
D956–D963 Nucleic Acids Research, 2018, Vol. 46, Database issue Published online 9 November 2017
doi: 10.1093/nar/gkx1090

LinkedOmics: analyzing multi-omics data within and
across 32 cancer types
Suhas V. Vasaikar1,2, Peter Straub3, Jing Wang1,2 and Bing Zhang1,2,*

1Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA, 2Department of
Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA and 3Department of
Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA

Received August 15, 2017; Revised October 19, 2017; Editorial Decision October 20, 2017; Accepted October 26, 2017

ABSTRACT

The LinkedOmics database contains multi-omics
data and clinical data for 32 cancer types and a to-
tal of 11 158 patients from The Cancer Genome At-
las (TCGA) project. It is also the first multi-omics
database that integrates mass spectrometry (MS)-
based global proteomics data generated by the Clin-
ical Proteomic Tumor Analysis Consortium (CPTAC)
on selected TCGA tumor samples. In total, Linke-
dOmics has more than a billion data points. To al-
low comprehensive analysis of these data, we de-
veloped three analysis modules in the LinkedOmics
web application. The LinkFinder module allows flexi-
ble exploration of associations between a molecular
or clinical attribute of interest and all other attributes,
providing the opportunity to analyze and visualize
associations between billions of attribute pairs for
each cancer cohort. The LinkCompare module en-
ables easy comparison of the associations identified
by LinkFinder, which is particularly useful in multi-
omics and pan-cancer analyses. The LinkInterpreter
module transforms identified associations into bio-
logical understanding through pathway and network
analysis. Using five case studies, we demonstrate
that LinkedOmics provides a unique platform for bi-
ologists and clinicians to access, analyze and com-
pare cancer multi-omics data within and across tu-
mor types. LinkedOmics is freely available at http:
//www.linkedomics.org.

INTRODUCTION

Multi-omics analysis is becoming increasingly popular in
biomedical research. As a prime example, The Cancer
Genome Atlas (TCGA) project has performed molecu-
lar profiling of human tumors using genomic, epigenomic,
transcriptomic, and proteomic platforms, and each tumor
is comprehensively characterized by around 100 000 molec-

ular attributes in addition to typical clinical attributes. To
make these data directly available to the entire cancer re-
search community, several data portals have been devel-
oped, such as the OASIS (1), the cBioPortal (2), the UCSC
Cancer Genomics Browser (3) and The Cancer Proteome
Atlas (4). However, none of the existing data portals allow
systematic exploration and interpretation of the complex re-
lationships between the vast amount of clinical and molec-
ular attributes.

Here, we report the LinkedOmics database that contains
multi-omics data and clinical data for 32 cancer types and
a total of 11 158 patients from the TCGA project. It is
also the first multi-omics database that integrates mass spec-
trometry (MS)-based global proteomics data generated by
the Clinical Proteomic Tumor Analysis Consortium (CP-
TAC) on selected TCGA tumor samples. In total, Linke-
dOmics has more than a billion data points. To allow com-
prehensive analysis of these data, we developed three anal-
ysis modules in the LinkedOmics web application (http://
www.linkedomics.org). The LinkFinder module allows flex-
ible exploration of associations between a molecular or clin-
ical attribute of interest and all other attributes, providing
the opportunity to analyze and visualize associations be-
tween billions of attribute pairs for each cancer cohort. The
LinkCompare module enables easy comparison of the asso-
ciations identified by LinkFinder, which is particularly use-
ful in multi-omics and pan-cancer analyses. The LinkInter-
preter module transforms identified associations into bio-
logical understanding through pathway and network anal-
ysis. We use five case studies to demonstrate the utility of
this unique resource in human cancer studies.

DATABASE

Data source and database construction

Genomic, epigenomic, and transcriptomic data for 32
TCGA cancer types were downloaded from the Firehose
of the Broad Institute (http://gdac.broadinstitute.org/, Jan-
uary 2016 version). For solid tumors, only data from pri-
mary tumors were included in our database except for the
skin cutaneous melanoma (SKCM) cohort that includes
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primarily metastatic cases. Clinical data downloaded from
the TCGA data portal includes overall survival time, tu-
mor site, age, histological type, lymphatic invasion status,
lymph node pathologic status, primary tumor pathologic
spread, tumor stage, and vascular invasion status. Sub-stage
level data were merged under respective stage (I, II, III,
IV). The molecular subtype annotation, platinum sensitiv-
ity and tumor purity data were obtained from literature (5–
8). CPTAC proteomic data were downloaded from the CP-
TAC data portal (9) (https://cptac-data-portal.georgetown.
edu/cptacPublic/) in June 2016. All the datasets were fur-
ther curated by removing rows containing NA’s >60% or
Zero’s >95%. All metadata in LinkedOmics were stored in
a MySQL database (version 5.6). All molecular data were
properly normalized and stored as attribute by sample ma-
trix files.

Data content

LinkedOmics contains multi-omics data for primary tu-
mors from 32 TCGA cancer types and a total of 11 158
patients (Supplementary Table S1, Figure 1A), including
mutation, copy number alteration (CNA), methylation,
mRNA expression, miRNA expression and reverse phase
protein array (RPPA) data at the gene level, mutation data
at the site level, CNA data at the region-level, RPPA data at
the analyte-level and clinical data. LinkedOmics also con-
tains MS-based global proteomics data generated by CP-
TAC on selected TCGA tumor samples, including global
proteomics data for breast, colorectal and ovarian cancer at
the gene level, phosphoproteomics data for breast and ovar-
ian cancer at the phosphosite level, and glycoproteomics
data for ovarian cancer at the glycosite level. In total, Linke-
dOmics has more than a billion data points (Supplementary
Table S2).

DATA ANALYSIS MODULES

LinkedOmics has three data analysis modules: LinkFinder,
LinkCompare, and LinkInterpreter (Figure 1B–D).

LinkFinder module

The LinkFinder module allows flexible exploration of as-
sociations between a molecular or clinical attribute of in-
terest and all other attributes for a selected cancer cohort.
The analysis can be performed using all samples within
the selected cohort, or a subset of samples such as basal
breast cancers. Associations between a query attribute and
all target attributes in a user-defined search space, such as
RB1 mutation versus mRNA expression in bladder can-
cer or ERBB2 amplification versus protein phosphorylation
in breast cancer, are calculated using appropriate statisti-
cal tests depending on the data types of the two attributes.
Statistical tests in LinkFinder include Pearson’s correla-
tion coefficient, Spearman’s rank correlation, Student’s t-
test, Wilcoxon test, Analysis of Variance, Kruskal–Wallis
analysis, Fisher’s exact test, Chi-Squared test, Jonckheere’s
trend test and Cox’s regression analysis (Supplementary Ta-
ble S3). Multiple-test correction is performed using the Ben-
jamini and Hochberg method to generate the False Discov-
ery Rate (FDR).

Each LinkFinder query returns statistical test results for
all target attributes in both a tabular format and a volcano
plot. Data for top-ranking attributes are visualized in heat
maps, and the result for each target attribute can be visual-
ized by a scatter plot, a box plot, or a survival curve plot,
depending on the data types of query and target attributes
(Figure 1B). Thus, the platform provides the opportunity
to analyze and visualize associations between billions of at-
tribute pairs for each cancer cohort.

LinkCompare module

The LinkCompare module enables easy comparison of the
associations identified by LinkFinder with different query
attributes on the same target dataset (e.g. proteins associ-
ated with KRAS mutation vs. BRAF mutation in colorectal
cancer), or with the same query attribute on target datasets
from different omics platforms (e.g. genes associated with
overall survival in the ovarian cancer copy number vs. pro-
teomics datasets), tumor types (e.g., genes associated with
overall survival in multiple cancer types) or tumor sub-
types (e.g. mRNAs associated with TWIST1 phosphoryla-
tion in ER-positive and ER-negative breast tumors). When
two sets of association data are compared, a scatter plot is
used to visualize the overall correlation between the two and
Venn diagram and heat map are used to compare and con-
trast the significant associations (Figure 1D). In the case of
three or more association datasets, a meta-analysis using
the sumz method in the metaP R-package (https://cran.r-
project.org/web/packages/metap/index.html) is performed
to prioritize target attributes showing strong and consistent
associations. The results for the top-ranking attributes are
visualized using heat map and bar plot (Figure 1D). The
LinkCompare module is particularly useful in multi-omics
and pan-cancer analyses.

LinkInterpreter module

The LinkInterpreter module transforms associations iden-
tified by LinkFinder and LinkCompare into biological un-
derstanding (Figure 1C). This module performs gene set
and pathway analysis using both over-representation anal-
ysis and gene set enrichment analysis (10). Through access-
ing the comprehensive functional category database in We-
bGestalt (10), LinkInterpreter evaluates functional enrich-
ment against 26, 449 functional categories defined by Gene
Ontology, pathways from the KEGG, Panther, Reactome
and WikiPathways databases, as well as protein-protein in-
teraction, transcription factor-target, miRNA-target and
kinase-target networks (Supplementary Table S4).

WEB INTERFACE

The LinkedOmics web interface was developed using
HTML (Hyper Text Markup Language) and PHP (Hy-
pertext Preprocessor) in combination with JavaScript for
front-end dynamic functionality. The interface can be ac-
cessed using guest login or personal login with free registra-
tion. Personal login has the privilege to store and retrieve
previously analysed results. The main page is divided into
two panels: navigation and query or output panel (Supple-
mentary Figure S1). From the query panel on the right,
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Figure 1. LinkedOmics for discovering, comparing, and understanding the associations between billions of clinical and molecular attribute pairs within
and across 32 human cancer types. (A) Data source, cancer cohorts, and the numbers of samples and attributes for each cancer cohort. Explanations
of the abbreviations can be found in Supplementary Table S1. (B) The LinkFinder module performs association analysis within and across omics data
types. Example outputs include volcano plots, scatter plots, box plots, and survival curve plots. (C) The LinkInterpreter module performs pathway and
network analyses for associations identified by LinkFinder or LinkCompare. Example outputs include enriched Gene Ontology (GO) directed acyclic
graphs and pathway diagrams. (D) The LinkCompare module compares associations identified by LinkFinder using correlation analysis and scatter plots,
Venn diagrams, meta-analysis, heat maps and bar plots.

the LinkFinder module can be accessed. After selecting
the cancer cohort, the query attribute, and the target at-
tribute dataset, computation is performed on-the-fly on the
server side and results are made available in the output view,
where the LinkInterpreter module can be used to identify
enriched biological processes, pathways or network mod-
ules based on the LinkFinder results. When multiple sets
of LinkFinder results are available in the output view, the
LinkCompare module can be used to perform comparative
analyses for selected results. A detailed manual on the use of
LinkedOmics is available at http://linkedomics.org/Manual/
LinkedOmicsManual 1.1.pdf.

CASE STUDIES

We use five case studies to demonstrate the utility of Linke-
dOmics. These studies not only rediscovered known biology
but also generated novel hypotheses.

Functional impact of RB1 mutation on mRNA expression in
bladder cancer

Mutation in RB1 gene is a major cause of bladder cancer
with mutation frequency of 16.5% observed in the TCGA
BLCA (Bladder urothelial carcinoma) cohort (11). Link-

Finder was used to study the association between RB1 mu-
tation and mRNA expression in the TCGA BLCA cohort
(n = 390). As shown in the volcano plot (Figure 2A), 1518
genes (dark red dots) had significant positive correlation
with RB1 mutation, whereas 1294 genes (dark green dots)
had significant negative correlation (FDR<0.01, t-test fol-
lowed by multiple testing correction). This result suggests
a widespread impact of RB1 mutation on the transcrip-
tome. LinkFinder also created statistical plots for individual
genes. RB1 mutation showed a strong negative association
with RB1 gene expression (negative rank #1, logFC[Fold
Change] = –1.2, P = 2.2e–14). RB1 mutation also showed
strong positive associations with CDKN2A (positive rank
#1, logFC = 4.4, P = 2.5e–49) and E2F1 (positive rank
#22, logFC = 1.2, P = 1.7e–18), and a strong negative
association with CCND1 (negative rank #29, logFC = -
1.6, P = 1.4e–9) (Figure 2B). Both CDKN2A and CCND1
mRNA expression are known to correlate with deregulation
of RB1 in cancer cells and tumor samples (12). RB1 protein
is also known to regulate cell cycle proteins, especially the
E2F1 transcription factor (13). Using LinkInterpreter, we
performed transcriptional factor target enrichment analy-
sis for the 1518 genes with significant positive correlation
with RB1 mutation (FDR < 0.01). As shown in the result ta-
ble (Figure 2C), transcriptional targets of E2F1 were signif-
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Figure 2. Functional impact of RB1 mutation on mRNA expression in Bladder Cancer. (A) In the TCGA BLCA (Bladder urothelial carcinoma) cohort,
1518 genes showed significant up-regulation (dark red dots, FDR < 0.01) in RB1 mutated samples whereas 1294 genes showed significant down-regulation
(dark green dots, FDR < 0.01). (B) Among the most significant genes, up-regulation was found for CDKN2A and E2F1 (positive rank #1 and #22)
whereas down-regulation was found for RB1 and CCND1 (negative rank #1 and #29). (C) The 1518 up-regulated genes were significantly enriched with
transcriptional targets of E2F1 (Fisher’s exact test, top 10 most enriched target sets).

icantly enriched among these genes, confirming the role of
RB1 mutation in regulating E2F1-mediated transcriptional
program.

Impact of ERBB2 (Her2) amplification on protein phospho-
rylation in breast cancer

LinkFinder was used to study the association between
ERBB2 amplification and protein phosphorylation in the
TCGA BRCA cohort (n = 105). The table in Figure 3A
shows the top 10 phosphosites having the strongest corre-
lation with ERBB2 amplification, among which seven are
from ERBB2 and 3 are from GRB7. GRB7 is one of the
105 protein coding genes located in the same amplicon as
ERBB2 on chromosome 17q12. Over-phosphorylation of
GRB7 in ERBB2 amplified tumors suggests its potential
functional importance in Her2-positive breast cancer. In
total, 15 phosphosites had significant positive correlation
with ERBB2 amplification (FDR < 0.01, Pearson’s cor-
relation analysis followed by multiple testing correction).
The strongest correlation was found between ERBB2 am-
plification and the phosphorylation level of ERBB2 protein
at s1104 (Pearson’s correlation = 0.76, P = 7.1e–20) (Fig-
ure 3B). Using LinkInterpreter, gene set enrichment analy-
sis was performed for the LinkFinder results based on the
Reactome pathway database. As expected, the top-ranking

pathway was ‘signaling by ERBB2’, with an FDR of 0.6%.
The leading edge genes included ERBB2, AKT1, GRB7,
HSP90AA1, PTPN12 and SHC1. These genes and their
phosphorylated protein forms are highlighted in magenta
and red boxes, respectively, in the pathway diagram (Figure
3C).

Multi-omics based protein signature for poor prognosis in
ovarian cancer

Ovarian cancer is characterized by prevalent copy number
alteration and has poor prognosis (8). Because copy number
alteration does not necessarily lead to concordant changes
at the protein level (7,8), we integrated copy number and
protein profiling data to identify candidate genes that drive
poor prognosis in ovarian cancer. Based on the TCGA copy
number alteration data (n = 549), LinkFinder identified
1122 genes (non-black dots) that were significantly associ-
ated with patient survival time (P < 0.01, Cox regression,
Figure 4A). Similarly, 141 genes (non-black dots) were sig-
nificantly associated with patient survival based on the pro-
tein profiling data (n = 119, Figure 4B). Among genes with
both copy number and proteomic measurements, the Venn
diagram analysis in LinkCompare identified 12 genes that
were significantly associated poor prognosis and 1 gene as-
sociated with good prognosis based on both omics data
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Figure 3. Impact of ERBB2 amplification on protein phosphorylation in breast cancer. (A) The top 10 phosphosites associated with ERBB2 amplification.
(B) Scatter plot visualizing the association between ERBB2 amplification and the phosphosite abundance of ERBB2 s1104. (C) Increased phosphorylation
was found for the ‘Signalling by ERBB2’ pathway (rank #1, FDR = 0.006, gene set enrichment analysis with Reactome pathway database). The leading
edge genes and their phosphorylated protein forms are highlighted in magenta and red boxes, respectively.

types (Figure 4B). Among these genes, ACTN4 (Actinin
Alpha 4) and AKT2 (AKT Serine/Threonine Kinase 2)
are known poor prognosis predictors for ovarian cancer
(14,15). ACTN4 is associated with the invasive phenotype
in various cancers (15). Moreover, PPP3CA (Protein Phos-
phatase 3 Catalytic Subunit Alpha) is known to be dys-
regulated in advanced multiple myeloma (16) and TGM2
(Transglutaminase 2) has been associated with drug resis-
tance and a metastatic phenotype in breast cancer (17). Fig-
ure 4C shows Kaplan–Meier survival curves for patients
with above- (red) and below- (green) median ACTN4 copy
number estimates (Hazard ratio [HR] = 1.235, P = 1.548e–
04). Similarly, Figure 4D shows Kaplan–Meier survival
curves for patients with above- (red) and below- (green) me-
dian ACTN4 protein abundance (HR = 4.073, P = 3.2e–
04).

Pan-cancer analysis for survival-associated gene expression
signature

Twelve cancer types with more than 100 death events in
the TCGA project were selected for the pan-cancer analy-
sis (Figure 5A, Supplementary Table S5), including blad-
der urothelial carcinoma (BLCA), breast invasive carci-
noma (BRCA), glioblastoma multiforme (GBM), head and
neck squamous cell carcinoma (HNSC), kidney renal clear
cell carcinoma (KIRC), acute myeloid leukemia (LAML),
brain lower grade glioma (LGG), liver hepatocellular carci-
noma (LIHC), lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), ovarian serous cystadeno-
carcinoma (OV), and stomach adenocarcinoma (STAD).
LinkFinder was applied to individual cancer types to cal-
culate the associations between overall patient survival and
gene expression using Cox regression analysis. LinkCom-
pare was then used to integrate the P values calculated
for individual cancer types using the sumz method (18) to
generate a meta-P value, which was further adjusted by
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Figure 4. Multi-omics based protein signature for poor prognosis in ovarian cancer. (A) 1122 and 141 genes were significantly associated with patient
survival time based on the copy number and proteomics data, respectively (P <0.01, Cox regression). (B) The Venn diagram analysis with directional
constraint identified 13 overlapping genes between the two platforms, and the 12 genes associated with poor-prognosis are shown in the table. (C) Kaplan–
Meier survival curves for patients with above- (red) and below- (green) median ACTN4 copy number estimates (Hazard ratio [HR] = 1.235, P = 1.548e–04).
(D) Kaplan–Meier survival curves for patients with above- (red) and below- (green) median ACTN4 protein abundance (HR = 4.073, P = 3.2e–04).

multiple testing correction. The top 30 and 100 most sig-
nificant genes associated with increased risk are shown in
the heat maps in Figure 5B and Supplementary Figure S2,
respectively. These genes showed consistent trend for al-
most all cancer types except for the liquid cancer LAML.
KEGG pathway enrichment analysis using LinkInterpreter
showed that increased death risk or decreased overall sur-
vival is associated with increased expression of genes in the
cell cycle (Figure 5C), DNA replication, mismatch repair,
focal adhesion, ECM-receptor interaction, and N-Glycan
biosynthesis pathways, and decreased expression of genes
in the fatty acid degradation, oxidative phosphorylation,
drug metabolism pathways (FDR<0.01). APCDD1L (APC
down-regulated 1 like) is the top-ranking gene in the meta-
analysis (Figure 5B), but has not been associated with can-
cer prognosis in previous studies. Kaplan-Meier survival
curves show that patients with above- (red) and below-
(green) median APCDD1L mRNA abundance had signifi-
cantly different survival rates in multiple cancer types, such
as BLCA (Figure 5D), HNSC (Figure 5E), KIRC (Figure
5F) and LCG (Figure 5G).

LinkedOmics connected the novel pan-cancer poor prognosis
marker APCDD1L tumor invasiveness and aggressiveness

APCDD1L is the top-ranking gene in the pan-cancer sur-
vival analysis on 12 cancer types (Figure 5), however, it is an
understudied gene without any Gene Ontology molecular
function and biological process annotations. We performed
mRNA co-expression analysis for APCDD1L in each of the
12 cancer cohorts using LinkFinder (Pearson’s correlation)
and then applied LinkCompare to integrate the p values cal-
culated for individual cancer types using the sumz method
(18). The top 30 and 100 genes with the highest correlation
are shown in the heat maps in Figure 6 and Supplementary
Figure S3, respectively. The right panel bar plots depict cor-
responding meta-analysis based FDRs. Interestingly, 19 out
of the top 30 and 50 out of the top 100 genes (shown with
green arrows) are known epithelial–mesenchymal transition
(EMT) genes from the Broad MSigDB v6.0 and literature
(19). GO enrichment analysis using LinkInterpreter showed
that APCDD1L-correlated genes are significantly enriched
in regulation of cellular response to growth factor stimulus
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Figure 5. Pan-cancer analysis for survival-associated gene expression signatures. (A) Twelve cancer types in the TCGA project with >100 death events.
(B) The heat map shows the top 30 poor survival-associated genes. Each cell represents the signed –log10 (P-value). The right panel bar plot depicts
corresponding meta-analysis based FDR. A and B share the same order of cancer types, as indicated below the heat map. (C) Increased expression of genes
in the cell cycle pathway is associated with increased death risk (FDR<0.001, gene set enrichment analysis). Leading-edge genes are highlighted in red
boxes in C. (D–G) Patients with above- (red) and below- (green) median APCDD1L mRNA abundance had significantly different survival rates in multiple
cancer types such as bladder urothelial carcinoma (BLCA, D), head and neck squamous cell carcinoma (HNSC, E), kidney renal clear cell carcinoma
(KIRC, F), and brain lower grade glioma (LGG, G).

Figure 6. LinkedOmics connected the novel pan-cancer poor prognosis marker APCDD1L to biological processes associated with tumor invasiveness and
aggressiveness. We performed APCDD1L mRNA co-expression analysis in each of the 12 cancer cohorts using LinkFinder (Pearson’s correlation) and then
integrated the p values obtained from each cancer type using LinkCompare. The top 30 most significantly correlated genes are shown in the heat map, in
which each cell represents signed –log10 (P-value). The right panel bar plot depicts corresponding meta-analysis based FDR. The epithelial–mesenchymal
transition (EMT) genes are shown with green arrows.
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(FDR = 4.65e–4), positive regulation of cellular component
movement (FDR = 7.44e–4), blood vessel morphogenesis
(FDR = 7.95e–4), and mesenchyme development (FDR =
1.56e–3). These results suggest a role of APCDD1L in bi-
ological processes associated with tumor invasiveness and
aggressiveness.

DISCUSSION

LinkedOmics is a new and unique tool in the software
ecosystem for disseminating data from large-scale cancer
omics projects. It uses preprocessed and normalized data
from the Broad TCGA Firehose and CPTAC data por-
tal to reduce redundant efforts. It focuses on the discov-
ery and interpretation of attribute associations and thus
complements existing cancer data portals. It has very low
barrier to use because association analysis and functional
enrichment analysis are the most widely-used and well-
understood approaches in biomedical research, and visual-
ization effectively helps users understand the results. A ma-
jor drawback when applying association analysis to high-
dimensional data is the identification of superficial and
non-functional relationships. This limitation is directly ad-
dressed by the multi-omics, pan-cancer, and pathway and
network analyses in the system. Although the current ver-
sion of LinkedOmics includes only TCGA and CPTAC
data, it can be easily extended to support other cohort-
based multi-omics studies. An obvious future improvement
is to allow multivariate analysis so that confounding vari-
ables can be controlled. Other future improvements include
allowing users to customize query features (e.g. only loss-of-
function mutations instead of all mutations), merge query
features (e.g. all mutations in a pathway or all aberration
types in a gene), select multiple target datasets at the same
time, explore hypothesis driven relationships and create cor-
relation networks for top-ranking genes returned by Link-
Finder and LinkCompare.
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