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Diabetes is now regarded as an epidemic, with the population of patients expected to rise to 380million by 2025. Tragically, this will
lead to approximately 4 million people around the world losing their sight from diabetic retinopathy, the leading cause of blindness
in patients aged 20 to 74 years. e risk of development and progression of diabetic retinopathy is closely associated with the
type and duration of diabetes, blood glucose, blood pressure, and possibly lipids. Although landmark cross-sectional studies have
con�rmed the strong relationship between chronic hyperglycaemia and the development and progression of diabetic retinopathy,
the underlying mechanism of how hyperglycaemia causes retinal microvascular damage remains unclear. Continued research
worldwide has focussed on understanding the pathogenic mechanisms with the ultimate goal to prevent DR.e aim of this paper
is to introduce the multiple interconnecting biochemical pathways that have been proposed and tested as key contributors in the
development of DR, namely, increased polyol pathway, activation of protein kinase C (PKC), increased expression of growth factors
such as vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), haemodynamic changes, accelerated
formation of advanced glycation endproducts (AGEs), oxidative stress, activation of the renin-angiotensin-aldosterone system
(RAAS), and subclinical in�ammation and capillary occlusion. New pharmacological therapies based on some of these underlying
pathogenic mechanisms are also discussed.

1. Introduction

With diabetes now recognised as a global epidemic, the
incidence of retinopathy, a common microvascular compli-
cation of diabetes, is expected to rise to alarming levels. Dia-
betic retinopathy is classi�ed into nonproliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy
(PDR), characterised by the growth of new blood vessels
(retinal neovascularization). NPDR is further divided into
mild,moderate, and severe stages thatmay ormay not involve
the development of a macula diabetic macular oedema
(DMO) [1].emajor causes of severe visual impairment are
PDR and DMO. Nearly all patients with Type 1 diabetes and
>60% of patients with Type 2 diabetes are expected to have
some form of retinopathy by the �rst decade of incidence of
diabetes [2, 3].

e risk of developing diabetic retinopathy can be
reduced by early detection, timely tight control of blood
glucose, blood pressure, and possibly lipids; however, clini-
cally this is difficult to achieve. Laser photocoagulation and

vitrectomy are required to treat sight-threatening retinopa-
thy. ere is an urgent need to understand how diabetes
causes damage to the blood vessels in the eye, to drive the
development of new drugs for the treatment of diabetic
retinopathy.

e Diabetes Control and Complications Trial (DCCT)
and United Kingdom Prospective Diabetes Study (UKPDS)
clinical trials con�rmed the strong relationship between
chronic hyperglycaemia and the development and progres-
sion of diabetic retinopathy, but the underlying mechanism
that leads to the development of microvascular damage
as a result of hyperglycaemia remains unclear [4, 5]. A
number of interconnecting biochemical pathways have been
proposed as potential links between hyperglycaemia and
diabetic retinopathy. ese include increased polyol path-
way �ux, activation of diacylglycerol- (DAG-)PKC pathway,
increased expression of growth factors such as vascular
endothelial growth factor (VEGF) and insulin-like growth
factor-1 (IGF-1), haemodynamic changes, accelerated forma-
tion of advanced glycation endproducts (AGEs), oxidative
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stress, activation of the renin-angiotensin-aldosterone system
(RAAS), and subclinical in�ammation and leukostasis.

2. Polyol Pathway

In diabetes, the polyol pathway metabolises excess glucose
(Figure 1). e enzyme aldose reductase (AR) present in
the retina reduces glucose into sorbitol using nicotinamide
adenine dinucleotide phosphate (NADPH) as a cofactor.
Sorbitol is subsequently converted into fructose by sorbitol
dehydrogenase (SDH). Since sorbitol is impermeable to
cellular membranes, it accumulates within the cell, and this
is followed by the slow metabolism of sorbitol to fructose
[6, 7]. NADPH is also required for glutathione reductase as
a cofactor for regenerating intracellular glutathione in cells,
thus reducing the antioxidant capacity of the cells.

e buildup of sorbitol is thought to have multiple dam-
aging effects in retinal cells including osmotic damage [8]. In
addition, the fructose produced by the polyol pathway can be
phosphorylated to fructose-3-phosphate which in turn can
be degraded to 3-deoxyglucosone, both of which are strong
glycating agents and can result in the production of AGEs [9].
e use of NADPH as a cofactor in the polyol pathway results
in less NADPH availability for use by glutathione reductase,
which is crucial for the generation of reduced glutathione.
is decrease in the reduced glutathione available results in a
diminished protective response against oxidative stress [10].
e aberrant shi of the NADH/NAD+ ratio by SDH has
been proposed to trigger NADH oxidase which can lead to
the increased production of reactive oxygen species (ROS)
within the cell [11].

Initial studies investigating the role of the polyol pathway
in the pathogenesis of diabetic retinopathy were performed
in diabetic animals fed with galactose [12–14]. ese studies
showed that aldose reductase inhibitors (ARIs) were able to
reduce the incidence and severity of diabetic retinal lesions
occurring in the galactose-fed animals. However, long-term
studies (48 months) using galactose-fed dogs demonstrated
that ARIs were not able to prevent vascular damage [15–17].

More recent studies have demonstrated that increased
AR is localised in several retinal cells including pericytes
[18, 19], retinal endothelial cells [20–22], ganglion cells
[20, 23], Müller cells [20], retinal pigment epithelial cells

[20], and neurons [23]. ese studies also demonstrate that
increased AR activity is involved in the destruction of retinal
cells. Exposure of pericytes or endothelial cells to increased
concentrations of glucose or galactose resulted in reduced
viability of cells. However, this cell death was reversed upon
the addition of ARIs [22–25].

e polyol pathway has also been implicated in several
other pathophysiological changes which occur during dia-
betic retinopathy, one of these being the increased thickness
of the retinal capillary basement membrane [26, 27]. Rat
models of diabetes have shown that treatment with ARIs is
able to prevent the thickening of the basement membrane
[28, 29]. Another mechanism involved in the development
of retinopathy is leukocyte adhesion to endothelial cells or
leukostasis [30] as discussed later on in this paper. A study
performed by Hattori et al. demonstrated that addition of
an ARI to a diabetic rat model was able to attenuate the
leukocyte adhesion to endothelial cells [31]. An increase
in vascular permeability and the breakdown of the blood
retinal barrier, hallmark processes which occur in diabetic
retinopathy [32, 33] have been shown to be prevented by the
application of ARIs [23, 34]. Genetic polymorphism studies
also indicate that AR is involved in the development of
diabetic retinopathy [35].

e administration of ARIs to animal model of diabetes
at the onset of diabetes has demonstrated some bene�t
in preventing diabetic retinopathy [36–38]. However, ARI
clinical trials, such as the sorbinil retinopathy trial, have
shown little clinical bene�t [38, 39]. It is thought that the
poor performance of sorbinil was due to the insufficient
inhibition of the polyol pathway in human tissue [40]. An
ARI from a different structural class of drug, ARI-809, is
highly selective and potent and seems to prevent retinopathy-
like changes in an animal model of diabetes studies [40],
but has not been tested in humans. Recent evidence suggests
that the inhibition of both sorbitol and fructose is required
to achieve bene�cial effects in diabetic retinopathy [41].
More recently, the focus has also shied to the potential
role of SDH in diabetic retinopathy. Some workers have
actually proposed that SDH is more important than AR
in the development of diabetic retinopathy [42]. Targeted
overexpression of SDH in retinal pericytes leads to toxicity
via increased ROS production [43]. SDH also appears to be a
genetic factor in diabetic retinopathy [44].

3. Nonenzymatic Protein Glycation

Among the several pathogenic mechanisms that may con-
tribute to diabetic retinopathy are the formation and accumu-
lation of AGEs [45–47]. AGEs form at a constant but slow rate
in the normal body starting at the embryonic development
and accumulate with time. However, their formation is
markedly accelerated in diabetes because of the increased
availability of glucose [48]. AGEs are a heterogeneous group
of molecules formed from the nonenzymatic reaction of
reducing sugars with free amino groups of proteins, lipids,
and nucleic acids. e initial product of this reaction is
called a Schiff base, which spontaneously rearranges itself
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into an Amadori product [49] (Figure 2). A key characteristic
of certain reactions or precursor AGEs is their ability for
covalent crosslink formation between proteins, which alter
their structure and function, as in cellular matrix, basement
membranes, and vessel-wall components. Other major fea-
tures of AGEs relate to their interaction with a variety of
cell-surface AGE-binding receptors, including receptor for
advanced glycation endproducts (RAGEs), leading to cellular
activation and prooxidant, proin�ammatory events [45].
AGEs affect cells by three main mechanisms: (1) as adducts
occurring on modi�ed serum proteins, (2) as endogenous
adducts formed as a consequence of glucose metabolism,
or (3) as extracellular matrix-immobilised modi�cations of
long-lived structural proteins [50].

AGEs are important pathogenic mediators of almost all
diabetic complications for instance, AGEs are found in retinal
vessel of diabetic patients, and their levels correlate with those
in the serum as well as with severity of retinopathy [50]. e
interaction of AGEs with speci�c cell surface receptors has
been implicated in the development of diabetic retinopathy
[50]. ese AGE receptors include the RAGE, galectin-3,
CD36, and the macrophage scavenger receptor [50].

Intracellular production of AGE precursors involves the
nonenzymatic reaction of reducing sugars with free amino
groups of proteins, lipids, and nucleic acids. Early glycation
and oxidation results in the formation of Schiff base which
spontaneously rearranges itself into an Amadori product.
Further glycation of proteins and lipids causes molecular
rearrangements that lead to the generation of AGEs.

ere is evidence that there are three carbohydrate-
derived oxidation products that are increased in
diabetes: N𝜀𝜀-(carboxymethyl)lysine (CML), N𝜀𝜀-(carbox-
ymethyl)hydroxylysine (CMhL), and pentosidine [51]. e
increased concentrations of CML, CMhL and pentosidine
in diabetes provides indirect evidence for a diabetes-related
increase in oxidative damage to the protein [52]. CML,
and CMhL are formed by oxidative cleavage of Amadori
adducts, whereas pentosidine is a �uorescent cross-link
formed between lysine and arginine residues in protein
[53]. It has been demonstrated that the accumulation of
CML in the neural retina and its associated vasculature
shows a marked increase during diabetes [51]. During
the development of diabetic retinopathy, the enzymatic
and nonenzymatic pathogenic mechanisms proceed
simultaneously and perhaps synergistically, suggesting that
altered mitochondrial function and resultant oxidative stress

may exacerbate both tissue damage and AGE formation [54].
e important role of oxidative stress in the pathogenesis
of diabetic retinopathy is discussed in the latter part of this
section.

ere is evidence from animal studies that exposure
to high levels of AGEs contributes to renal and vascular
complications [54, 55]. In a study by Hammes et al. [45], 26
weeks aer the development of diabetes in rats, the retinal
capillaries showed an increased accumulation of AGEs and
loss of pericytes. Treatment with aminoguanidine (pimage-
dine) hydrochloride, AGE formation inhibitor signi�cantly
reduced AGE accumulation and prevented the formation
of microaneurysms, acellular capillaries, and pericytes loss.
Another study by Stitt et al. [54] showed that aer 29
weeks of diabetes in rats, acellular capillaries were increased
more than threefold together with a thickening of the
basement membrane. Treatment with vitamin B6 derivative
pyridoxamine, an inhibitorAGE formation, protected against
capillary dropout and limited the production of basement
membrane proteins. ese early-stage experimental works
suggest that AGE formation and activation of AGE receptors
represent important, interconnected pathogenicmechanisms
in diabetic retinopathy, and inhibition of these pathways
presents a valid avenue for therapeutic exploitation [50].

Instead of reducing the accumulation of AGE products,
a novel approach has been to design drugs with potential to
break the AGE crosslinks.e recent stable and potent AGE-
crosslink breaker is ALT-711 (now known as Alagebrium)
that has been shown to reduce AGE-derived cross-links in
vivo [56]. However, the effectiveness of ALT-711 to prevent
the onset and progression of retinopathy remains to be
investigated.

4. Protein Kinase C (PKC) Activation

Protein kinase C (PKC) is a family of 10 enzymes, in which
the 𝛽𝛽1/2 isoform appears to be closely associated with the
development of diabetic retinopathy [57]. PKC is a ser-
ine/threonine kinase involved in signal transduction events
responding to speci�c hormonal, neuronal, and growth factor
stimuli. Hyperglycaemia leads to an increase in glucose �ux
through the glycolysis pathway, which in turn increases de
novo synthesis of diacylglycerol (DAG), the key activator
of PKC in physiology [58]. Clinical as well as experimental
studies have highlighted an increase in expression of DAG
and PKC activation in the diabetic state [59]. PKC is an
important molecule in the regulation of numerous physio-
logical processes. As a result, the activation of this enzyme
has a cascade-like effect on several other pathways which
in turn in�uence changes in endothelial permeability, reti-
nal haemodynamics, and expression of vascular endothelial
growth factor (VEGF) in the retinal tissue as well as increased
activation and adhesion of leukocytes (leukostasis) [59–61]
(Figure 3).

Hyperglycemia increases de novo synthesis of diacyl-
glycerol, which is an activating factor for the isoforms of
protein kinase C. is activation in turn regulates various
pathophysiological processes.
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e expression of the PKC 𝛽𝛽1/2 isoform is enhanced in
patients with diabetes. Since PKC is involved in a number
of physiological processes, its upregulation contributes to the
pathogenesis of diabetic retinopathy in the form of differ-
ential synthesis of extracellular matrix (ECM) proteins and
ECM remodelling, enhanced release of angiogenic factors,
endothelial and leukocyte dysfunction leading to capillary
occlusion and leukostasis, and changes in blood �ow to
the retina. As a result the PKC pathway directly in�uences
other pathways such as in�ammation, neovascularisation,
and aberration of haemodynamics, which in turn further
contribute to the pathogenesis and progression of diabetic
retinopathy.

Investigations using LY333531 (ruboxistaurin mesylate,
RBX), a speci�c inhibitor of PKC-𝛽𝛽1/2, reported encouraging
results in reducing leukostasis in diabetic patients [62]. RBX
is a well-tolerated drug and has been tested extensively for the
treatment of diabetic retinopathy in both experimental mod-
els as well as clinical trials. Experimental diabetes investiga-
tions suggest that RBX signi�cantly reduced the progression
of diabetic retinopathy [63]. is drug has undergone phase
3 clinical trials in the PKC diabetic retinopathy study (PKC-
DRS, 2005) and the Diabetic Macular Edema Study (PKC-
DMES, 2007).ese studies reported that althoughPKC inhi-
bition did not prevent diabetic retinopathy, it signi�cantly
reduced the loss of vision [64]. While the versatile action
of PKC on the pathogenic pathways in diabetic retinopathy
makes it an ideal therapeutic target, one must appreciate that
the inhibition of this pathway would disrupt physiological
pathways as well. Consequently, despite success at some
clinical trials and few signi�cant adverse effects, RBX has
not translated into therapy for diabetic retinopathy. However,
clinical trials have suggested that the drug may reduce visual
loss, and the need for focal laser.

5. Haemodynamic Changes

e Wisconsin Epidemiological Study of Diabetic Retinopa-
thy (WESDR) as well as the UKPDS have reported the
signi�cant role of blood pressure in the progression of PDR
[65–67]. It is also well documented that patients with diabetes
have a high incidence of hypertension [68, 69]. Moreover,
a study by Patel et al. [70] demonstrated that, following
successful photocoagulation, blood �ow to the retina was

found to be lowered; this was interpreted as a correction in
haemodynamic autoregulation.

Hypertension is thought to contribute to the progression
of diabetic retinopathy through two mechanisms. Firstly, the
mechanical stretch and sheer stress imparted on endothelial
cells by high blood pressure and increased perfusion of
the retina, as well as higher viscosity of the blood, lead to
endothelial dysfunction [71]. Secondly, the endocrine system
involved in blood pressure regulation is also independently
implicated in the pathogenesis of diabetic retinopathy [72].

6. Renin-Angiotensin-Aldosterone System

e renin-angiotensin-aldosterone system (RAAS) is the
endocrine system that plays an important role in the reg-
ulation of blood pressure and �uid balance and shows an
aberration in patients with diabetes [72]. e expression of
the receptors and signalling molecules of RAAS, namely,
renin, angiotensin converting enzymes I and II (ACEI and
ACE II), as well as angiotensin receptors, has been reported
to increase in the retina, during PDR [72, 73]. is change
in expression has been found independent of systemic blood
pressure. Studies on experimental models provide evidence
that ACE inhibition prevents neovascularisation, a hallmark
feature of early diabetic retinopathy [74]. Large clinical stud-
ies have also compared angiotensin receptor blockers (ARBs),
candesartan, andACE inhibitors as an alternative therapeutic
target in the RAAS pathway. e Diabetic Retinopathy
CandesartanTrials (DIRECT) andReninAngiotensin System
Study (RASS) both reported a reduction in the incidence
of retinopathy in Type 1 diabetes at baseline as well as a
reduction in the progression of retinopathy [75–77].

Although the precise mechanism by which RAAS con-
tributes to diabetic retinopathy is not well elucidated, in vitro
studies have suggested that angiotensin II is involved in the
PKC activation as well as VEGF signaling [78]. ese studies
provide new insight into the signi�cance of RAAS blockade
as a novel therapy for diabetic retinopathy.

�. S��clinical �n�ammation and �e��ostasis

Studies such as the Hoorn Study have reported and high-
lighted the important role of subclinical in�ammation in
the development of diabetic retinopathy [79–81]. It is now
established that the role of in�ammation in diabetic retinopa-
thy is both prominent as well as complex. While hyper-
glycaemia, oxidative stress, advanced glycation endproduct
formation, and hypertension all contribute to in�ammation,
the in�ammatory response itself propagates these path-
ways further, through cytokines, adhesion molecules, VEGF
signalling, enhanced RAGE expression, changes in nitric
oxide regulation and NF-𝜅𝜅B signalling.erefore, subclinical
in�ammation in the retina leads to increased intraocular
blood pressure via endothelial nitric oxide synthase (eNOS),
the formation of new, weak vessels and their increased
permeability due to VEGF which in turn leads in haemor-
rhages in the retina, and leukostasis due to the cross talk
between several proin�ammatory factors. Leukostasis is an
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important event in diabetic retinopathy pathogenesis, leading
to capillary occlusion and ROS-mediated cell death, as well as
amplifying the in�ammatory response locally in the retinal
tissue [82–85].

It is well reported that there is a signi�cant increase
in the systemic expression of proin�ammatory cytokines,
activation of soluble and cell surface adhesion molecules,
and the expression of chemokines in the retina of patients
with diabetic retinopathy [86]. Several clinical studies pro-
vide evidence that this increase in serum proin�ammatory
cytokines, adhesionmolecules, and the activation of immune
cells in the diabetic state correlates with the progression of
diabetic retinopathy [87, 88]. It is well accepted that endothe-
lial dysfunction and increased levels of proin�ammatory
cytokines and adhesion molecules contribute to leukostasis
by enhancing leukocyte and endothelial cell interaction [89,
90].is was further con�rmed by studies wherein knocking
out adhesion molecules greatly reduced levels of leukocyte
entrapment in retinal capillaries in experimentalmodels [91].

Recent studies have shown that changes in the expression
of carbohydrate chains on the surface of leukocytes lead
to leukocyte activation and greatly enhance leukocyte
rolling and adhesion to endothelial cells. e in�ammatory
enzyme UDP-GlcNAc:Gal𝛽𝛽1-3GalNAc𝛽𝛽-R-𝛽𝛽-1-6-N-acet-
ylglucosaminyltransferase (C2GNT) shows higher activity
in diabetic patients. is hyperglycaemia and tumour-
necrosis-factor-alpha-(TNF-𝛼𝛼-) induced enzyme bring
about increased O-glycosylation type modi�cations on
the surface carbohydrate chains of leukocytes, leading to
leukocyte dysfunction and increased leukostasis [84, 92].
e activity of the enzyme has been correlated with the
progression and severity of diabetic retinopathy as well as
neuropathy [30, 86].

�ocal in�ammation involving the activation of microglia,
resident macrophages, and immune cells is also thought to
play a role in the pathogenesis of diabetic retinopathy [93].
e activation of microglia in the diabetic retina can lead
to the increased production of proin�ammatory cytokines,
ROS, growth factors,matrixmetalloproteinases (MMPs), and
nitric oxide all of which have been implicated in the patho-
genesis of diabetic retinopathy [94]. e role of microglia
activation has been supported by the use of minocycline,
an antibiotic and anti-in�ammatory agent, to block the
activation of microglia and prevent diabetic retinopathy [93].

Several other therapeutic approaches targeting in�am-
mation have been studied in both animal models and clinical
trials in recent years. e use of anti-in�ammatory drugs
such as the intravitreal triamcinolone acetonide (IVTA) and
nonsteroidal anti-in�ammatory drugs such as nepafenac has
been reported to reduce VEGF expression, normalise vascu-
lar permeability, reduce levels of cell death and leukostasis,
and improve visual acuity [95–97]. It must be noted, however,
that these drugs appeared to have a signi�cant impact during
later stages and failed to prevent early development or
progression of diabetic retinopathy. Side effects associated
with mode of delivery of these drugs, namely, intravitreal
injections, which include glaucoma, pseudoendophthalmitis,
and endophthalmitis are also highly undesirable [96]. Conse-
quently there is a great deal of interest in the development

of topically administered and intraocular implants for the
delivery of such anti-in�ammatory steroids [98]. Anti-TNF-
𝛼𝛼 antibody ESBA105 has also been studied with topical
administration on animal models and has been reported to
have a positive impact on reducing neovascularisation [99].
In�iximab, a TNF-𝛼𝛼 antagonist, has undergone phase III
clinical trials with success in reducing macular thickness and
generally improving diabetic vision [93].

On the evidence from clinical studies, aspirin has shown
only little or no bene�t in preventing diabetic retinopathy
[99]. However, further work is still needed to test if high
dose aspirin is useful as a preventive treatment in diabetic
retinopathy.

8. Oxidative Stress

Oxidative stress may be de�ned as an imbalance between the
level of ROS or oxygen radicals and the antioxidant defences
in a biological system [100]. Oxidative stress and resultant
tissue damage are hallmarks of chronic disease and cell death.
A hypothetical sequence of events by which oxidative stress
may be linked to tissue damage and the development of
pathophysiology is outlined in Figure 4. ROS and reactive
nitrogen species (RNS) are the two major types of oxidants.

Under normal physiological conditions, ROS are either
detoxi�ed by interaction with various reducing and seques-
tering agents including thioredoxin, glutathione (GSH), and
tocopherol (vitamin E) or by enzymes such as superoxide
dismutases (SODs), catalase, glutathione peroxidase, and
thioredoxin reductase [101, 102]. Oxidative stress induced
by hyperglycaemia is an important pathway of diabetic
microvascular complications [103], and increasing evi-
dence suggests that the correlation between hyperglycaemia,
changes in the redox homeostasis, and oxidative stress is the
key event in the pathogenesis of diabetic retinopathy [104–
106]. It has been hypothesised that both the development
and the progression of retinopathy result from increased
oxidative species [107, 108].

e scheme in Figure 4 highlights the various enzymatic
reactions that lead to the formation of sources of ROS. ese
species then target macromolecules causing chemical modi-
�cation of these biological molecules thus causing damage to
the cell and tissue functions, leading to pathology. Inhibitors
and scavengers of ROS can limit the increased accumulation
of these reactive species.

Increased oxidative stress may result from over pro-
duction of precursors to reactive oxygen radicals and/or
decreased efficiency of inhibitory and scavenger systems
[100]. Animal studies have demonstrated that oxidative stress
contributes not only to the development of retinopathy but
also to the resistance of retinopathy to reverse aer good
glycaemic control is reinstituted [109]. Superoxide levels are
elevated in the retina of diabetic rats and in retinal cells
incubated in high glucose media and hydrogen peroxide
content which is increased in the retina of diabetic rats, and
membrane lipid peroxidation and oxidative damage to DNA
(as a consequence to ROS-induced injury) are elevated in
the retina in diabetes [110, 111]. In diabetes the activities of
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antioxidant defence enzymes responsible for scavenging free
radicals and maintaining redox homeostasis such as SOD,
glutathione reductase, glutathione peroxidase, and catalase
are diminished in the retina [112, 113]. Animal studies have
provided evidence for and against the use of antioxidants
to prevent experimental diabetic retinopathy [112, 113].
Although the use of antioxidants has shown some bene�t, this
has not been supported by clinical trials.

Brownlee and colleagues have suggested that oxida-
tive stress may represent a “unifying mechanism” which
links all of the damaging biochemical pathways induced by
hyperglycaemia in diabetic retinopathy [114]. ey propose
that mitochondrial-derived ROS causes strand breaks in
DNA which in turn activates poly-(ADP-ribose)-polymerase
(PARP). e activation of PARP inhibits glyceraldehyde
phosphate dehydrogenase (GAPDH) activity which causes
the accumulation glycolytic of metabolites. e metabolites
then activate the AGE, PKC𝛽𝛽2, polyol, and hexosamine
pathways [114]. Other studies have suggested the important
role of NADPH oxidase-derived ROS in the pathogenesis of
diabetic retinopathy [114].

Recent evidence has implicated ROS-mediated activation
of metalloproteinase-2 (MMP-2) in the development of dia-
betic retinopathy [115]. e activation of MMP-2 is thought
to cause cell death of retinal endothelial cells by causing
mitochondrial dysfunction which activates the apoptosis
cascade.

9. Growth Factors

e involvement of growth factors in diabetic retinopathy
is supported by the clinical evidence of the development of
retinopathy during puberty and the observation that serious
retinopathy is rarely observed in growth hormone de�cient
diabetic dwarfs [116]. In addition studies performed in the
1970s showed that pituitary ablation slowed the progression
of diabetic retinopathy [117, 118].

ere are a number of growth factors which have been
associated with the development of diabetic retinopathy and
these include basic �broblast growth factor (bFGF) [119],
insulin-like growth factor-1 (IGF-1) [120, 121], angiopoietin-
1 and -2 [122–124], stromal-derived factor-1 [125], epi-
dermal growth factor (EGF) [126], transforming growth
factor-beta 2 (TGF-𝛽𝛽2) [127], platelet-derived growth factors
(PDGFs) [128], and erythropoietin [129].

e insulin-like growth factors (IGFs) are produced
by the majority of body tissues and are mediators of cell
growth, differentiation, and transformation. Increased levels
of IGF-1 have been found in the vitreous �uid and serum
of diabetic patients [130, 131]. e precise role of IGF in
diabetic retinopathy pathogenesis remains unknown. How-
ever, increasing evidence suggests that IGFs work directly
within target tissues as well as systemically [131, 132].
A number of studies also suggest that the action of IGF
in neovascularisation is controlled by vascular endothelial
growth factor (VEGF) [133].

e growth factor which is the most widely studied in
relation to diabetic retinopathy is VEGF which exists in
four homodimeric molecular species, each monomer having,
respectively, 121, 165, 189, or 206 amino acids [134]. VEGF
promotes angiogenesis; causes breakdown of the blood-
retinal barrier, stimulation of endothelial cell growth, and
neovascularisation; and increases vascular permeability in
the ischemic retina [135–137] (Figure 5). Many animal and
clinical studies performed have established a role for VEGF,
particularly the 165 isoform, in the development and progres-
sion of diabetic retinopathy [138, 139].e cellular functions
of VEGF are mediated by the activation of two membrane
bound tyrosine kinase receptors [140]. e binding of VEGF
to the membrane bound receptors activates two possible
pathways, a calcium in�ux channel or a mitogen activating
protein kinase signalling pathway. Both pathways lead to the
vascular leakage and blood retinal barrier breakdown with
which VEGF has been associated [141]. e angiogenic role
in the retina to which VEGF has been linked is thought to
be due to an interaction with angiotensin II [142]. VEGF has
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been linked with leukocyte adhesion to retinal endothelial
cells this is thought to occur via induction of nitric oxide
synthase and intracellular adhesion molecule-1 expression
[143].

e discovery of the role of VEGF in diabetic retinopathy
has led to the development of anti-VEGF agents as therapy
for the treatment of diabetic complications.e current anti-
VEGF agents include pegaptanib, ranibizumab, and beva-
cizumab [144–149]. Recent development in the use of anti-
VEGFdrugs includes theVEGF-trap (Regeneron, Tarrytown,
NY, US), a recombinant fusion protein against VEGF-A,
and placental growth factor, for diabetic retinopathy. Early
clinical results suggest efficacy for the treatment of DMO
[143].

While anti-VEGF drugs are oen effective, they do
not work in all patients. In addition, recent evidence has
suggested caution in the long-term use of anti-VEGF drugs
for diabetic retinopathy. Since VEGF has a role as a retinal
neuron survival factor, there appears to be a link between the
use of anti-VEGFdrugs and the death of cells (photoreceptors
and Muller glia) involved in visual function [143].

10. Carbonic Anhydrase

e increased intraocular level of VEGF correlates to the
increase in vascular permeability which contributes to haem-
orrhage, exudates, and vascular leakage leading to NPDR and
angiogenesis and vasculogenesis leading to PDR.

Carbonic anhydrases (CAs) are a group of ubiquitous
metalloenzymes, which function by causing rapid conversion
of carbon dioxide to bicarbonate and protons. ere have
been 4 isoforms of carbonic anhydrase identi�ed to be
present in the eye in various cell types [150]. In a recent
study by Gao et al. it was shown that diabetic patients
had signi�cantly higher concentrations of CA than healthy
controls [151]. It has been demonstrated that CA inhibitors
including acetazolamide and benzolamide can reduce the
progression of diabetic retinopathy and prevent visual loss
in both animal and clinical studies [150]. e mechanisms

which have been suggested by which CA inhibitors can have
bene�cial effect in diabetic retinopathy are reducing humour
secretion, inducing vasodilatation and improving blood �ow
to the ocular region, inhibiting platelet aggregation and
reducing vascular permeability [151].

11. Retinal Neurodegeneration

It is now widely accepted that, in addition to the vascular
changes, structural and functional damage to nonvascular
cells (ganglion cells, glial cells, microglial) contributes to
the pathogenesis of diabetic retinopathy [152–155]. ere
is evidence suggesting that neurodegeneration of retinal
neurons and glial cells occurs even before the development
of microaneurysms [156].

12. Conclusion

Diabetic retinopathy remains the leading cause of blindness
and visual impairment in the working age population. e
pathophysiology of diabetic retinopathy has been extensively
studied and many contributing biochemical pathways have
been identi�ed. Although it is unlikely that a cure for diabetic
retinopathy would be identi�ed, continual research aimed
at providing a better understanding of these mechanisms is
helping in the development of novel therapeutic agents for
the effective treatment of diabetic retinopathy.

Non-Standard Abbreviations

ROS: Reactive oxygen species
NPDR: Non proliferative diabetic retinopathy
PDR: Proliferative diabetic retinopathy
ECM: Extracellular matrix
O2

−: Superoxide radical
MMPs: Matrix metalloproteinases
SOD: Superoxide dismutase
AGE: Advanced glycation endproduct
RAAS: Renin-angiotensin-aldosterone system
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PKC: Protein kinase C
DCCT: Diabetes Control and Complications

Trial
UKPDS: United Kingdom Prospective Diabetes

Study
VEGF: Vascular endothelial growth factor
IGF-1: Insulin-like growth factor-1
DMO: Diabetic macular oedema
NADPH: Nicotinamide adenine dinucleotide

phosphate
SDH: Sorbitol dehydrogenase
AR: Aldose reductase
ARIs: Aldose reductase inhibitors
RAGE: Receptor for advanced glycation

endproducts
CMhL: N𝜀𝜀-(carboxymethyl)hydroxylysine
CML: N𝜀𝜀-(carboxymethyl)lysine
ECM: Extracellular matrix
WESDR: Wisconsin Epidemiological Study of

Diabetic Retinopathy
DIRECT: Diabetic Retinopathy Candesartan

Trials
RASS: Renin Angiotensin System Study
eNOS: Endothelial nitric oxide synthase
PARP: Poly-(ADP-ribose)-polymerase
GAPDH: Glyceraldehyde phosphate

dehydrogenase
MMPs: Metalloproteinases
IVTA: Intravitreal triamcinolone acetonide
EGF: Epidermal growth factor
TGF-𝛽𝛽2: Transforming growth factor-beta 2
PDGFs: Platelet-derived growth factors
PKC-DRS: PKC diabetic retinopathy study
PKC-DMES: Diabetic Macular Edema Study
CAs: Carbonic anhydrases
GSH: Glutathione
TNF-𝛼𝛼: Tumour necrosis factor-alpha
DAG: Diacylglycerol.
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