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Abstract

Rapid, sensitive, and specific virus detection is an important component of clinical diagnostics. Massively parallel
sequencing enables new diagnostic opportunities that complement traditional serological and PCR based techniques. While
massively parallel sequencing promises the benefits of being more comprehensive and less biased than traditional
approaches, it presents new analytical challenges, especially with respect to detection of pathogen sequences in
metagenomic contexts. To a first approximation, the initial detection of viruses can be achieved simply through alignment
of sequence reads or assembled contigs to a reference database of pathogen genomes with tools such as BLAST. However,
recognition of highly divergent viral sequences is problematic, and may be further complicated by the inherently high
mutation rates of some viral types, especially RNA viruses. In these cases, increased sensitivity may be achieved by
leveraging position-specific information during the alignment process. Here, we constructed HMMER3-compatible profile
hidden Markov models (profile HMMs) from all the virally annotated proteins in RefSeq in an automated fashion using a
custom-built bioinformatic pipeline. We then tested the ability of these viral profile HMMs (‘‘vFams’’) to accurately classify
sequences as viral or non-viral. Cross-validation experiments with full-length gene sequences showed that the vFams were
able to recall 91% of left-out viral test sequences without erroneously classifying any non-viral sequences into viral protein
clusters. Thorough reanalysis of previously published metagenomic datasets with a set of the best-performing vFams
showed that they were more sensitive than BLAST for detecting sequences originating from more distant relatives of known
viruses. To facilitate the use of the vFams for rapid detection of remote viral homologs in metagenomic data, we provide
two sets of vFams, comprising more than 4,000 vFams each, in the HMMER3 format. We also provide the software necessary
to build custom profile HMMs or update the vFams as more viruses are discovered (http://derisilab.ucsf.edu/software/vFam).
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Introduction

Viral infections are a major global health concern, and new

infectious diseases continue to emerge [1,2]. Emerging infectious

diseases are a tremendous burden on economies and public health,

and because many cases arise with no known etiology, there is a

high demand for advances in viral diagnostic methods [2,3].

Detection of viruses in clinical specimens traditionally depends on

amplification of conserved regions of nucleic acid from viral

genomes, immunological detection, or in vitro replication of virus

in cell culture [1]. Though these traditional tests are highly specific

and have been used for decades, they have major limitations. In

particular, detection of novel, divergent, elusive, or low copy

number viral genes within a complex host genetic background can

be quite difficult using traditional tools such as PCR, conventional

sequencing technologies, and even DNA microarrays [4,5]. These

limitations can be overcome by deep sequencing primary human

samples, such as tissue, cerebral spinal fluid, bronchial or nasal

lavage, and stool. Samples from non-sterile locations may contain

nucleic acid from numerous commensal organisms, and the direct

sequencing of all nucleic acid species of a specimen can elucidate

the specimen’s metagenome, i.e., the sequences derived from all

the organisms present in the specimen [6,7]. Thus, shotgun

metagenomic sequencing for viral discovery necessitates identifi-

cation of specific RNA or DNA sequences in the context of a

complex and potentially unknown background of irrelevant

nucleic acid.

Due to the decreasing cost and increasing throughput of second-

generation sequencing technologies, deep sequencing of metagen-

omes and metatranscriptomes has become a critical tool for the

identification of novel or divergent viruses that are difficult to
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detect by other methods [8,9]. For example, massively parallel

sequencing has been used to discover a variety of novel viruses,

from a novel member of the Bornaviridae family in birds, to novel

members of the Arenaviridae family in snakes [10–15]. Massively

parallel sequencing can help overcome the problem of detecting

pathogens present at vanishingly low amounts; traditional Sanger

sequencing approaches will not provide ample sequencing depth

to detect the pathogen because the proportion of metagenomic

data deriving from a target pathogen may be on the order of one

in one hundred thousand reads or lower [10]. A single deep

sequencing experiment can now generate billions of sequencing

reads, each of which is hundreds of nucleotides long. As generating

viral sequence from metagenomes becomes more commonplace,

there still remains the bioinformatic challenge of actually

identifying those sequences, especially when the virus present is

only distantly related to known viruses.

Viruses are typically identified in metagenomic sequencing

datasets via homologous inference from sequence alignment.

Common tools for this purpose include BLAST [16], BLAT [17],

Bowtie [18,19], or other pairwise sequence aligners. BLAST is

quick and specific, and can find homologous protein pairs when

the percent sequence identity of the alignment exceeds 30% over

the length of a protein or protein domain. But as the pairwise

sequence identity drops below 30% for full-length protein

sequences, BLAST finds fewer true homologs [20,21], and this

problem is further compounded by the shorter reads generated by

second-generation sequencers. Because pairwise alignment is

limited in detecting low percent identity homologs, researchers

seeking more distant evolutionary relationships have shifted

towards so-called ‘‘profile’’ methods for the detection of remote

homologs. Profile methods consider information across a family of

evolutionarily related sequences, derived from a multiple sequence

alignment. Profile search methods gain sensitivity by incorporating

position-specific information into the alignment process and by

quantifying variation across family members at each position [22–

29]. For example, a query sequence can match a family profile

because it is evolving like other members of the family, even if it is

not significantly similar to any one known member of the family.

Of the profile methods, profile hidden Markov models (profile

HMMs) typically outperform other profile methods (e.g., PSI-

BLAST) in the detection of distant homologs [21]. Because many

viruses have more error-prone polymerases than typically found in

cellular organisms, especially RNA viruses that rely on RNA-

dependent RNA-Polymerases (RdRP) for genome replication,

more distant viral homologs can arise on much shorter evolution-

ary time-scales than are generally observed in bacteria or

macroorganisms. In light of this higher mutation rate, profile

HMMs are particularly well suited for the detection of divergent

viral sequences.

Profile HMMs have been built for some viral proteins, but viral

genes are not comprehensively covered in publicly available profile

HMM databases. For example, we estimate that less than 20% of

currently known viral protein families are represented in Pfam, a

large public collection of profile HMMs from many protein

families (see Methods). Furthermore, the viral coverage of Pfam

has dropped since new methods for the automated building of

profile HMMs were implemented [29]. Additionally, SFams, a

recently-released set of profile HMMs used to annotate metage-

nomic data, do not include any viral sequences [30]. Construction

of a comprehensive collection of viral profile HMMs would

therefore fill an important gap in the current bioinformatics

infrastructure for metagenome annotation. Like similar resources

for other domains of life, viral profiles HMMs would also be useful

for genome annotation, evolutionary simulations, and studies of

individual gene families.

To address this need, we built profile HMMs from the NCBI-

curated virally annotated protein sequences in RefSeq [31] and

tested the ability of the profile HMMs to correctly classify viral and

non-viral sequences as such. We employed a ‘‘leave-one-out’’

cross-validation strategy to assess the degree to which each profile

could recall viral sequences that were not used to build the profile,

which is the most common situation in viral diagnostics. We found

that almost 80% of the HMMs were able to recall 100% of the

viral sequences from that gene family before misclassifying any

non-viral sequences. Based on these results, we identified a robust

subset of HMMs that could recall at least 80% of their constitutive

sequences when removed from the profile. Using previously

published metagenomic datasets, we compared the performance of

profile search using this filtered set of HMMs to pairwise sequence

search using BLAST databases. We demonstrated that while

BLAST outperforms the profile HMMs for detecting more closely

related viral proteins, profile HMMs are more sensitive than

BLAST for detecting remote homologs.

Results

Building and annotation of viral profile HMMs
We developed a bioinformatic pipeline for constructing profile

HMMs from all virally annotated (non-phage) proteins in RefSeq

[31] (Figure 1; see Methods for details). To ensure the quality of

our profile HMMs, we first filtered the 51,458 sequences used as

input into the pipeline down to 43,832 sequences by collapsing

sequences with 80% or greater identity covering 90% or more of

the full sequence. These sequences were further filtered by the

removal of polyprotein and polyprotein-like sequences. We used

Markov Clustering [32] to group the remaining 39,727 sequences

into viral protein clusters, removed single-sequence clusters, and

enforced coverage requirements to ensure clustered sequences

were close enough in length to one another to produce meaningful

multiple sequence alignments [25]. For each of the 4,938

remaining families, we generated a multiple sequence alignment

of the clustered proteins and used it to build a profile HMM.

These viral protein HMMs were trained from a total of 26,430

sequences that span 72 of 84 viral families (86%), 289 of 321 viral

genera (90%), and 1,971 of 2,227 viral species (89%) present in the

input sequences retrieved from RefSeq.

To aid downstream annotation and interpretation, each of the

profile HMMs (‘‘vFams’’) was paired with an annotation file

containing basic statistics about the vFam and the sequences used

to build it. In addition to profile length, information content, and

the number of sequences used to build the profile, the taxonomy of

the sequences at the family and genus level was added to aid in

attempts at taxonomic classification of reads based on vFam hits.

An annotation file is shown in Figure S1.

This standalone viral database of profile HMMs, which we

designate ‘‘vFam’’, likely represents more than five times the

number of currently available viral profile HMMs in Pfam; the

exact number of viral profile HMMs in Pfam is difficult to assess,

as parsing Pfam HMMs by higher levels of taxonomy is neither

straightforward nor accurate (see Methods). The vFam database in

HMMER3 format, the annotation files, and the software used to

build the vFams are freely available at http://derisilab.ucsf.edu/

software/vFam and in the public Dryad repository.

vFam: Profile HMMs for Virus Detection in Metagenomic Data
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Viral profile HMMs detected unknown viruses in cross-
validation experiments
The vFams were designed with the goal of determining whether

metagenomic datasets contained any viral sequences, so we

employed a ‘‘leave-one-out’’ cross-validation experiment to serve

two purposes: 1) to test the robustness of the vFams to ensure they

were built from truly homologous proteins and to further

determine if they could recruit unknown homologous proteins;

and 2) to test each vFam’s ability to accurately distinguish viral

from non-viral sequence. Each vFam was evaluated individually.

For each vFam, we iteratively removed each sequence from its

profile and rebuilt the HMM using the remaining sequences. We

used the hmmsearch algorithm in HMMER3 [33] to assess the

ability of the vFam to correctly recruit the viral sequences removed

from it, simulating the detection of an unknown virus. We

additionally compared the E-value of each removed sequence to

the E-values for known non-viral sequences as well as the viral

sequences from other vFams. These non-viral sequences were

drawn from a large collection of ,150,000 full-length protein

sequences from well-studied prokaryotic and eukaryotic organ-

isms, such as H. sapiens and E. coli, potentially found in the

metagenomes of eukaryotic hosts. Each vFam was given a ‘‘recall’’

score, representing the fraction of left-out sequences recalled with

an E-value #10. Each vFam was additionally given a ‘‘strict

recall’’ score, representing the fraction of left-out sequences

recalled with an E-value less than all non-viral sequences and

viral sequences from other vFams (Figure 2A).

In cross-validation of the full set of vFams, 96% of the sequences

were recalled and 91% of the sequences were strictly recalled by

the correct vFam. While 4,337 (88%) of the vFams were able to

recall 100% of their left-out sequences in cross-validation tests

(Figure 2B, black), a subset of 3,931 (80%) of the vFams was

additionally able to strictly recall 100% of the left-out sequences

(Figure 2B, red). This difference in viral differentiation ability

could be attributed to less robust vFams as well as those vFams

derived from sequences with non-viral homologs.

vFams comprising viral homologs of host proteins (e.g., enzymes

involved in DNA synthesis or post-translational modification, etc.)

were anticipated to be uninformative for the classification of

sequences as viral or non-viral. Non-robust vFams built from

sequences that may not be true homologs of one another could be

equally uninformative. We therefore used the results of the cross-

validation experiment to filter the set of vFams to those predicted

to perform well in the context of experimental metagenomic

datasets. Specifically, we retained those vFams that strictly recalled

at least 80% of the training sequences in the cross-validation tests

(Figure 2B, dashed blue line). We chose a threshold of 80% to

maintain broad coverage of viral taxonomy without a large

sacrifice in vFam performance. This produced a subset of 4,156

vFams comprising 21,231 sequences, constituting 84% of the

number of vFams and 88% of the number of sequences present in

the initial set. In an analogous fashion to Pfam-A and Pfam-B, we

have dubbed the filtered set and the entire set of HMMs vFam-A

and vFam-B respectively [28,29]. Despite being filtered to a

smaller set of vFams and constitutive sequences, vFam-A covers 69

of the 72 (96%) viral families, 283 of the 289 (98%) genera, and

1,930 of the 1,971 (98%) of the viral species present in vFam-B. All

downstream analyses were performed with vFam-A.

vFam recall as a function of profile HMM statistics
To further investigate the wide range of recall across the vFams,

we sought to identify predictive metrics of vFam performance. To

this end, we compared each vFam’s strict recall to the number of

sequences used to build the vFam, the vFam’s length, and the

presence of viral sequences with non-viral homologs (Figure 3).

Larger vFams (i.e., those built from more sequences) generally

displayed higher strict recall than those built from fewer sequences

(Figure 3A): while 91% of the vFams built from 10 or more

sequences had strict recall of 80% or better, this number dropped

to 83% for vFams built from fewer than 10 sequences. All but

Figure 1. The pipeline for building profile HMMs from a set of
curated viral protein sequences. An initial set of protein sequences
of interest is curated and reduced by collapsing high-identity
sequences. The similarity between all pairs of remaining sequences is
calculated using BLAST. Using the BLAST results, polyprotein sequences
are inferred and removed. The Markov Clustering algorithm groups the
remaining sequences into families. Sequences with extreme lengths are
removed before multiple sequence alignments are generated for each
family. Multiple sequence alignments are used to train profile HMMs.
Statistics for each step in the generation of the vFams are in
parentheses.
doi:10.1371/journal.pone.0105067.g001

vFam: Profile HMMs for Virus Detection in Metagenomic Data
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Figure 2. Viral sequence recall for all vFams in cross-validation. (A) A schematic representation of the cross-validation of the vFams is
depicted for a single vFam. The initial multiple sequence alignment (MSA) and HMM building are depicted for the vFam being tested (top left). Each
sequence is removed from the vFam exactly once, and a validation MSA and validation HMM are built from the remaining sequences. A set of test

vFam: Profile HMMs for Virus Detection in Metagenomic Data
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eight of the 54 vFams generated from 40 or more sequences had

strict recall of at least 80% as determined in the cross-validation

experiments. Though each of these eight vFams recalled greater

than 98% of their left-out sequences, seven of the eight vFams

strictly recalled less than 3% of these sequences (Figure 3A, red

box). Closer inspection of the sequence clusters used to build these

seven poorly performing vFams revealed that they were composed

of sequences with non-viral homologs. These seven clusters

represented: 1) a set of Inhibitor of Apoptosis (IAP) homologs,

proteins conserved in eukaryotes but also present in members of

the Baculoviridae viral family [34]; 2,3) two clusters containing

sequences from two different ribonucleotide reductase subunits

(RNR1 and RNR2), enzyme subunits present in a number of

different viral families, that are also universally conserved in

cellular organisms as an essential enzyme in DNA synthesis

[35,36]; 4) a set of Ankyrin-repeat proteins, which is one of the

most common protein domains in higher organisms but is also

found repeatedly in genomes of members of the Mimiviridae viral
family [37]; 5) a set of dUTPases, found in various viral families,

but as an enzyme involved in nucleotide metabolism necessary for

DNA replication it is also found in many cellular organisms [38];

6) a set of Baculoviridae chitin binding proteins, containing the

chitin binding domain found in the matrix proteins of many insects

and animals [39]; and 7) a set of Protein-Tyrosine Phosphatases

(PTPs), enzymes involved in the post-translational modification of

proteins, particularly in signaling transduction pathways of cellular

organisms, but that also occur ubiquitously in members of the

Polydnaviridae viral family that infects insects [40]. All of these

vFams were removed during the filtering step as their low strict

recall and lack of specificity for viral sequences make them

uninformative and potentially misleading when searching for viral

sequences in metagenomic datasets. The vFams built from viral

sequences with non-viral homologs are present in vFam-B but are

not included in vFam-A.

In addition to vFam size and non-viral sequence homology, we

examined vFam length as a potential predictor of vFam

performance. When comparing strict recall to the length of the

vFam, while the longest vFams (or vFams with the most ‘‘match

states’’, which roughly correspond to columns in the multiple

sequence alignment) did tend to have high strict recall, there

appeared to be almost no correlation between vFam length and

strict recall for vFams of length less than 600 (Figure 3B). For

vFams of length 600 and greater, 96% had strict recall at least

80%, the filtering threshold employed after cross-validation; for

vFams with length less than 600, this number dropped to 83%.

Overall, the major contributing factors to higher vFam strict

recall were the number of sequences used to build the vFam and

the lack of non-viral homologs of the viral sequences used to build

the vFam.

vFams vs. BLAST on real metagenomic datasets
Many recent viral discovery projects supported by deep

sequencing data relied solely on BLAST to identify and classify

viral reads [10–15]. In order to compare the performance of the

vFams to BLAST on real data, we tested both approaches on three

previously published datasets containing viruses in metagenomic

backgrounds. These three datasets contain viruses that were novel

discoveries spanning a range of divergence from previously known

viruses, allowing us to explore the sensitivity and precision of

vFams and BLAST in different contexts.

Human klassevirus 1. To evaluate the ability of the vFams

to detect a novel but less divergent virus, we first analyzed a pool of

metagenomes represented by approximately 500,000 reads of

sequences comprising a large set of non-viral sequences and all viral sequences across all vFams is aligned to the validation HMM, and the left out
sequence is evaluated. If the left out sequence is recalled by the validation HMM with an E-value #10, the sequence is considered ‘‘recalled’’ by the
vFam (black). If the left out sequence is recalled by the validation HMM and additionally has a lower E-value than all test sequences not in the current
vFam, the sequence is considered ‘‘strictly recalled’’ (red). The process is repeated for all ‘‘N’’ sequences in the vFam and the vFam’s % recall and %
strict recall are calculated. Each vFam was evaluated in this manner. (B) For each vFam in the cross-validation experiments, the percentage of recalled
sequences (black) and the percentage of strictly recalled sequences (i.e., E-value less than non-viral controls; red) is plotted. The vFams are ranked by
their percentage of strictly recalled sequences (x-axis). A threshold of 80% strict recall (dashed blue line) was used to filter the vFams to the best
performing subset. Scale bars below the x-axis show the number and fraction of vFams in the ranked set.
doi:10.1371/journal.pone.0105067.g002

Figure 3. Viral sequence recall as a function of other vFam metrics. For each vFam, the percentage of the vFam’s sequences correctly
recalled by the HMM with a score better than all non-viral controls (% strict recall) in the cross-validation experiments is plotted as a function of (A)
the number of sequences used to build the vFam; red box (zoomed and inset) highlights HMMs built from 40 or more sequences with strict recall less
than 3%, (B) the length of the vFam, (C) the positional relative entropy in the vFam, and (D) the total relative entropy in the vFam.
doi:10.1371/journal.pone.0105067.g003

vFam: Profile HMMs for Virus Detection in Metagenomic Data
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240 nt average length from 141 pediatric cases of diarrhea of

previously unknown etiology [11]. There were several known

diarrhea-causing viruses identified in the pool, which were

removed for the sake of this analysis, as well as 483 reads deriving

from a novel 8.0 kilobase picornavirus called Human klassevirus 1
[11]. The closest known relative of klassevirus by amino acid (aa)

identity at the time of its discovery was Aichi virus [41] with

,40% identity across the length of the polyprotein that spans

almost the entire genome (Figure 4A). Approximately 7 million

read translations were aligned to the viral BLAST database and

vFam database, and ranked by BLAST E-value and HMMER3’s

domain E-value scores respectively. By comparing the number of

true positives against the number of false positives at various scores

or better for each alignment method, BLAST and HMMER

performed similarly at finding the highest-scoring sequences.

BLAST however outperformed HMMER by 5%–20% in terms of

sensitivity, or the fraction of all true positives found at a given

number of false positives (Figure 4B). This was not surprising

because some regions of the klassevirus polyprotein approach 70%

pairwise aa identity to proteins in the Kobuvirus genus. However,

the klassevirus sequences recovered by the vFams covered slightly

more of the genome (5,502 nt) than the klassevirus sequences

recovered by BLAST (5,472 nt; Figure 4A). While the vFams

barely outperformed BLAST in some of the lower percent identity

regions of the genome (e.g., VP1), both the vFams and BLAST

detected reads from the 2B gene, which represented the most

divergent stretch of the genome. Furthermore, BLAST decidedly

outperformed the vFams in other lower percent identity regions of

the genome (e.g., the 59 ends of 2C and 3C). While viral genome

coverage generally depends both on the ability to detect the virus

as well as the initial abundance and subsequent amplification of

different genomic regions, this particular example hinted at the

ability of the vFams to detect divergent genomic regions at the

expense of assigning relatively higher scores to higher identity

stretches.

Santeuil nodavirus. To evaluate the ability of the vFams to

detect a more divergent viral genome, we analyzed a metagenome

of 253 nt (average length) reads derived from C. briggsae isolated
from a snail on a rotting grape in Santeuil, France [42]. Almost

2,500 of the ,21,000 reads derived from a novel member of the

Nodaviridae viral family, Santeuil nodavirus [42]. The virus

comprises two RNA segments, RNA1 (3,628 nt) and RNA2

(2,653 nt). RNA1 contains a single ORF encoding the RdRP

which shares ,26–27% aa identity with related members of the

family. RNA2 contains two ORFs, ORF a and ORF d; ORF a,
which encodes the capsid protein, shares ,30% aa identity with

related members of the family, while no homolog was detected for

the protein encoded by ORF d [42]. The percent aa identity

between Santeuil nodavirus and a related nodavirus, Striped Jack
Nervous Necrosis virus [43], is depicted in Figure 4C. Almost

400,000 read translations were aligned to both viral databases.

While the BLAST approach was able to identify the first 360 high-

scoring true positives with virtually identical precision (i.e., the
fraction of alignments corresponding to true positives) to

HMMER, the rate of true positive identification leveled off and

HMMER was 10–15% more sensitive than BLAST at the same

number of false positives (Figure 4D) thereafter. BLAST and

HMMER were both able to detect the most conserved regions of

the RdRP as well as the majority of the capsid sequence

(Figure 4C). However, the majority of Santeuil nodavirus
alignments reported by BLAST constituted ‘‘type 0 errors’’: 392

of the 777 reads (50.4%) detected by the viral BLAST database

that truly derived from Santeuil nodavirus aligned to members of

viral families other than Nodaviridae present in the BLAST

database. This accounted for the perceived coverage of ORF d
when no known homolog existed in either database; if BLAST and

HMMER were perfectly precise, ORF d would have no coverage

at all. The vFams also produced type 0 errors, though to a lesser

extent: 256 of the 732 Santeuil nodavirus reads (35%) detected by

the vFams aligned to members of viral families other than

Nodaviridae. The percentage of RNA1 covered by the BLAST

true positives (85%) was much higher than the percentage covered

by the HMMER true positives (47%), but 100% of the 59-most

BLAST coverage derived from non-specific hits to the viral

database. RNA2 was covered to the exact same extent (92%) by

both approaches.

CAS virus. To evaluate the ability of the vFams to detect a

highly divergent viral genome, we analyzed a pool of sequence

libraries sampled from six sites (lung, liver, kidney, brain,

gastrointestinal tract, and heart) of an Annulated tree boa,

Corallus annulatus. Approximately 123,000 of the more than 19

million 100 nt reads in the datasets derived from a novel member

of the Arenaviridae viral family, CAS virus (California Academy

of Sciences virus). CAS virus encodes 4 proteins on two RNA

segments [12]. The L segment (6,812 nt) encodes the Z protein

and the L protein (RdRP). The S segment (3,368 nt) encodes the

glycoprotein-precursor protein (GPC) and the nucleoprotein (NP).

Though the polymerase and nucleoprotein have a clear but distant

evolutionary relationship to their arenavirus homologs, the

glycoprotein precursor’s closest relative is unclear, and there was

no detectable homolog for the Z protein (Figure 4E) [12]. Almost

140 million read translations were aligned to both viral databases.

While the first ,950 true positives were found with virtually

identical precision by both BLAST and HMMER, BLAST found

the next ,2800 true positives with higher precision than

HMMER. However, the rate of identification of true positives

vs. false positives started to level off for BLAST while it continued

to increase at a relatively constant ratio for HMMER. In fact, the

sensitivity for HMMER was ,25% higher than BLAST, allowing

for 15,000 false positives. At this number of false positives, the

vFams were not only more sensitive than BLAST, but the true

positive reads yielded slightly broader coverage of the genome

(though they did cover highly overlapping regions of the genome).

The vFam-identified reads covered 24% of the L segment while

BLAST-identified reads covered 23%; and for the S segment, the

vFam-versus BLAST-identified reads covered 21% and 18%,

respectively (Figure 4F).

Precision of vFams in real metagenomic data analyses
The vFams showed a wide range of precision for the three

metagenomic datasets (Table 1). The precision was 3.47% for the

detection of Human klassevirus 1, 72.95% for Santeuil nodavirus,
and 26.42% for CAS virus. While the true positive rate (TPR) of

the vFams was largely a function of sequence divergence from the

closest known relatives at the time of discovery, with a higher TPR

for the less divergent klassevirus genome and much lower TPRs

for the more divergent nodavirus and arenavirus genomes, the

false positive rate (FPR) was consistently low across the datasets,

never exceeding 2%. The range in precision was largely attributed

to the percentage of true positives in each of the datasets: Human
klassevirus 1 was present at 0.09%, Santeuil nodavirus was

present at 11.99%, and CAS virus was present at 0.64% of the

initial datasets. By analyzing the TPR and FPR instead of the

absolute counts, the vFams indeed performed comparably for each

dataset: the ratio of TPR to FPR for each dataset fell in a much

narrower range than the precision.

Despite the effort to minimize false positives by removing poorly

performing vFams, the absolute number of false positives for each

vFam: Profile HMMs for Virus Detection in Metagenomic Data
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Figure 4. Performance of vFams and BLAST on metagenomic datasets. A comparison of BLAST vs. HMMER for the detection of Human
klassevirus 1, Santeuil nodavirus, and CAS virus. (A) Percent amino acid identity for 80 aa windows is shown between the Human klassevirus 1 and Aichi
virus polyprotein sequences (green); genome coverage of correctly classified viral reads by BLAST and HMMER is shown in blue and orange
respectively; the difference in coverage (HMMER coverage2BLAST coverage=D coverage) is shown in black; the regions of the genome truly covered
in the full dataset are shown in pink; a to-scale genome schematic of Human klassevirus 1 is found below, depicting structural proteins (yellow) and
non-structural proteins (blue). (B) The number of true positives vs. the number of false positives for the detection of Human klassevirus 1 is depicted
for BLAST (blue) and HMMER (orange). (C) Percent amino acid identity for 84 aa windows is shown between ORF A and ORF a of Santeuil nodavirus
and the RdRP and capsid proteins of the Striped Jack Nervous Necrosis virus (green) [no homolog of ORF d was detected at the time of the discovery]
[42]; genome coverage of correctly classified viral reads by BLAST and HMMER is shown in blue and orange respectively; the difference in coverage
(HMMER coverage2BLAST coverage=D coverage) is shown in black; the regions of the genome truly covered in the full dataset are shown in pink; a
to-scale genome schematic of Santeuil nodavirus RNA-1 and RNA-2 is found below, depicting ORF A (yellow), and ORF a and ORF d (blue). (D) The
number of true positives vs. the number of false positives for the detection of Santeuil nodavirus is depicted for BLAST (blue) and HMMER (orange). (E)
Percent amino acid identity for 33 aa windows is shown between the L protein, the glycoprotein, and the nucleoprotein of CAS virus and the L
protein of Lymphocytic choriomeningitis virus, the glycoprotein of Lloviu virus, and the nucleoprotein of Lymphocytic choriomeningitis virus (green)
respectively [no homolog of the Z protein was detected at the time of the discovery] [12]; genome coverage of correctly classified viral reads by
BLAST and HMMER is shown in blue and orange respectively; the difference in coverage (HMMER coverage2BLAST coverage=D coverage) is shown
in black; the regions of the genome truly covered in the full dataset are shown in pink; a genome schematic of the CAS virus L segment and S
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dataset was affected greatly by the metagenomic context in which

the viruses were identified. By aligning the false positive reads to

NCBI’s non-redundant nucleotide sequence database (NT) by

nucleotide BLAST and keeping the best scoring alignment with an

E-value of 10 or better, we attempted to identify the host of origin

for the false positives in each dataset. For the Human klassevirus 1
dataset, which was derived from a pool of 141 diarrhea samples,

over 40% (4377/9957) of the false positive reads had no match to

any annotated organisms in NT. The vast majority of the aligned

sequences comprised imperfect matches to a variety of bacterial

families. For the Santeuil nodavirus dataset, which was derived

from nematodes and had much higher precision, more than 75%

(151/201) of the false positives aligned to a nematode genome;

many of these alignments overlapped non-coding regions, resulting

in nonsensical translations. For the CAS virus dataset, derived

from a pool of harvested Annulated tree boa organs, only ,30%

(4584/14952) of the false positives aligned to an annotated

organism in NT. Of the sequences that did align, nearly 90%

(,4000) aligned to a snake or other higher eukaryotic organism’s

genome in NT.

While identifying true positives in the context of a potentially

high number of false positives may be daunting, the signal

becomes more apparent by aggregating hits across the vFams

(Figure S2). By looking at the taxonomy of the species present in

the most frequently hit vFams for each dataset, the cumulative

number of alignments to the correct taxa exceeds or rivals the

number of false positive alignments to other taxa. Of particular

note is the most frequently hit vFam in the CAS virus sample,

which contains reverse transcriptase homologs; many of the reads

aligning to this vFam likely derive from endogenous retroviral

elements in the snake genome.

Discussion

In this work, we constructed vFam, a standalone database of

profile HMMs derived from viral proteins, and demonstrated its

utility for detecting divergent viral sequences within metagenomic

sequence data. Cross-validation experiments on full-length

sequences showed high recall for many of the vFams, which

covered the vast majority of the known viral taxonomy. When we

compared the vFams to BLAST in real metagenomic datasets, the

vFams demonstrated an improved detection accuracy when

viruses in the dataset were more divergent or when the

metagenomic reads acquired through massively parallel sequenc-

ing were derived from less conserved regions of the viral genome.

Though BLAST exhibited superior accuracy for the detection of

high sequence identity matches, we hypothesize that some fraction

of datasets currently classified as ‘‘virus negative’’ may in fact

contain viruses that were simply too divergent to be detected by

BLAST.

In general, we found that the HMM-based strategy had

improved precision over the BLAST-based strategy when analyz-

ing metagenomes. However, both methods tended to require

tolerance of a high false positive rate to detect true positives. This

was primarily due to the difficulty associated with differentiating

viral and non-viral sequences. Our statistical curation of vFams to

produce vFam-A reduced but did not eliminate this problem: we

required that a vFam recalled 80% or more of the cross-validation

test sequences with a score better than non-viral sequences and

unrelated viral sequences. We tolerated a 20% cross-validation

error to maintain broad taxonomic coverage at the expense of

retaining some vFams that do not perfectly separate viral and non-

viral sequences. For example, in the Human klassevirus 1 dataset,

the majority of false positive alignments we identified derived from

bacterial genomes that weren’t well represented in NT. In the

Santeuil nodavirus and CAS virus datasets, non-coding or

divergent endogenous retroviral elements from the host genomes

led to false positive alignments to the vFams. An additional factor

impacting precision was the sequence length of metagenomic data;

the probability of spurious alignment decreases as the sequence

length increases. Unlike the cross-validation tests that were

performed on full-length viral sequences, the metagenomic

datasets contained read lengths ranging from 100 to 250 nt,

which corresponded to translated ORFs less than 100 aa in length.

As the read lengths generated by massively parallel sequencers

increase and as sequence assembly algorithms continue to

improve, we expect the vFams to perform with increased

precision. And as the read lengths further approach and ultimately

eclipse the length of typical viral proteins, we expect the precision

of the vFams on real metagenomic data to be on the order of what

we observed in the cross-validation tests.

Our analysis of real metagenomic datasets supported the

conventional wisdom that BLAST is better at finding higher

identity matches and can thus aid in more accurate taxonomic

assignment, while profile HMMs are better at finding more

divergent matches. We propose that the full complement of viral

(and non-viral) sequences in metagenomic datasets may be

identified using a combination of BLAST and vFams. A

straightforward implementation leveraging both search methods

could entail 1) a nucleotide BLAST search to a curated set of

known non-viral genome sequences (including the host genome, if

available) likely to appear in the metagenomic sequence data; 2) a

BLAST search to a viral database to capture and taxonomically

assign higher identity matches; and 3) a search of the vFams,

extending the search space into more divergent territory. To this

end, on our download page we provide a FASTA file containing

viral protein sequences that can be used as a BLAST database,

alongside vFam-A and vFam-B. This approach still presents

challenges, however; for example, the noncoding regions of viruses

cannot be detected by protein database searching, as translation of

sequence from noncoding regions is nonsensical. A more difficult

challenge to overcome is the detection of completely novel viral

genomes, because both BLAST- and HMM-based methods

fundamentally rely on some level of sequence similarity to known

viruses. Though the rate of discovery of completely novel viral

families is decreasing, the projected number of viral families is

expected to continue increasing for at least the next decade [44].

This will demand maintaining up-to-date databases and will place

a premium on methods for identifying novel viruses that don’t

strictly rely on homology to known viruses. These bioinformatic

methods will depend heavily on de novo metagenomic assemblers

[45] and ab initio structural prediction algorithms.

One important downstream application of viral sequences

identified using vFams is to aid viral genome assembly from

metagenomic data. Nucleating metagenomic assemblies using

reads of interest (or reads of unknown origin) in order to produce

longer sequences can make the researcher’s job of determining

whether a sequence is truly viral or a false positive much easier,

quicker, and more inexpensive than the alternative of testing false

positives at the bench or critically analyzing each read that aligns

segment is found below, depicting the Z and L proteins (yellow) and the glycoprotein (GPC) and nucleoprotein (NP) (blue) respectively. (F) The
number of true positives vs. the number of false positives for the detection of CAS virus is depicted for BLAST (blue) and HMMER (orange).
doi:10.1371/journal.pone.0105067.g004
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to a viral database. Beyond the improvements in sequencing

technology that lie ahead, advances in bioinformatic methods will

ultimately determine our ability to detect both novel and divergent

viruses in the most difficult of cases. In this study, we observed

higher recall for those vFams of greater length as well as those built

from more sequences. While researchers have no control over the

length of viral proteins found in nature, increasing the number and

diversity of sequenced viruses will aid the detection of more viruses

in the future. Thus, the vFam approach for classifying viral and

non-viral sequences will only improve as more viruses covering a

greater breadth of the phylogeny are discovered. The combination

of pairwise alignment methods with profile HMMs and novel

de novo sequence assembly methods will provide researchers with

a natural workflow to allow progressively more sensitive virus

searching of metagenomic sequence data.

Methods

Building profile HMMs from viral protein sequences
Protein sequences annotated as viral sequences (taxonomy ID:

10239) were filtered to only those sequences in RefSeq that did not

contain the keyword ‘‘phage’’, and were downloaded from NCBI’s

Protein website (http://www.ncbi.nlm.nih.gov/protein) in FASTA

[46] format in February 2013. These 51,458 sequences were used

as input to a software pipeline written in Python (Figure 1).

Sequences with greater than 80% pairwise identity and greater

than 90% mutual coverage were collapsed as is standard for Pfam

profile HMMs [28,29], using CD-HIT [47]. Remaining sequences

were aligned ‘‘all-by-all’’ using protein BLAST (blastp) [16]. To

allow proteins derived from polyprotein sequences to be repre-

sented in profiles with their homologs, and not with all protein

products from all related polyproteins, polyprotein and poly-

protein-like sequences were identified and filtered out of the

sequence set. Sequences longer than 400 amino acids in length

were identified as polyprotein or polyprotein-like if at least 70% of

the sequence length was covered by two or more other proteins in

the sequence set that were covered at least 80% by the longer

sequence. The remaining sequences were grouped into potential

profile groups by Markov Clustering (MCL) [32] using the default

inflation number of 2.0. In order to build high-quality multiple

sequence alignments, bidirectional coverage requirements were

enforced as previously described [25], with a sliding coverage scale

from 60% for sequences shorter than 100 amino acids to 85% for

sequences longer than 500 amino acids. Multiple sequence

alignments (MSAs) were produced in the aligned-FASTA format

by MUSCLE [48], and profile HMMs (‘‘vFams’’) were built from

the MSA aligned-FASTA files using HMMER3’s hmmbuild tool

[33].

Viral classification sequence set
In order to assess and compare the ability of the vFams to

distinguish their constitutive viral sequences from non-viral

sequences and unrelated viral sequences, we downloaded a test

set of ,150 K sequences from NCBI. This set included RefSeq-

curated sequences from well-annotated and commonly-studied

prokaryotic and eukaryotic organisms from the following species:

Arabidopsis thaliana, Escherichia coli, Drosophila melanogaster,
Homo sapiens, Mus musculus, Streptomyces coelicolor A3(2),
Saccharomyces cerevisiae, and Staphylococcus aureus. For the sake
of classification, these sequences were considered ‘‘negative’’, as

were those sequences derived from other vFams. As each vFam

was being cross-validated, the left-out sequence under consider-

ation was deemed ‘‘positive’’. All sequence alignments were

performed with HMMER3’s hmmsearch tool, using the default
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alignment parameter values in addition to outputting the tabular

domain output format. The union of the non-viral sequences and

the viral sequences included in the vFams formed the test set for

the cross-validation experiments.

Leave-one-out cross-validation
To validate the vFams for the detection of pseudo-novel

sequences (i.e., not used to build the profiles), we performed a

leave-one-out cross-validation experiment. For each profile, each

full-length sequence was pulled out of the multiple sequence

alignment used to build the vFam, a new validation profile HMM

was constructed from the subsequent alignment, and this amended

profile HMM’s ability to correctly classify the removed viral

sequence versus non-viral and unrelated viral sequences was

assessed. For profiles with fewer than 10 sequences, the multiple

sequence alignments were rebuilt in the absence of the left-out

sequences before building the validation profile HMMs. For

profiles with 10 or more sequences, the left-out sequences were

simply removed from the previously built multiple sequence

alignment files before building the validation profile HMMs,

because large alignments should be relatively insensitive to the left-

out sequence. Each variant of each profile HMM was searched by

all sequences in the test set using hmmsearch. After only keeping

the best hit for each query sequence, the recall of each vFam was

calculated as the percentage of sequences that was recalled by the

profile built without the target sequence. Additionally, a stricter

version of the recall of each vFam was calculated as the percentage

of sequences that was recalled by the profile built without the

target sequence that scored the left-out target sequence better than

all non-viral and unrelated viral test sequences (Figure 2A).

Deep sequencing reads translation
Because HMMER3’s hmmsearch tool only accepts protein

sequences as targets for comparison to profile HMMs, we created

a tool to translate the deep sequencing nucleotide reads into

protein sequences. DNA sequences were translated in 6 frames

using TranslatorTI (software implemented for this study; available

from http://derisilab.ucsf.edu/software/vFam/) using the stan-

dard genetic code. TranslatorTI supports the full range of

ambiguous IUPAC nucleotide codes, so codons with ambiguous

nucleotides were translated if allowed by the codon redundancy of

the genetic code. TranslatorTI splits up translated amino acid (aa)

sequences using stop codons (‘*’) and ambiguous amino acids (‘X’)

as delimiters to produce translated open reading frames (ORFs)

from the input reads. We used all ORFs that encoded for 10 or

more residues in subsequent HMMER and BLAST searches.

Previously published viral metagenomic datasets
To compare profile HMM alignment to pairwise sequence

alignment performance by BLAST on real viral metagenomic

data, we used three previously published datasets. The first dataset

derived from a pool of 141 diarrhea samples of previously

unknown etiology in Northern California (http://dx.doi.org/

doi:10.7272/q61z429d). A novel member of the Picornaviridae
viral family, Human klassevirus 1, was discovered in the 540,412

unique reads with an average length of 240 nt, generated on the

Roche Genome Sequencer FLX platform [11]. The reads were

stripped of sequences mapping with 90% or greater identity to

known diarrhea-causing viruses: 6,959 reads mapped to the

Adenoviridae and Caliciviridae viral families by translated BLAST

(blastx) [16]. Of the remaining 533,453 reads, 483 derived from

Human klassevirus 1. Translation of the reads produced

7,088,743 protein sequences 10 aa and longer. Sequences from

the nearly identical Salivirus were removed from the BLAST

database to simulate the state of the database before the discovery

of Salivirus and Human klassevirus 1, and vFams containing

Salivirus sequences were replaced with the profile HMMs built

without Salivirus sequences that were generated during the leave-

one-out cross-validation experiments.

The second dataset derived from C. briggsae isolated from a

snail on a rotting grape sampled in Santeuil, France (http://dx.

doi.org/doi:10.7272/q65q4t1r). A novel member of the Nodavir-
idae viral family, Santeuil nodavirus, was discovered in the 20,787

reads with an average length of 253 nt, generated on the Roche

Titanium Genome Sequencer [42]. Of the ,21,000 total reads,

2,493 reads derived from Santeuil nodavirus. Translation of the

reads produced 397,125 protein sequences 10 aa and longer.

Sequences from Santeuil nodavirus were removed from the

BLAST database to simulate the state of the database before the

discovery of the virus, and vFams containing Santeuil nodavirus
sequences were replaced with the profile HMMs built without

Santeuil nodavirus sequences that were generated during the

leave-one-out cross-validation experiments.

The third dataset derived from a pool of sequence libraries

sampled from six sites (heart, gastrointestinal tract, brain, kidney,

liver, and lung) of an Annulated tree boa (SRA accessions:

SRX170642, SRX170636, SRX170629, SRX170623,

SRX170616, SRX170609). Of the 19,196,993 100 nt reads

(analysis was only performed on the first read of each read pair),

122,911 were derived from a novel member of the Arenaviridae
viral family, CAS virus (California Academy of Sciences virus)

[12]. Translation of these reads produced 139,690,696 protein

sequences 10 aa and longer. Sequences from CAS virus and the

simultaneously discovered Golden Gate virus were removed from

the BLAST database to simulate the state of the database before

the discovery of these viruses. Three vFams contained sequences

from both novel arenaviruses: two of the profile HMMs were

rebuilt from a multiple sequence alignment generated after

removing both viruses from the underlying sequence clusters,

and a third profile HMM corresponding to the glycoprotein was

removed altogether from the HMM database because CAS virus
and Golden Gate virus glycoproteins were the only two sequences

present in the cluster, and their removal rendered the cluster an

empty sequence set.

For each dataset, blastp was run with default parameters and E-

values were used to score alignments. To ensure HMMER3

alignment of shorter sequences by allowing suboptimal seeding of

alignments, the inclusion thresholds for the heuristic throttles in

hmmsearch were adjusted (–F1 0.02 –F2 0.02 –F3 0.02). To adjust

for bias in the hmmsearch scoring function due to variability in the

lengths of the profile HMMs, we used the domain-specific E-value

scores (from the –domtblout output) instead of the full sequence E-

value scores.

Alignment and taxonomic classification of false positive
reads from viral metagenomic analysis
To taxonomically classify the false positive non-viral reads that

aligned to vFams, the reads were aligned to NCBI’s non-

redundant nucleotide sequence database (NT; December 2013)

using nucleotide BLAST (blastn version 2.2.25+) with default

parameters. Only the highest-scoring alignment was kept for each

aligned query sequence, and the respective subject sequence’s

GenInfo Identifier was used to pull the associated Taxonomy ID

(TaxID) from the NCBI Taxonomy databases (ftp://ftp.ncbi.nih.

gov/pub/taxonomy/). Each TaxID’s full taxonomic lineage was

queried from the NCBI Taxonomy databases, and the taxonomic

information for all false positives was aggregated at the division,

family, genus, and species level to count the number of reads
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aligning to each taxon at each level of taxonomy. Alignments of

interest were more critically inspected to deduce the likely reason

for being falsely classified as viral by the vFams.

Estimation of the number of Pfam viral profile HMM
entries
Due to the difficulty of parsing Pfam profile HMM entries by

higher levels of taxonomy, i.e., the Superkingdom ‘‘Viruses’’, we

estimated the number of viral HMMs based on the keyword

searches of ‘‘virus’’ and ‘‘viral’’, which yield 523 and 348 Pfam

domains respectively, of which 131 are overlapping and 737 are

unique. These 737 profile HMMs may represent an overestimate

of the actual number of purely viral HMMs, as Pfam houses

domains that contain both viral and non-viral homologs.

Supporting Information

Figure S1 Example annotation file for a vFam. Each

vFam has an associated annotation file containing information

including the FASTA titles and total number of sequences used to

generate the vFam, the length of the vFam, and the total and

positional relative entropy of the vFam. Associated taxonomic

information is also provided at the family and genus level to aid

downstream taxonomic classification.

(EPS)

Figure S2 Histogram of vFams producing alignments in
metagenomic dataset analyses. A histogram of the top 100

vFams producing alignments and the number of sequences aligned

to each of these vFams from the metagenomic dataset analysis for

(A) Human klassevirus 1, (B) Santeuil nodavirus, and (C) CAS
virus. Red asterisks denote the alignments for vFams containing

true homologs of the virus found in the metagenomic dataset.

(EPS)

Acknowledgments

The authors would like to thank Alexander Greninger, David Wang, and

Mark Stenglein for sharing the raw sequencing data from their previously

published viral metagenome studies. The authors would also like to thank J.

Graham Ruby for his valuable input on the analysis design, for writing and

providing the source code for TranslatorTI, and for careful reading and

editing of the manuscript and figures.

Author Contributions

Conceived and designed the experiments: PSC TJS KSP JLD. Performed

the experiments: PSC. Analyzed the data: PSC. Contributed reagents/

materials/analysis tools: PSC. Wrote the paper: PSC TJS KSP JLD.

Designed the software used in analysis: PSC TJS. Wrote the software used

in analysis: PSC.

References

1. Dong J, Olano JP, McBride JW, Walker DH (2008) Emerging pathogens:

challenges and successes of molecular diagnostics. J Mol Diagn 10: 185–197.

doi:10.2353/jmoldx.2008.070063.

2. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, et al. (2008) Global trends

in emerging infectious diseases. Nature 451: 990–993. doi:10.1038/na-

ture06536.

3. Wang D, Urisman A, Liu Y-T, Springer M, Ksiazek TG, et al. (2003) Viral

discovery and sequence recovery using DNA microarrays. PLoS Biol 1: E2.

doi:10.1371/journal.pbio.0000002.

4. Delwart EL (2007) Viral metagenomics. Rev Med Virol 17: 115–131.

doi:10.1002/rmv.532.

5. Lipkin WI (2010) Microbe hunting. Microbiol Mol Biol Rev 74: 363–377.

doi:10.1128/MMBR.00007-10.

6. Bexfield N, Kellam P (2010) Metagenomics and the molecular identification of

novel viruses. Vet J. Available: http://www.ncbi.nlm.nih.gov/pubmed/

21111643. Accessed 7 August 2011.

7. Kellam P (1998) Molecular identification of novel viruses. Trends Microbiol 6:

160–165.

8. Capobianchi MR, Giombini E, Rozera G (2013) Next-generation sequencing

technology in clinical virology. Clinical Microbiology and Infection 19: 15–22.

doi:10.1111/1469-0691.12056.

9. Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, et al. (2012)

Application of next-generation sequencing technologies in virology. Journal of

General Virology 93: 1853–1868. doi:10.1099/vir.0.043182-0.

10. Yozwiak NL, Skewes-Cox P, Gordon A, Saborio S, Kuan G, et al. (2010)

Human enterovirus 109: a novel interspecies recombinant enterovirus isolated

from a case of acute pediatric respiratory illness in Nicaragua. J Virol 84: 9047–

9058. doi:10.1128/JVI.00698-10.

11. Greninger AL, Runckel C, Chiu CY, Haggerty T, Parsonnet J, et al. (2009) The

complete genome of klassevirus - a novel picornavirus in pediatric stool. Virol J

6: 82. doi:10.1186/1743-422X-6-82.

12. Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, et al. (2012)

Identification, Characterization, and In Vitro Culture of Highly Divergent

Arenaviruses from Boa Constrictors and Annulated Tree Boas: Candidate

Etiological Agents for Snake Inclusion Body Disease. mBio 3. Available: http://

mbio.asm.org/content/3/4/e00180-12. Accessed 18 March 2013.

13. Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E, et al. (2012)

Virus identification in unknown tropical febrile illness cases using deep

sequencing. PLoS Negl Trop Dis 6: e1485. doi:10.1371/journal.pntd.0001485.

14. Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, et al. (2011)

Temporal analysis of the honey bee microbiome reveals four novel viruses and

seasonal prevalence of known viruses, nosema, and crithidia. PLoS ONE 6:

e20656. doi:10.1371/journal.pone.0020656.

15. Kistler AL, Gancz A, Clubb S, Skewes-Cox P, Fischer K, et al. (2008) Recovery

of divergent avian bornaviruses from cases of proventricular dilatation disease:

identification of a candidate etiologic agent. Virol J 5: 88. doi:10.1186/1743-

422X-5-88.

16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410. doi:10.1006/jmbi.1990.9999.

17. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–

664. doi:10.1101/gr.229202. Article published online before March 2002.

18. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol

10: R25. doi:10.1186/gb-2009-10-3-r25.

19. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2.

Nat Meth 9: 357–359. doi:10.1038/nmeth.1923.

20. Brenner SE, Chothia C, Hubbard TJ (1998) Assessing sequence comparison

methods with reliable structurally identified distant evolutionary relationships.

Proc Natl Acad Sci USA 95: 6073–6078.

21. Park J, Karplus K, Barrett C, Hughey R, Haussler D, et al. (1998) Sequence

comparisons using multiple sequences detect three times as many remote

homologues as pairwise methods. J Mol Biol 284: 1201–1210. doi:10.1006/

jmbi.1998.2221.

22. Madera M, Gough J (2002) A comparison of profile hidden Markov model

procedures for remote homology detection. Nucleic Acids Res 30: 4321–4328.

23. Eddy SR (2009) A new generation of homology search tools based on

probabilistic inference. Genome Inform 23: 205–211.
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