

can be demonstrated that they are equivalent or better to previous methods [49] and both the 120 

IPPC and OIE have now released guidelines for those labs preparing to implement HTS 121 

approaches in routine diagnostics applications. These guidelines highlight the need for robust 122 

experimental designs, assay validation, and quality assurance [51,53,54], reflecting recent 123 

discussions in the wider metabarcoding community [55]. In this review we explore the 124 

application of metabarcoding for high-throughput species level identification of insects, 125 

providing an overview of common metabarcoding workflows (Fig 2) and considerations required 126 

at each step to ensure reliable detection and quantification of taxa within complex mixed 127 

communities. We further discuss the unique technical and regulatory challenges of integrating 128 

broad-spectrum HTS assays into a diagnostic framework and offer a perspective on the future 129 

adoption of high-throughput insect surveillance within international biosecurity frameworks.  130 

REVIEW  131 

Selecting a taxonomic marker 132 

Appropriate selection of a taxonomic marker or barcode locus is a critical first step in design of a 133 

metabarcoding assay, as all downstream species detection and identification will rely on how 134 

conserved this marker is across taxa, and the discriminatory power of the nucleotide variation 135 

contained within it [56]. The markers most commonly employed in metabarcoding studies are 136 

those already widely adopted for conventional DNA barcoding, and therefore the mitochondrial 137 
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cytochrome oxidase I (COI) locus has been the most widely used marker for metabarcoding of 138 

insects to date. The 658bp region of COI [57] used for conventional DNA barcoding has a 139 

strong track record of delivering species level identification of insect pests [58], however many 140 

HTS platforms impose strict limitations in molecule length that can be sequenced (Table 2) and 141 

therefore smaller stretches of the conventional barcode loci or ‘mini-barcodes’ must be used [59]. 142 

Nevertheless, research into degraded DNA samples has shown that singular COI barcode of 143 

sizes between 135bp [60] and 250bp [61] can reliably distinguish most animal species, however 144 

appropriate placement within the larger barcode region is essential [62]. Despite the excellent 145 

taxonomic resolution provided by COI, since its application to metabarcoding a number of 146 

further limitations have become particularly apparent. As COI is a protein coding gene, the third 147 

position of codons can be variable, leaving no strictly conserved nucleotide sites for design of 148 

universal PCR primers [63]. This mismatch inevitably leads to primers having variable affinity for 149 

different template molecules, biasing the amplification towards well-matched taxa and failing to 150 

amplify others [64]. Unlike conventional DNA barcoding where a failed amplification will result 151 

in a noticeably absent PCR product, in a bulk sample failed amplification of a particular taxon 152 

will be masked by the recovery of sequences from other taxa and therefore will go unnoticed 153 

[63]. A further issue inherent to mitochondrial loci such as COI is the proliferation of nuclear 154 

mitochondrial pseudogenes (numts) in many insect orders [65–67], the result of historical 155 

recombination between the mitochondrial and nuclear genomes [68]. Co-amplification or 156 

preferential amplification of these pseudogenes instead of the true mitochondrial locus can 157 

complicate species identification [67] and result in overestimation of taxonomic diversity in the 158 

sample [69].  159 

Due to the aforementioned issues, as well as the inability for COI to differentiate certain pest 160 

groups [70], a range of alternative universal barcode markers have been proposed (reviewed by 161 

Freeland [56]). Ribosomal RNA (rRNA) genes are particularly appealing due to their high copy 162 
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number and stem-loop structure that consists of highly conserved core sequences for primer 163 

binding, interspaced with variable regions providing taxonomic resolution [71,72]. Despite this, 164 

rRNA regions are on average more conserved than COI and therefore while appropriate for 165 

reconstructing higher level relationships they require longer spans of nucleotides to be 166 

informative at the species level. For single specimen barcoding this can be overcome by 167 

concatenating several markers to increase phylogenetic resolution [73], however this presents a 168 

challenge for metabarcoding of mixed communities as there no way of knowing whether two 169 

non-overlapping markers are from the same individual [74]. Therefore, while multi-locus 170 

approaches can be useful for expanding the taxonomic diversity an assay can recover [75–77], in 171 

particular cross kingdom diversity (Box 2), they do not necessarily provide greater resolution 172 

[45]. Consequently, closely related and difficult to diagnose pest taxa may require further studies 173 

to identify appropriate diagnostic loci [78], or the development of novel analytical methods to 174 

integrate taxonomic assignments from multiple independent barcode loci. Finally, the application 175 

of alternative markers to insect diagnostics will suffer from a lack of reference sequence data, as 176 

many taxa, including those of economic importance currently only have COI sequence data 177 

publicly available (Fig 3B, 3C). Therefore, as species level resolution is a requirement of many 178 

diagnostic standards [24,49,79], for the taxa in which it has sufficient resolution, the high 179 

mutation rate and extensive reference information obtainable for COI will maximise the utility of 180 

metabarcoding within a broad-spectrum surveillance programme [80].  181 

Box 1 – Reference sequence databases 182 

As with conventional DNA barcoding, accurate taxonomic assignment in metabarcoding studies 183 

relies on a well-curated reference database of DNA marker sequences tied to vouchered 184 

morphological specimens to compare query sequences against [81]. The primary public 185 

nucleotide databases of relevance to insect metabarcoding are the Barcode of Life Data System 186 

(BOLD) [82] and the NCBI GenBank database [83]. While GenBank hosts greater overall 187 
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sequence data, BOLD represents a curated DNA barcoding database that aims to maintain 188 

consistent links between sequences, validated morphological specimens, and associated specimen 189 

collection metadata [84]. Concerted efforts to generate mitochondrial COI barcodes for major 190 

insect orders have led to broad coverage of insects of biosecurity concern in both major public 191 

databases [58], however many geographic regions are still under sampled (Fig 3A) and reference 192 

sequences for alternative loci are mostly unavailable (Fig 3B, 3C). While continued public 193 

submission and high throughput reference sequence generation [85] will increase the 194 

representation of missing taxa and loci over time, ensuring the quality of submitted sequences 195 

from correctly identified specimens is crucial [24]. There are numerous examples of barcode 196 

sequences being either insufficiently annotated [34],  annotated with the incorrect species in 197 

public databases [81,86–89], or multiple morpho-species assigned to the same DNA barcode, 198 

which may reflect misidentifications or the existence of species complexes [58]. These issues 199 

highlight the importance of engaging taxonomic experts to ensure a priori identification of a 200 

specimen before submitting a reference barcode to a public database [90,91]. Furthermore, the 201 

use of non-destructive DNA extraction methods when generating barcode sequences would 202 

allow the retention of voucher specimens to ensure traceability between the molecular and 203 

morphological features, especially in the case of taxonomic reassignments [92].  204 

While some metabarcoding studies have responded to the aforementioned issues by exclusively 205 

using in-house reference databases for taxonomic assignment [90,93–95], as many insect 206 

surveillance programmes aim to detect species that are not locally present, the reliance on public 207 

data to supplement in-house sequences may be unavoidable. Some taxonomic classifiers used in 208 

metabarcoding studies provide the option to weight classifications towards certain reference 209 

sequences [96,97], which could be beneficial when combining high confidence in-house 210 

sequences with more variable quality public sequences, or when the endemic diversity for the 211 

target region is well characterized [74,98]. Regardless of source, barcode sequences will be 212 
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compiled together and formatted appropriately for use with automatic taxonomic classification 213 

software [99–101] and this presents an ideal point where automated or semiautomated curation 214 

methods can be used in order to identify and remove any taxonomically mislabelled sequences or 215 

non-homologous regions such as pseudogenes [74,102]. Finally, curated databases used in an 216 

active surveillance program should only be updated after rigorous testing with standardized 217 

datasets to ensure assay results remain accurate and reproducible following addition of new 218 

sequences [103]. 219 

Marker enrichment 220 

Similar to conventional DNA barcoding, most metabarcoding studies use a set of universal 221 

oligonucleotide primers to exponentially amplify a target barcode marker until it reaches a 222 

concentration appropriate for sequencing. This ‘amplicon sequencing’ methodology has proven 223 

reliable and sensitive for detection of low abundance taxa in bulk samples [40]. However 224 

differential PCR amplification efficiencies between taxa generally results in a biased depiction of 225 

relative abundances of community members [104]. This bias is thought to mainly arise from 226 

primer-template mismatches, particularly at the 3’ end of the primer where extension takes place 227 

[64,105] and therefore comprehensive in-silico evaluation should be conducted at the beginning of 228 

a project to ensure primer sequences are appropriate for the underlying target community [106–229 

108]. Where mismatches with certain taxa are predicted to occur, inclusion of degenerate bases 230 

can overcome taxonomic bias inherent to a specific primer sequence [109,110], however  high 231 

levels of degeneracy can also lead to undesirable off-target amplification or formation of dimers 232 

[87,111], which will require further laboratory validation to detect [71,109,112]. In addition to the 233 

effects of PCR primers, a range of template specific factors including copy number of the loci 234 

[113], nucleotide composition and secondary structure [114], variable amplicon lengths [115], 235 

specimen biomass [116], and complexity of the species mixture [105,117] can further contribute 236 

bias. While the cumulative bias from all these factors may suggest that amplicon sequencing can 237 
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only be used for presence-absence data, importantly, sequencing reads are still correlated with 238 

DNA input in a predictable way, and biases should only affect the slope of that correlation [113]. 239 

Therefore the calculation of taxon-specific correction factors shows great promise for improving 240 

abundance estimates from metabarcoding data [113,118–120], particularly for simpler 241 

communities such as those trapped using targeted attractant lures [17]. Nevertheless, if accurate 242 

quantification is essential for the surveillance programme, removing the PCR amplification 243 

process altogether should also be considered for improving taxon abundance estimates from 244 

metabarcoding data. 245 

PCR-free approaches 246 

The major alternative to amplicon sequencing based metabarcoding involves simply fragmenting 247 

the genomic DNA extract to lengths appropriate for the sequencing platform and directly 248 

sequencing it without any prior bias-inducing enrichment step. This methodology, termed 249 

‘shotgun metagenomics’, generates sequence reads comprising a random subsample of the mixed 250 

community DNA and relies on the higher representation of taxonomically informative multi-251 

copy mitochondria and nuclear rRNA in this subsample to identify community members [121–252 

123]. In addition, these high copy regions can be assembled into long contigs and even full 253 

length mitochondrial genomes for further phylogenetic inference and systematics applications 254 

[124,125]. Despite this, restricting taxonomic analysis to just mitochondrial and nuclear rRNA 255 

regions still leaves the vast majority of reads corresponding to DNA that is not taxonomically 256 

informative or easily assembled from a bulk sample to be discarded [121] and deep sequencing 257 

will be required to reliably detect rare specimens in the community [125,126]. While the rapid 258 

growth in sequencing capabilities is making this brute force approach to community 259 

identification increasingly possible, for routine surveillance a cost-effective method for enriching 260 

taxonomically informative loci should be used prior to sequencing. A range of potential methods 261 

for PCR free sequence enrichment have been reviewed elsewhere (see: Mamanova et al [127] and 262 
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Jones et al [128]), but some examples that have been successfully used for metabarcoding include 263 

differential centrifugation to enrich for mitochondria [129] or baiting target barcode markers and 264 

whole mitochondria using hybridisation probe capture [130–133]. Hybridisation capture relies on 265 

the use of thousands of synthetic oligonucleotide probes each with strict complementarity to a 266 

target sequence,  and  therefore should ideally be designed with a priori knowledge of every target 267 

sequence [128]. Although this may be a limiting factor for recovery of previously unsequenced 268 

diversity, the flexibility to include essentially infinite numbers of probes provides further 269 

advantages for building bespoke metabarcoding assays that capture diverse loci for purposes 270 

beyond taxonomic inference (Box 2). Nevertheless, while PCR-free approaches have shown 271 

improved correlations between sequencing reads and input DNA [123,134], it is important to 272 

remember that HTS counts molecules not individuals [45] and therefore biases are likely to still 273 

remain due to variation in biomass and copy number between organisms and tissues [131,134]. 274 

Furthermore, the process of PCR amplification is already widely accepted with validated 275 

diagnostics protocols [49], and implementation of alternative PCR-free sequence enrichment 276 

methods may require overcoming additional regulatory hurdles. 277 

Box 2 – Modular metabarcoding assays 278 

Many of the insect pests actively monitored by surveillance programs are not targeted because of 279 

direct damage they do to animals, plants or the environment, but instead due to the associated 280 

fungi, bacteria, viruses and viroids that they can vector [52,135,136]. Similar to identification of 281 

insects, detection of host-associated pathogens has previously required screening of trapped 282 

samples on a specimen-by-specimen basis using target-specific assays or culturing and 283 

morphological analysis [33], however this is rapidly being augmented with metabarcoding and 284 

metagenomic approaches [33,103,137,138]. The ability of HTS platforms to sequence a  285 

heterogenous mix of loci opens up the opportunity for combining both the identification of 286 

insects and the screening of a diverse range of host-associated microbiota within a single 287 
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multiplexed metabarcoding assay [40,139]. Nonetheless, developing an integrated assay that 288 

allows detection and identification of biologically diverse organisms in a diagnostics context 289 

presents a number of challenges. Extraction techniques will need to be optimised account for the 290 

pathogen association with its insect host (i.e. intracellular [140], external [141], gut borne [142]) 291 

and specific microbial life histories may make this incompatible with non-destructive DNA 292 

extraction. Furthermore, PCR protocols will need to be optimised to account for the large 293 

differences in template quantity between abundant host DNA and low-titre vectored organisms 294 

[143].  295 

In contrast with the high resolution COI provides for identification of insects, the commonly 296 

used universal markers for bacterial and fungal barcoding struggle to identify organisms to the 297 

species or strain level, which is necessary to separate pathovars from common innocuous 298 

environmental organisms [33,136]. Therefore, diagnostic assays that aim to be universal for both 299 

host and vectored organisms identification will require analysis of a range of group-specific 300 

markers in multiplex, or make use of long read HTS platforms for increased taxonomic 301 

resolution [144,145]. While multiplexing many loci together in single PCR reactions can greatly 302 

simplify laboratory protocols and therefore costs involved, for metabarcoding this can be 303 

complicated by cross-reactivity between primers and individual primer sensitivities changing 304 

depending on community composition [76,105,112]. As an alternative, various target loci could 305 

be enriched in parallel reactions and then pooled together by sample prior to library preparation 306 

In proportions relative to the number of reads desired for each marker [40,146]. This highly 307 

flexible modular approach would then allow group-specific microbial primers, or other markers 308 

of interest to be added or retracted from the assay depending on the target community and needs 309 

of the end user. For example, Swift et al [147] have demonstrated the ability of modular 310 

metabarcoding assays to not just identify cross-kingdom species composition, but  also genotype 311 

microsatellite loci and sex specific markers relevant to the community under study. While the 312 



14 

 

field of invasion biology has traditionally been concerned with the transport and movement of 313 

species, this doctrine overlooks the intra-specific movement of genetic material such as pesticide 314 

resistance alleles [148], transposable elements [149], and genetically modified organisms [150]. 315 

The ability to capture essentially any loci in a modular metabarcoding assay may allow integration 316 

with a more gene focused model of biosecurity in the future.  317 

Library preparation & multiplexing 318 

Regardless of whether an enrichment or metagenomics approach was used, platform specific 319 

sequencing adapters need to be attached to the molecules (via ligation [151], one-step [152] or 320 

two-step PCR [40,106]) to form ‘libraries’ which can then bind to the flow cell for sequencing 321 

(Fig 4A). As current HTS platforms output sequences far in excess of what is required to identify 322 

the taxa in a single community, metabarcoding studies commonly multiplex many samples 323 

together on a single flow cell and use oligonucleotide index sequences incorporated into the 324 

sequencing adapters to link sequencing reads back to origin sample. While a range of indexing 325 

strategies exist for HTS [153], for sensitive diagnostics applications it is critical to choose an 326 

approach that can adequately cope with the occasional recombination of these indices between 327 

molecules. Index-switching has received particular attention due to the particularly high levels on 328 

recent Illumina platforms [154], however similar phenomena can affect multiplexed sequencing 329 

across major platforms to various degrees [155–159] (with the possible exception of recent MGI 330 

platforms [160]). Suggested causes include contamination from residual adapter/primer 331 

oligonucleotides [161], chimera formation during adapter PCR [162], mixed clusters on the flow 332 

cell [157], or physical contamination during library preparation or oligo synthesis by the vendor 333 

[159,163,164]. Regardless of mechanism, when not properly controlled for, index-switching can 334 

cause taxa from one sample to ‘bleed’ into others, and while this will only produce false-positives 335 

for a taxon of concern when a true positive is present in at least one of the samples, the 336 

spreading of positive signal across samples can imply the taxa of interest has a larger geographic 337 
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distribution than reality. Recent studies have demonstrated the most effective method for 338 

controlling for index-switching is through the use of unique dual indices (Fig 4C) rather than the 339 

commonly used combinatorial indexing (Fig 4B). When unique dual indices are used, switching 340 

events at either end of the molecule will generate an index combination that was not originally 341 

applied and during de-multiplexing the reads with mismatched indices to the sample sheet will be 342 

filtered into an unassigned reads file and excluded from analysis [159,162,165]. Furthermore, sets 343 

of indices should be alternated for each sequencing run [51] as carryover of molecules between 344 

runs on a HTS machine can be a further cause of false-positives in high sensitivity sequencing 345 

applications [166]. Finally, it is further important that index sequences used are designed with 346 

sufficient edit distance between them so that substitution or insertion/deletion errors within the 347 

index do not cause further sequence mis-assignment [131,167], particularly for higher error rate 348 

platforms such as nanopore [115].  349 

High-throughput sequencing platforms 350 

While the rapid growth of HTS over the past decade has produced a variety of techniques and 351 

chemistries for discerning the nucleotide sequence of a DNA molecule [168], modern platforms 352 

can largely be divided into those producing short-but-accurate sequences, or long-but-error-353 

prone sequences (Table 2). To date the majority of metabarcoding studies have been conducted 354 

using the former, with the Illumina ‘MiSeq’ dominating the recent metabarcoding literature due 355 

to its high-quality reads and relatively inexpensive purchase cost (Fig 1B). Despite the current 356 

popularity of the MiSeq for research studies, the cost per sample may be impractical for the 357 

number of specimens produced by large-scale surveillance programmes, and instead the 358 

production scale Illumina ‘NextSeq’, ‘HiSeq’ and ‘NovaSeq’ provide progressive increases in 359 

throughput and therefore cost reductions (Table 2). Nevertheless this increased sequencing 360 

throughput of these platforms must be balanced with diagnostic turnaround times, and effective 361 

use of the ultra-high capacity HiSeq and NovaSeq flow cells will involve multiplexing of 362 
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thousands of samples, requiring significant logistical efforts in sample collection and processing 363 

[103].  364 

Despite the cost-effectiveness of the aforementioned platforms, their restricted read lengths 365 

(Table 2) limit the taxonomic resolution achievable with a metabarcoding assay and therefore 366 

long read sequencing platforms such as the Pacific Biosciences (PacBio) ‘Sequel’ and Oxford 367 

Nanopore Technologies (ONT) ‘MinION’ and ‘PromethION’ are becoming increasingly 368 

attractive alternatives. The ability to sequence barcode regions thousands of bases in length has 369 

potential to enable greater recovery of taxonomic diversity with intra-specific resolution [169], 370 

however in practice the utility of long reads for species identification has been limited by 371 

significantly higher per-base error rates that commonly exceed intraspecific distance [115,170]. 372 

Nevertheless, methods for repeatedly sequencing a single molecule to create higher quality 373 

consensus sequences [171] are now opening up applications in metabarcoding [144,158], with 374 

natively implemented circular consensus sequencing on the PacBio Sequel producing consensus 375 

reads with similar accuracy to traditional Sanger sequencing [172], and third party protocols 376 

mimicking this approach have now been published for the ONT platforms [173,174]. If similarly 377 

robust consensus sequencing can be achieved with nanopore technology, the significantly smaller 378 

start-up cost and portability of the handheld MinION platform may in future permit 379 

metabarcoding based diagnostics to be conducted in remote field sites [115], as well as enable 380 

lesser resourced laboratories to access these technologies [14]. 381 

Bioinformatics 382 

Computational processing of sequence reads represents a series of steps of equal importance to 383 

laboratory protocols for ensuring accurate and sensitive detection of invasive species [175,176], 384 

however many of the skills and techniques involved in this process have not historically been 385 

required within diagnostic laboratories. While there exists a number of popular end-to-end 386 
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computational pipelines for analysing marker gene data [177–181], many of these have been 387 

designed for measuring diversity rather than detection of low abundance taxa. Each step in the 388 

bioinformatic analysis can present trade-offs between sensitivity to rare taxa, amount of 389 

erroneous sequences retained, and overall computing time [77,175,182–184] and use of 390 

metabarcoding in an invasive species surveillance or other sensitive context presents some 391 

unique challenges and regulatory requirements that may be best addressed through the creation 392 

of a custom analysis pipeline [146,176]. 393 

De-multiplexing and sequence quality trimming 394 

A metabarcoding assay typically involves multiplexing many samples into a single pooled 395 

sequencing library in order to make optimal use of the high capacity flow cells of current 396 

sequencing platforms. Therefore, the first step following sequencing (typically automated by the 397 

HTS platform’s software) is to assign sequences back to their origin sample using unique 398 

oligonucleotide sample indices incorporated into the sequencing adapters (Fig 4). Following de-399 

multiplexing, sequencing adapters and any other non-biological information such as PCR primer 400 

sequences are removed, and reads are assembled into consensus sequences using their 401 

overlapping bases. While improvements in underlying sequencing chemistries and 402 

aforementioned consensus approaches means the majority of platforms now provide per base 403 

accuracies above 99.99% (with the notable exception of nanopore platforms) [168,173,185], 404 

when put in context of the billions of bases sequenced on modern flow cells, tens of thousands 405 

of sequences will still contain errors [186]. Raw sequence reads are generated in conjunction with 406 

a predicted error profile based off signal intensity and background noise, and this data is 407 

generally presented to the user in the form of a FASTQ file [187]. An initial quality trimming 408 

stage uses this profile to truncate or remove sequences that contain excessive ambiguous or low 409 

confidence base calls [186,188], this is however a coarse filtering process where parameters 410 

should be carefully considered, particularly for higher error platforms such as nanopore. While 411 
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strict quality trimming will more effectively remove sequencing artefacts and erroneous reads 412 

that can impact downstream diversity and abundance estimates, overly conservative parameters 413 

can result in removal of too many reads and therefore loss of sensitivity to low abundance taxa 414 

[146,176]. 415 

OTU clustering & denoising 416 

While quality trimming can improve accuracy by removing sequencing errors, the PCR 417 

amplification process used in the majority of metabarcoding studies can further introduce single 418 

base substitutions [158,189] and length variation [190] that will not necessarily be associated with 419 

low quality scores [191]. As these noisy sequences can cause spurious results and significantly 420 

increase downstream computation, many studies cluster together all sequences within an 421 

arbitrary similarity threshold (commonly 97%) into representative bins called ‘operational 422 

taxonomic units’ (OTUs). While the 97% similarity threshold is thought to represent a broadly 423 

generalisable compromise between interspecific and intraspecific variation and is commonly used 424 

to indicate distinct taxa [192,193], actual coalescent depths between species can differ greatly 425 

across taxonomic groups [91]. Therefore when a single global threshold is applied to diverse 426 

communities it can result in both the splitting of a single species across multiple OTUs, as well as 427 

the lumping of multiple species into the same OTU, resulting in false-negatives [176,194]. 428 

Furthermore, aggregating all similar sequences into a single OTU loses all information on 429 

intraspecific diversity, restricting the ability to trace geographic origin of invasive populations 430 

[39,79]. In addition, the OTUs generated by clustering are dependent on the particular dataset, 431 

reference database, and parameters selected [194,195], and as such they do not lend themselves 432 

to ongoing comparison with the constantly evolving data produced by a longitudinal surveillance 433 

programme. In order to overcome the aforementioned limitations, newly developed ‘de-noising’ 434 

algorithms instead use statistical models to infer true biological sequences from sequencing noise 435 

and correct for single nucleotide differences, without imposing the arbitrary similarity threshold 436 
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which define OTUs [196–198]. This single nucleotide resolution enables binning sequences into 437 

‘amplicon sequence variants’ (ASV) [196] (also termed ‘exact sequence variants’ (ESVs) [194], 438 

sub-OTUs [197] or zero-radius OTUs (zOTUs) [198]) that retain precise haplotype information 439 

that can be necessary for diagnostics of closely related taxa  or tracking an invasion [199], and act 440 

as a consistent label between analyses [194].  441 

OTU quality control 442 

While the above measures account for the majority of low abundance errors, they are not 443 

designed to deal with high abundance artefacts such as PCR generated chimeras and non-specific 444 

amplification products. Chimeric sequences are the result of incompletely extended PCR 445 

products acting as primers for a different closely related sequence [189], and therefore appear as 446 

concatenated products of two parent sequences. Assuming parent sequences will be more 447 

abundant having undergone more rounds of amplification, chimeras can be algorithmically 448 

removed through comparison with other sequences in the sample [196,200], or with a chimera-449 

free reference database [201]. On the other hand, removing products of non-specific 450 

amplification such as intra-genomic variants and pseudogenes presents more of a challenge, and 451 

will generally require manual curation [151,202]. When targeting protein coding mitochondrial 452 

genes such as COI, the presence of stop codons and frameshifts that disrupt the open reading 453 

frame (ORF) are common indicators of pseudogenes [80], and for rRNA markers secondary 454 

structure prediction could be used to ensure sequences don’t contain significant variation in 455 

highly conserved regions [203]. As it is inefficient to include a manual curation process as part of 456 

a high-throughput bioinformatics pipeline, it would be beneficial for future denoising algorithms 457 

to incorporate patterns of sequence evolution to allow more precise and automated filtering of 458 

barcode loci from erroneous and pseudogenic sequences [80,204,205]. 459 

Taxonomic assignment 460 
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In order to process the large diversity of sequences that a metabarcoding assay typically 461 

produces, the assignment of Linnaean taxonomy (species, genus etc.) is typically conducted in an 462 

automated manner. While a large range of software tools exist for this purpose [206], the 463 

approaches used can generally be delineated into either sequence similarity searches (i.e. BLAST 464 

alignment), sequence composition methods (i.e. Hidden Markov models and Kmer counts), 465 

phylogenetic methods, or a hybrid of the above (see Bazinet et al [207] for an in-depth 466 

comparison). To date, the most widely used approach for taxonomic classification in 467 

metabarcoding studies has been best-hit classification using alignment based tools such as 468 

BLAST [208], which assume that the taxonomy of the query sequence will be identical to the 469 

taxonomy of the most similar sequence in a reference database. While this approach is simple to 470 

implement and can perform effectively when the reference database contains sequence 471 

information from conspecifics, when reference data is absent or when the particular loci cannot 472 

distinguish between multiple organisms, best-hit classification is prone to over-classifying the 473 

sequence to incorrect species level taxonomy [209]. In the worst case, this over-classification 474 

error could lead to false-positives by classifying a previously un-sequenced but probably 475 

innocuous organism as a known pest, due to the pest being the closest taxa with an existing 476 

reference sequence [210]. 477 

As the above situation demonstrates, for applications where management decisions are to be 478 

based on the results of a taxonomic classification, a central question is the reliability of that 479 

classification. A number of taxonomic assignment algorithms aim to address this issue by 480 

returning a measure of confidence of inclusion in each taxonomic rank, for example using 481 

repeated random sampling [97,211], lowest common ancestor methods [212], or probabilistic 482 

models [96,213]. In an ideal case, only a single possible taxonomic outcome will obtain a high 483 

level of confidence, whereas alternate outcomes will obtain probabilities close to zero. In cases 484 

where there may be uncertainty at the species or genus level due to imperfect reference data and 485 
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multiple taxonomic outcomes obtaining similar probabilities, the sequence may still be robustly 486 

assigned to a higher taxonomic rank (e.g. family) [101], providing important information about 487 

sample composition and possible presence of novel taxa without producing false-positives [214]. 488 

While employing measures of confidence can reduce incidence of over-classification, many of 489 

these approaches suffer from an inherent bias in that they infer the entire scope of possible 490 

taxonomic outcomes exclusively from the reference sequences used for training [215,216], which 491 

in reality only represents taxonomic units that have been previously sequenced. In contrast, the 492 

Bayesian framework of PROTAX [96] accepts a reference taxonomy tree alongside the reference 493 

sequence database in order to account for taxa that are present in Linnaean taxonomy but not 494 

represented by reference sequences. Furthermore, PROTAX explicitly models the probability 495 

that a sequence belongs to a taxon that is novel to both the reference sequence database and 496 

reference taxonomy, which could be particularly important when conducting surveillance in 497 

regions with significant uncharacterized biodiversity [216,217]. Nevertheless, even the most 498 

complex taxonomic assignment algorithms do not model important aspects of species biology 499 

that may limit the possible geographical distribution or habitat they could reasonably exist in, and 500 

therefore the results of taxonomic assignment should be vetted with ecological knowledge of the 501 

detected species where possible [35].  502 

Quality assurance 503 

The ability to simultaneously identify many loci from thousands of specimens in a single 504 

diagnostic assay underlies the power of the metabarcoding approach to surveillance, however the 505 

resulting increase in sequence diversity and analytical complexity introduces further risk of cross-506 

contamination and technical error [55]. An important challenge for the use of metabarcoding in a 507 

diagnostic context is the rate of false-positives (incorrect identification of an insect as the pest of 508 

concern) and false-negatives (not identifying a pest of concern). While many ecological studies 509 

prioritize minimizing false-positives errors over false-negative errors [37], generally the 510 
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precautionary principle applies in biosecurity, i.e. it is better to have a false-positive that can be 511 

followed up with an orthologous confirmation method than to miss a serious pest. This is 512 

particularly important if the assay is to provide ‘evidence of absence’ to support pest free status 513 

[218], which can be required to access certain international markets [28]. Therefore, a quality 514 

assurance system for metabarcoding diagnostics should aim to reduce false-positives as much as 515 

possible through the appropriate use of controls, replication and validation, without in turn 516 

increasing the incidence of false-negatives. 517 

Controls & replication 518 

The majority of contamination in NGS assays is expected to arise from other samples processed 519 

in the same laboratory environment, particularly when PCR is involved [164,219], and therefore 520 

workspaces should be physically or temporally separated for different assay steps with all 521 

surfaces, equipment and reagents regularly decontaminated [33,219–221]. Periodic swipe tests of 522 

laboratory surfaces can help identify common laboratory contaminants and confirm the absence 523 

of environmental DNA from target pests [220,222]. Despite these precautions, even the cleanest 524 

laboratory environment will not account for all possible contaminant sequences and therefore 525 

no-template controls should be included throughout the entire laboratory workflow and 526 

sequenced alongside the sample libraries to provide a cumulative measure of contamination 527 

[162,223,224]. When these controls are incorporated sequentially at each step of the laboratory 528 

protocol they can further enable partitioning of contamination to the stage in the workflow 529 

where it occurred, which can be particularly for highlighting processes that can be improved 530 

during assay development [35,37]. Index-switching is perhaps the most worrisome cause of 531 

contaminating sequences in HTS, and while use of unique-dual indices (Fig 4C) can reduce this 532 

phenomenon to a level acceptable for most studies, trace levels of index-switching can still 533 

persist and cause issues for sensitive diagnostic applications [159]. While index-switching 534 

artefacts will be detectable in no-template controls, it can be difficult to discern this 535 
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phenomenon from sequences arising through physical contamination. Instead, including a 536 

positive control library made up of synthetic standard DNA [177,225,226] or an ‘alien’ taxa 537 

guaranteed to be absent from the sample [88,227] allows empirical measurement of the index-538 

switch rate. Alternatively, the rate of index-switching can be measured post-hoc by comparing 539 

read counts between valid and invalid combinations of unique-dual indices [131,228]. Once 540 

contaminant sequences have been identified, their presence can be controlled through the 541 

application of a minimum abundance filter based on the read counts within negative and/or 542 

positive control libraries [35,229], although choice of an appropriate threshold can be 543 

complicated by read depth differences between samples and preferential amplification of 544 

contaminants in low biomass no-template control samples [175,230]. As an alternative, new 545 

statistical methods allow systematic removal of contaminant sequences based on co-occurrence 546 

patterns and library quantification data [231–233], however if particularly high levels of 547 

contamination or abnormally high rates of index-switching are detected in a specific batch of 548 

samples it may be more appropriate to repeat the assay. Finally, including an additional positive 549 

control in the form of a well characterized mock ‘calibration community’ in every sequencing run 550 

could further highlight any additional run specific aberrations or batch effects that may have 551 

been introduced during the metabarcoding workflow when taxonomic composition or error 552 

rates deviate strongly from expected [205,234,235]. 553 

In addition to being prone to contamination, library preparation protocols involve a series of 554 

molecular bottlenecks where during each subsequent stage of DNA extraction, target enrichment 555 

and binding of molecules onto the flow cell, only a random subsample of molecules are taken 556 

forward [37]. Stochasticity in this sampling process is likely to bias the resulting sequences 557 

towards more abundant taxa and increase the false-negative rate for rare taxa [236], and this can 558 

be further exacerbated by negative primer bias [77]. Potential loss of rare taxa during sample 559 

processing can be offset through the use of technical replicates, and these provide a further 560 
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avenue to identify laboratory cross-contamination in the case that replicates show significant 561 

dissimilarities in taxonomic composition [77,229,237]. While using higher numbers of replicates 562 

can increase the probability of detecting rare taxa [237], this must be weighed against the 563 

increased costs of sequencing and library replication as well as the strategy for processing the 564 

replicates [37]. Additive processing (i.e. pooling the detections of all replicates) can be most 565 

useful for overcoming sampling stochasticity and controlling for false-negatives, while restrictive 566 

processing (i.e. only retaining sequences present in several replicates) more effectively controls 567 

for cross-contamination. To balance the positives of both approaches, it may be best to include a 568 

minimum number of technical replicates to allow a majority rules approach (e.g. 2/3 replicates 569 

count as a detection) [77,88,112]. A further aspect to consider is the importance of biological 570 

replicates at the sample collection stage [238], as regardless of the effectiveness of the 571 

metabarcoding diagnostic assay if an insect is not caught in a trap it does not necessarily mean 572 

absence in the area. The use of site occupancy models that account for the false-positive and 573 

false-negative prone nature of metabarcoding surveys could be used to determine the optimal 574 

number of both technical and biological replicates to reach the desired statistical power for the 575 

survey [239,240]. Finally, while out of the scope of this review, appropriate trap design [241] and 576 

surveillance grid planning [242] must also be adhered to for effective metabarcoding based 577 

surveillance.  578 

Validating metabarcoding assays 579 

Due to the relevance of many invasive insects to international trade and human health, 580 

laboratories conducting insect diagnostics generally exist within strict regulatory environments. 581 

As part of laboratory accreditations, newly developed assays are required to undergo a validation 582 

process in order to provide objective evidence to all end users that an assay is fit for purpose 583 

[53,54,243,244]. Traditionally, validation first involves defining the scope of the assay and then 584 

establishing performance parameters such as analytical sensitivity, analytical specificity, 585 
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reproducibility and repeatability for every individual target designated in this scope [26,244,245]. 586 

However, the universal nature of metabarcoding assays and the taxonomic diversity of potential 587 

surveillance catch makes this impractical [246]. To overcome this inevitable variation between 588 

reference samples and reality, a flexible scope validation process should be used to establish 589 

performance parameters on representative samples and identify critical steps in the workflow 590 

where variation can be introduced [146,247]. These critical steps can then be monitored run-to-591 

run using control samples and appropriate QC checkpoints (Table 3), in order to ensure that no 592 

sample or sequence data continues without meeting minimum quality requirements 593 

[51,221,247,248]. In the case of insect metabarcoding, mock communities made up of the 594 

taxonomic groups of interest are generally used for validation, which are then spiked with 595 

decreasing concentrations of target species in order to establish assay sensitivity and limits of 596 

detection [40,249]. As DNA extraction efficiency and primer bias  can be affected by overall 597 

community complexity [105,250], mock communities should as closely as possible represent the 598 

diversity expected to be recovered in different trapping scenarios. Furthermore, the amount of 599 

sequencing effort assigned to an individual sample during multiplexed sequencing can vary 600 

across runs [224,251], and the effect of sequencing depth on detection should also be established 601 

using rarefaction curves [107,117]. On the other hand, analytical specificity will generally depend 602 

on choices made during assay design, such as the choice of target marker, availability of 603 

appropriately annotated reference sequences for the chosen marker, and taxonomic assignment 604 

criteria used [220,246]. Parameters such as precision and reproducibility of a metabarcoding assay 605 

can be established similar to other molecular diagnostics, through replication of samples and 606 

controls within and across sequencing runs and inter-laboratory comparisons [146]. Finally, 607 

stability of specimens and DNA to environmental factors such as temperature, UV radiation, pH 608 

of commonly used drowning or attractant solutions (e.g. vinegar traps [252]), and exposure to 609 

environmental microorganisms in the field and during storage [253] should be evaluated, and 610 
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may prompt a need for redesign of insect traps to collect and preserve samples in a manner more 611 

suited to DNA based identification. 612 

Reporting & confirming detections 613 

Even when primers are designed around a specific taxonomic group, metabarcoding can amplify 614 

and detect many more taxa outside the scope of the original validated target list [254]. How these 615 

incidental detections are reported and eventually acted upon will present a major challenge to 616 

diagnostic labs and end users, due to the increased number of previously undocumented taxa 617 

being discovered for which knowledge of distribution or ecological significance may be missing 618 

[51,53]. Many of these incidental detections will be taxa that simply have not previously been 619 

searched for, and it will be important when considering an appropriate management response 620 

not to conflate ‘first detection’ in an invasion biology sense, where there was prior evidence of 621 

absence, with merely the first time a species has been formally identified in a region [255]. Hence 622 

a greater emphasis needs to be placed on conducting baseline surveys to establish comprehensive 623 

species checklists of endemic diversity and resolve synonymous taxa at the beginning of a 624 

surveillance programme in order to avoid creating sudden market access and trade issues [256]. 625 

Furthermore, a decision framework should be developed for evaluating incidental detections that 626 

sets out steps for further characterization and risk assessment for the detected organisms in 627 

order to establish if eradication or other management actions are appropriate or achievable [257]. 628 

Where necessary, putative detections can be further confirmed using an orthogonal diagnostic 629 

method such as qPCR/ddPCR on the original DNA extract [146], however these assays require 630 

prior development and will therefore not be available for all incidental taxa detected in a 631 

metabarcoding assay. Instead, the use of non-destructive DNA extraction methods that use a 632 

combination of enzymes, buffers and heat without mechanical homogenisation [227,258–260], 633 

or even amplification of insect DNA from the ethanol used to preserve specimens [261–264] 634 

would enable diagnosticians to revisit original samples following metabarcoding to confirm 635 
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species detections. Development of a non-destructive metabarcoding assay has great potential 636 

for bridging the gap between new HTS methods and traditional entomological techniques and 637 

may bootstrap the acceptance of metabarcoding into international regulatory frameworks.  638 

Perspectives & conclusions 639 

The ability to accurately, rapidly and cost-effectively determine the species composition of bulk 640 

insect traps using metabarcoding has the potential to revolutionise broad-spectrum surveillance 641 

for invasive insect pests. Similar to any novel technology, as metabarcoding transitions from 642 

purely research to management applications it faces the growing pains that come with integration 643 

into established regulatory structures. While rigorous standardisation of both laboratory 644 

techniques and data analysis has proven essential for the acceptance of conventional DNA 645 

barcoding as a validated diagnostic for insects of regulatory concern [26,79], the sheer pace of 646 

development of HTS technologies and platforms may complicate similar standardisation of 647 

metabarcoding protocols. Historically, the effective lifespan of many HTS platforms has only 648 

amounted to a few years before obsolescence [168], and laboratory protocols and bioinformatic 649 

methods are therefore constantly evolving to chase this moving target. In response to this 650 

constantly shifting state of the art, harmonisation efforts by regulatory bodies should avoid the 651 

over prescription of restrictive standards into law, as these will become quickly outdated and risk 652 

further widening the gap between research and diagnostics capabilities [46]. Instead, 653 

development and distribution of certified reference materials in the form of standard and diverse 654 

mock communities or DNA standards (similar to the ZymoBIOMICS microbial mock 655 

community standards [265]) as well as computational datasets [266] would enable benchmarking 656 

of laboratory and computational methods and begin to characterise the sources of technical 657 

variation between laboratories [267,268]. This could be further developed into an inter-658 

laboratory proficiency testing program where blinded reference samples are periodically 659 

distributed for analysis, in order to demonstrate to all stakeholders that an assay is fit for purpose 660 



28 

 

for detecting invasive insect species [248,269]. The results of these processes would allow further 661 

development of best-practice technical guidelines and begin to harmonise approaches across the 662 

wider metabarcoding community [270].  663 

Biosecurity and pest management decision making is still largely reliant on the application of a 664 

species name to a specimen barcode sequence [81], and issues of mislabelled sequences in public 665 

reference databases (Box 1) highlight the importance of maintaining expertise in taxonomy and 666 

classical diagnostics to complement high-throughput approaches. Due to the incomplete nature 667 

of reference databases, much of the sequence data currently produced by metabarcoding assays 668 

will consist of insufficiently identified sequences [84]. While some of these will no doubt be the 669 

result of sequencing errors making it through quality control, many more will represent real taxa 670 

and reflect the further work required to more completely describe and acquire reference data for 671 

insect biodiversity. Monitoring programs for biological invasions are at their most informative 672 

when they are continuous and long term [271,272] and it would be beneficial for these 673 

insufficiently identified sequences to be integrated into references databases and tracked across 674 

analyses and timepoints. Porter and Hajibabaei [84] have highlighted the advantages that ASVs 675 

provide over more traditional OTU methods for consistent labelling of insufficiently identified 676 

sequences, and embracing non-destructive DNA extraction techniques would further enable 677 

taxonomists to verify these sequences using morphological methods and potentially locate 678 

previously unbarcoded taxa or novel species, which could then feed back into reference 679 

databases [259]. Conventional DNA barcoding and morphological taxonomy currently benefit 680 

from a close and reciprocal interaction [273], and we envision a similar relationship for the future 681 

of insect metabarcoding. This ability to systematically reanalyse historical datasets with improved 682 

reference databases, bioinformatic tools, and biological knowledge presents a major strength of 683 

HTS diagnostics [51] and therefore raw datasets should also be archived alongside relevant 684 

technical and environmental metadata in a machine readable format [195]. However the datasets 685 
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from ongoing longitudinal surveillance quickly amount to terabytes of data [274], the storage, 686 

management and securing of which will require dedicated infrastructure and personnel [53].  687 

Unlike the current drive for open sharing of data in academic research, concerns of misuse 688 

harming the international movement of goods means that historically the release of raw 689 

diagnostic data to the public has not been common [51]. However, a pathway for declassifying 690 

and releasing this data to researchers should be developed, as the mass of community level 691 

information generated by metabarcoding bio-surveillance shows great potential for generating 692 

new insights into the process and impacts of biological invasion [275]. 693 

In an increasingly globalised world, more effective and scalable utilisation of surveillance effort 694 

will be required to manage the spread and establishment of invasive species. While broad-695 

spectrum approaches to surveillance have historically been limited by the overwhelming amount 696 

of diagnostics work generated, metabarcoding based diagnostics fundamentally change this 697 

dynamic by allowing entire communities of diverse organisms containing target pests, endemic 698 

species, and unexpected invaders to be simultaneously identified [41]. While present costs of 699 

technological investments may currently limit the uptake of HTS tools to only well-funded core 700 

diagnostic labs, we expect developments in portable real time sequencing will further enhance 701 

the availability of these tools to a much wider user-base worldwide. Furthermore, it is 702 

conceivable that the ongoing miniaturisation of sequencers may synergise with advances in 703 

microfluidic and lab-on-a-chip technologies [276] to produce a new generation of metabarcoding 704 

based “smart-traps” for remote monitoring [277,278]. Nevertheless, metabarcoding forms just a 705 

single component of a larger biosecurity toolbox that contains not only fast, cost effective and 706 

reliable means of diagnostics, but also predictive models, improved risk forecasting, field tested 707 

tools, and an overarching decision support system [46,52,135,137]. The future of biosecurity 708 

surveillance and pest management is a distinctly interdisciplinary area, and we encourage future 709 

research to involve closer collaboration between academic scientists, diagnosticians and the end 710 
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users that rely on effective surveillance data to manage the spread of invasive pests and 711 

pathogens.  712 

Methods: 713 

All articles containing "Metabarcoding" in their abstract, title or keywords were retrieved from 714 

the Scopus, PubMed and Crossref citation databases on 2019-06-20 using the rscopus [279], 715 

rentrez [280], and fulltext [281] packages in R 3.5.3 [282]. Duplicated article entries were detected 716 

using fuzzy string matching functions from tidystringdist [283], and filtered out using dplyr [284]. 717 

All articles containing keywords in their title or abstract indicative of invasive species or 718 

sequencing platform used (See supplementary 1 for full list of keywords) were then represented 719 

graphically by year of publication using ggplot2 [285]. A list of global insect pests was then 720 

retrieved from Ashfaq et al [58] and combined with additional pests of concern for Australia 721 

[286]. This list was filtered to retain only unique and complete genus species binomials, retaining 722 

558 species, for which all records for these species and the entire Insecta were retrieved from 723 

BOLD using the bold package [287]. The list of genes successfully retrieved from BOLD used to 724 

query GenBank and all records for species on the pest list and the entire Insecta were retrieved 725 

using the Rentrez R package [280]. Records from all databases were combined and specimen 726 

collection information was extracted using R and the biofiles package [288]. Of the 5,589,069 727 

records for all loci in the datasets, 4,603,488 were annotated with latitude and longitude 728 

information and these were plotted on a world map using ggmap [289]. The number of overall 729 

records and unique species within all datasets were then plotted for the top 10 occurring loci. 730 
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 1479 

TABLES  1480 

Table 1: Methods employed for insect identification, with suitability assessed according 1481 

to accuracy, expertise, general applicability, time and throughput criteria 1482 

Identification 
method 

Taxonomic 
expertise 

Identify 
specific 
taxa 

Identify 
broad 
range 
of taxa 

Throughput 
level 

Time per 
identification 

Morphological      

   Microscopic     

   examination 

High 

 

High* 

 

High* 

 

Low 

 

Moderate 

 

Molecular      

PCR-RFLP Low Moderate Low Moderate Moderate 

DNA 
barcoding 

Low High High Low Moderate 

qPCR/ddPCR Low 

 

High 

 

Low 

 

High 

 

Low 

 

LAMP Low 

 

High 

 

Low 

 

Low 

 

Low 

 

Metabarcoding Low High High Very High Low 



54 

 

     

* This morphological identification score assumes a high level of taxonomic knowledge and a 1483 

low human error rate. 1484 
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Table 2: Comparison of sequence throughputs, error rate and associated costs between high-throughput sequencing platforms. 1485 
 1486 
Short read platforms    Long read platforms 

 Illumina 
MiSeq 

Illumina 
NextSeq 

Illumina 
HiSeq 
3000/4000 

Illumina 
NovaSeq 

MGISeq-
200 

MGISeq-
2000 

MGISeq-
T7 

PacBio 
Sequel 

PacBio 
Sequel II 

ONT MinION ONT 
PromethION 

Maxim
um 
through
put 
(Gigaba
ses) 

15Gb 120Gb 750Gb 
/1500Gb 
(8/16 lanes) 

6000Gb 
(8 lanes) 

60Gbp 1080Gbp 6000Gbp 20Gb 
 

160Gbp 20Gb 150Gb per flow 
cell 
(up to 48) 

Maxim
um 
Read 
length 

2x300bp 2x150bp 2x150bp 2x150bp 2x100bp 2x150bp 2x150bp ~100kb ~100kb ~2Mb ~2Mb 

Error 
rate 

Low Low Low Low Low Low Low Low 
(consensu
s error) 

Low 
(consensu
s error) 

High High 

Instrum
ent cost 

Low Medium High High Low Medium High High High Extremely Low Low 

Setup 
time 
(labour) 

Medium Medium Medium Medium Medium Medium Medium High High Low Low 
 

Run 
time  

56hrs 30hrs 84hrs 
 

40hrs <48 hrs <48 hrs 24 hrs 15hrs 15hrs 1-72hrs 1-72hrs 
 
 

Sequen
cing 
cost per 
sample† 

<$50 <$15 <$10 <$5 <$50 <$10 <$5 <$25 <$15 <$25 <$5 
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*Costs are presented in Australian Dollars (AUD) and consider chemistry cost, depreciation, servicing, and computational cost over the lifespan of 1488 

the instrument, however total costs and read lengths will further depend on target enrichment and library preparation methods used. †Assuming 1489 

pooled sequencing of many traps with 250Mb sequencing effort per sample. 1490 

  1491 
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Table 3. Recommended quality control checkpoints for metabarcoding based diagnostics. 1492 

 Quality control checkpoint Consequences  

Laboratory 
preparedness 

Are all reagents within expiry date 
and stored properly? 

Is equipment appropriately 
maintained and calibrated? 

Have laboratory surfaces been 
decontaminated? 

Has swipe testing of laboratory 
surfaces been conducted? 

Poor reagent storage can lead to 
reduced efficiency and false-negatives 

Poorly calibrated equipment will 
generate inconstancies and inaccurate 
data 

Dirty laboratories can be a source of 
DNA contamination, leading to 
lowered sensitivity or false-positives 

Sample 
acceptance 

Have specimens arrived in a 
condition appropriate for extracting 
DNA? 

Are specimens traceable to origin 
location? 

Inappropriately stored specimens can 
lead to false-negative results and a 
reduction in sensitivity 

Misidentification of sample origin can 
complicate detection response 

Nucleic acid 
extraction 

Is DNA of sufficient quantity and 
quality? 

Insufficient DNA quantity or 
presence of contaminants can inhibit 
reactions and result in false-negatives 

Marker 
enrichment 

Are the correct fragment sizes 
present for the target barcode 
marker? 

Have the positive control samples 
successfully amplified? 

Are negative control samples free of 
DNA fragments? 

Incorrect fragment sizes could 
indicate off-target amplification 

Absence of product in positive 
controls indicates amplification 
failure 

Visible DNA fragments in negative 
controls indicates contamination 

Library 
preparation & 
multiplexing 

Are libraries of the appropriate size 
and concentration? 

Have sets of unique-dual indices 
been used? 

 

Have index sets been alternated since 
the previous sequencing run? 

Libraries of significantly different 
sizes or concentrations will 
complicate multiplexing 

Unique-dual indexing is necessary to 
control for index-switching 

Cross-contamination of libraries 
between sequencing runs can cause 
false-positives 

High-
throughput 
sequencing 

Has the pooled library been 
appropriately sized and quantified? 

 

Has the sequencer been 
appropriately cleaned between runs? 

Inaccurate sizing and quantification 
can cause overloading of flow cell 
and failed runs, or underloading and 
low data output 

Insufficient cleaning of the sequencer 
can result in cross-contamination 
between runs 

De-
multiplexing & 

Has minimum sequencing depth 
been achieved for each sample? 

Low sequencing depth can cause 
false-negatives  
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quality 
trimming 

Are an appropriate number of reads 
passing quality filtering? 

Low numbers of reads passing quality 
filters can indicate issues with 
sequencing run and result in false-
negatives 

OTU 
clustering & 
denoising 

How much of the original data is 
explained by the final OTUs/ASVs 

Have chimeras and sequences with 
disrupted ORFs been checked for? 
(for protein coding genes) 

Lower than expected sequences can 
indicate overly restrictive 
bioinformatics parameters 

Chimeras and pseudogenes can 
inflate taxonomic diversity leading to 
false-positives 

Taxonomic 
assignment  

Has the reference database been 
curated to remove mislabelled 
taxonomy and pseudogenic 
sequences?  

Has the taxonomy been applied with 
appropriate confidence levels? 

Mislabelled sequences can lead to 
both false-positives & false-negatives 

 

Low confidence assignment indicates 
incomplete or issues in reference 
database 

Interpretation 
of results 

Have the taxa received an 
appropriate number of reads to pass 
detection threshold? 

Has a minimum detection threshold 
been applied to remove index-
switching? 

Are there any taxa that need to be 
confirmed with alternative methods? 

Taxa under detection threshold could 
represent errors that have not been 
sufficiently controlled for 

Index-switching can cause spreading 
of taxa to other samples and result in 
false-positives 

Any high-risk putative detections 
should be confirmed with alternative 
method before reporting, if possible 

Reporting & 
sign off 

Have any exceptions to laboratory 
standard operating procedure (SOP) 
been made? 

Has data been stored appropriately? 

Have results been signed off by 
competent individual? 

Non-compliances with SOP should 
be highlighted and diagnostic 
confidence may be reduced 

Archiving of data is important for re-
analysis 

Incorrect reporting or interpretation 
of significant taxa can lead to 
incorrect managment response 

 1493 

FIGURE LEGENDS 1494 

Figure 1- Metabarcoding in the literature  1495 

A. Published articles obtained from Scopus, Crossref and PubMed searches on 2019-06-19 for 1496 

all metabarcoding studies, and those containing keywords in title or abstract relevant to invasive 1497 
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insect surveillance. B. Sequencing platforms used in the above metabarcoding studies displayed 1498 

as a proportion for each year. 1499 

Figure 2- Overview of common metabarcoding workflows for identification of trapped 1500 

insect species  1501 

Figure 3- DNA barcodes on public reference databases 1502 

A. Global distribution of all sufficiently annotated DNA barcode records from BOLD and 1503 

GenBank for all barcode loci; Records for all Insecta are displayed as a density map, while those 1504 

species present on international pest lists are overlaid in red. B. Distribution of records and 1505 

unique species within major public databases for the 10 barcode markers with the most reference 1506 

information for entire Insecta and for C. Insecta species present on international pest lists. 1507 

Figure 4- Unique dual indexing overcomes issues of cross-contamination due to index-1508 

switching 1509 

A. An amplified barcode locus with sequencing adapters attached, read locations and 1510 

orientations are indicated for commonly used Illumina platforms. Read 1 and 2 are designed to 1511 

overlap to facilitate assembly into a consensus sequence. Both sequencing adapters incorporate a 1512 

unique oligonucleotide index sequence to allow differentiation of multiplexed samples. Strategies 1513 

for indexing include; B. Combinatorial indexing, where indices on either end of the molecule are 1514 

shared with other samples but the combination of the two is unique, and C. Unique dual 1515 

indexing, where adapter indices at both ends of the molecule are completely unique to the 1516 

sample. 1517 
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