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Abstract

Background: Abnormal epigenetic marking is well documented in gene promoters of cancer cells, but the study
of distal regulatory siteshas lagged behind.We performed a systematic analysis of DNA methylation sites connected
with gene expression profilesacross normal and cancerous human genomes.

Results: Utilizing methylation and expression data in 58 cell types, we developed a model for methylation-
expression relationships in gene promoters and extrapolated it to the genome. We mapped numerous sites at
which DNA methylation was associated with expression of distal genes. These sites bind transcription factors in a
methylation-dependent manner, and carry the chromatin marks of a particular class of transcriptional enhancers. In
contrast to the traditional model of one enhancer site per cell type, we found that single enhancer sites may
define gradients of expression levels across many different cell types. Strikingly, the identified sites were drastically

hypermethylated sites with downregulation. Moreover, the association between enhancer methylation and gene
deregulation in cancerwas significantly stronger than the association of promoter methylationwith gene
deregulation.

Conclusions: Methylation of distal regulatory sites is closely related to gene expression levels across the genome.
Single enhancers may modulate ranges of cell-specific transcription levels, from constantlyopen promoters. In
contrast to the remote relationships between promoter methylation and gene dysregulation in cancer, altered
methylation of enhancer sites is closely related to gene expression profiles of transformed cells.

Keywords: Cancer, DNA methylation, distal control elements, enhancers, epigenomics, gene-enhancer pairing,
gene regulation, machine-learning

Background
DNA methylation is a key determinant of regulatory
chromatin complexes transmitted through cell divisions.
Relationships between DNA methylation and gene
expression levels were first recognized at gene promo-
ters and CpG islands [1], but were recently observed
across the genome [2-6]. In gene promoters, DNA
methylation mediates silencing by altering the binding
of transcription modulators to their DNA targets [7],
but the cause and function of expression-associated
methylation away from gene promoters has been elusive.
The relationships between aberrant DNA methylation

and the altered expression profiles of cancer cells are
also not well understood: the predominant pattern in
gene promoters is denovo methylation of polycomb-
repressed genes [8-11]. Since these genes are already
inactive in the normal tissue and generally remain inac-
tive in the cancer [12,13], it is hard to establish direct
contribution to the cancer process [14]. Away from gene
promoters, perturbed methylation has been associated
with reduced genomic stability [15,16] and global silen-
cing of large chromatin domains [17,18], but the effect
on transcription of particular genes remains unknown.
Transcriptional enhancers support tissue-specific

expression profiles through physical interactions with
gene promoters. Based on analyses of chromatin struc-
tures, hundreds ofthousands of transcriptional enhancers
were predicted in mammalian genomes (reviewed in
[19]). These sites bind chromatin-modulating factors,
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interact with distal promoters through DNA loops, and
demonstrate a unique pattern of DNA methylation [20].
In some particular examples, enhancer sites turned out
to be less methylated in cells expressing the controlled
genes than in non-expressing cells [21-24]. Taking a
more systematic approach, Wienchet al. recently revealed
activity-dependent methylation in a group of distal
enhancers in the mouse [25], and Bock et al.[26] demon-
strated correlations between enhancer methylation and
expression of particular developmental genes during
mouse tissue differentiation.
We conducted a methodical analysis of distal DNA

methylation sites associated with gene expression in nor-
mal and cancerous human cells. The results suggest that
enhancer methylation corresponds closely with expres-
sion profiles of cancer genes in transformed cells.

Results and discussion
To explore relationships between DNA methylation and
gene expression levels across the genome, we took the fol-
lowing strategy. First, we developed a model for the rela-
tionships between methylation in gene promoters and
gene expression using a machine-learning algorithm.
Then, we applied the derived model to methylation sites
away from gene promoters and characterized the chroma-
tin structure and binding profile of the discovered sites.
Finally, we explored how the identified sites were altered
in cancer.
We analyzed available DNA methylation and gene

expression data for 58 human cell types (Table S1 in Addi-
tional file 1). The methylation data were produced by two
different assays: reduced representation bisulfite sequen-
cing (RRBS) andInfinium HumanMethylation450 Bead-
Chip(Illuminainc., San Diego, CA, USA). Following
verification of high agreement between the assays (Figures
S1A and S2A, Bin Additional file 1), we combined the two
datasets. We then analyzed variation in methylation levels
across the panel of cell types (see Materials and methods
for detailed description).Sites with methylation levels that
did not change across the cell types were eliminated, and
the remaining 670, 906 variable methylation sites (VMSs)
were used in the study (Figure S1Bin Additional file 1).
VMSs in gene promoterswere negatively correlated with
expression whereas VMSs in gene bodies were positively
correlated with expression (Figure S2 in Additional file 1),
as previously reported [6]. The connection with expression
levels was most evident at -500 to +2, 000 base pairs rela-
tive to transcription start sites (TSSs) (Figure S2A-Cin
Additional file 1). Therefore, we used the CpG methyla-
tion sites in this range for model development.

Promoter-based model of regulatory methylation sites
As a first step in our study, we tested whether we could
couple promoters with the appropriate genes based

solely on DNA methylation and gene expression data.
We identified 15, 205 VMSs in promoters of 3,434
genes. These gene-CpG pairs provided the ‘true’ methy-
lation-expression sample inputs (Figure 1A). We then
trained a machine-learning algorithm to discriminateth-
ese true gene-CpG pairs out of an excess offalse (rando-
mized)pairs, produced by matching promoter CpGs with
genes from other chromosomes. Through rounds of
training and test sets, the algorithm optimizes para-
meters of linear and monotonic correlations between
methylation and expression, allowing the best discrimi-
nation of the true pairs (Figure 1B). The output was a
general model for the methylation-expression relation-
ship in gene promoters (including promoters with or
without CpG islands). Based on the learned model, we
further produced a score for each of the gene-CpG
pairs. At score ≥0.85, the model successfully paired
87.2% ofthe genes to their actual promoters, compared
with a null expectation of 50% (Figure 1C). The sensitiv-
ity of the test under these conditions was 2.63% (that is,
predictions were made for 2.63% of the promoter
VMSs), and the false discovery rate was 12.8%. Thus,
the developed model successfully paired promoter
methylation sites with their genes based on methylation
and expression data alone.

Relating genes to distal regulatory sitesusing DNA
methylation
We then extended the analysis to the VMSs residing
from one megabases (Mb) upstream of the TSSs through
one Mb downstream of the transcription end sites of
17,862 human genes (Figure 2A). We chose to exclude
more distant sites to decrease complexity and false posi-
tives, and becauseit was previously shownthat distal regu-
latory elements tend to concentrate in the global
vicinities (usually within a few hundredkilobases(kb))of
the targeted genes [27,28]. Out of 14,702,075 analyzed
CpG-gene pairs, 2,824 pairs obtainedhigh scores (score
≥0.9) according to the model. The distribution of methy-
lation-expression relationships of the high-scoring sites
over the cell types is shown in Figure 2B.High-scoring
sites were significantly more frequent (P <10-5) in actual
gene intervals than in random intervals (produced by
shuffling the expression data of the actual gene with
expression data of foreign genes taken from other chro-
mosomes). The entire list of CpG-gene pairs at score
>0.75 is given in Additional file 2.
We then sorted out the sites within 5 kb of promoters or

alternative promoters of the associated genes. The remain-
ing 1,911 pairs included 486 unique genes corresponding
with 1,041 unique distalmethylation regions (we arbitrarily
clustered CpGs with <3 kb between them into a single
region). On average, we obtained 2.14distal regions and
3.93 methylation sites per associated gene. The following
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analyses were done on these 1,911 high-scoring CpG-gene
pairs.
To confirm that the high-scoring methylation sites

wereindeed regulatory sites, we analyzed their chromatin
signatures. High-scoring sites were enriched by histone

modifications that have been previously associated with
transcription activation, including histone 3 lysine 4
methylations, lysine 27 acetylation, lysine 9 acetylation
and histone variant H2A.Z, but not with CTCF binding
(Figure 2C). Further analysis of chromatin states defined

A general model for methylation-expression
relationships in gene promoters 
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Figure 1 Promoter-based model of methylation-expression relationships at regulatory sites. (A) A typical gene-CpG sample pair,
conveying the methylation of a promoter-based CpGsite in relation to the expression levels of its linked gene across cell types.(B) A machine-
learning algorithm (SVM-MAP) was trained to distinguish true gene-CpG pairs out of 50-fold excess of false (randomized) pairs. Through rounds
of training and test sets, the algorithm optimized parameters of linear (Pearson coefficient) and monotonic (Spearman) correlations to provide
the best discrimination between true and false pairs, producing a general model for methylation-transcription relationships in gene promoters.
Based on fitting with the learned model,a score was assigned to each gene-CpG pair. (C) Rates of successful gene-promoter pairing as a
function of thresholds on the scores (null expectation = 50%). At score ≥0.85, the model successfully paired 87.2% ofthe genes to their actual
promoters (dashed lines).

Aran et al. Genome Biology 2013, 14:R21
http://genomebiology.com/2013/14/3/R21

Page 3 of 14



by the ChromHMM algorithm (based on various chro-
matin factors [27]) revealed significant enrichment of
the high-scoring sites within promoters and within a
particular class (ChromHMM state 4) of strong enhan-
cers (P = 2.4e-15; Figure 2D). In agreement with this,
VMSs were hypomethylated when included in enhancer
chromatin, compared to the methylation of the same
sites in cells where they were included in non-regulatory
chromatin (Figure S3 in Additional file 1). In addition,
the highest frequency of hypomethylated sites was
observed in state 4 enhancers (Figure S3Cin Additional
file 1). We also analyzed the protein-binding capacities
of the identified distal sites. The mapped methylation
sites bind a larger number of transcription factors than
expected. Moreover, unmethylated sites bind more fac-
tors than methylated ones (Figure 2E).Finally, we found
that the high-scoring methylation sites are evolutionarily

conserved (Figure 2F). Together, these findings suggest
that distal expression-related methylation sites populate
a particular class of transcriptional enhancers, which
bind transcription factors in a methylation-depended
manner.

Validation of enhancer-promoter pairing
To validate distal enhancer-promoter interactions, we
compared our predictions with a recent comprehensive
study of long-range DNA interactions, measured bythe
chromosome conformation capture carbon copy (5C)
technique in three cell types [29]. We identified enhan-
cer sites (n = 318)assessed by both methylation score
and 5Cprobes, and determined whether the methyla-
tion-based gene-enhancer pairs also reveal physical
DNA interactions. Between-assay agreements were
markedly increased with methylation scores:at scores

Figure 2 Mapping and validating distal regulatory sites using DNA methylation. (A)Mapping strategy: a model for methylation-expression
relationships in gene promoters was applied to VMSs from 1 Mb upstream through 1 Mb downstream of 17,862 genes. (B)Distribution of
methylation-versus-expression levels for high-scoring gene-CpG pairs (score ≥0.9, n = 2,824). (C)Relative enrichment of chromatin factors around
the high-scoring methylation sites (n = 1,911), excluding sites in the promoters of the associated genes. Data were normalized to 0 to 1 scale.(D)
Fold enrichment of methylation sites (n = 2,824) in actual gene intervals (real), versus the null expectation based on random permutations of
gene expression data (random), of chromatin states defined by the ChromHMM algorithm [27].(E)Left: Number of transcription factors binding to
the high-scoring sites, compared with random expectations. Right:Number of transcription factors binding to unmethylated or methylated
enhancers, compared with random expectations. Averages of four cell types for which methylation and binding data were available (GM12878,
HepG2, HeLaS3, K562) are shown.Sites in the promoters of the associated genes were excluded.(F) Evolutionary sequence conservation around
the top-scoring sites. The analyses shown in D and E excluded all sites at ±5 kb from TSSs. TF, transcription factors.
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≥0.85, 5C interactions were found in 53% of the cases,
compared with 29% of lower score interactions (P =
0.021). A representative example of a long-range enhan-
cer-promoter interaction captured by the both assay is
shown in Figure S4 in Additional file 1. We also ana-
lyzed the frequency of DNA interactions in 21 enhan-
cer-TSS pairs predicted by our assay, versus the
interactions of the same enhancers with the other 264
TSSs in the regions (10 kb to 1 Mb from the enhancer
site). The frequency of 5C interactions was significantly
higher with the TSS predicted by our assay than with
the other TSSs (308.5 ±738.2 junction sequence reads in
the high-scoring pairs, versus 90.7 ±277.7 reads in the
other pairs, P = 0.009). Thus, thelarge-scale looping ana-
lysis affirms the fidelity of enhancer-promoter pairings
based on DNA methylation signals. Given that our
study examined many more cell types than the three
analyzed in the 5C study, and thus could identify addi-
tional enhancers not active in these three cell types, this
level of between-assay agreement is probably an under-
estimation of the actual degree of valid pairs.
Since certain epigenetic profiles may not be fully pre-

served in cell lines [6], we also confirmed the ability to
map enhancer-promoter interactions in freshlyobtained
(uncultured) tissue samples. Analysis of seven tissue
biopsies from two donors [30]([GSE:30654]) revealed
significant intersection (P <0.01) with the enhancer-gene
pairs observed in the original set of 58 cell types (see
Materials and methods for detailed description). Thus, a
significant number of the gene-enhancer interactions
predicted in cell cultures were replicated in uncultured
tissue samples. This analysis also indicates a significant
degree of overlapping between gene-enhancer pairing in
diverse tissue collections.

Enhancer methylation defines gradients of cell-type
transcription levels from permissive promoters
Interestingly, many of the promoters for which we identi-
fied high-scoring enhancers were constantly unmethy-
lated across all cell types, regardless of expression levels
(Figure 3A,B and Figures S4 and S5 in Additional file 1).
This finding does not contradict the bulk of evidence
suggesting that methylation sites in and around promo-
ters tend to correlate with expression levels (our model
was in fact built based on this general phenomena).
Instead, it suggests that in cases of permissive - but not
necessarily active - promoters, enhancer methylation may
serve as a main determinant of gene transcription levels.
Moreover, enhancers tend to show gradual, rather than
distinct, methylation levels across cell types, in tight cor-
relation with gradients of expression (note that our
model does not enforce these gradients). Enhancers have
previously been connected with cell-type-specific

transcription patterns. However, it was generally assumed
that sets of enhancers, each of them active in a particular
tissue or tissues, are needed [31]. According to this
model, we would expect that a given enhancer site would
be fully methylated in most of the cell types, and fully
unmethylated in some. The tendency of the identified
sites to show gradual methylation differences between
cell types supports an alternative model, in which even a
single enhancer site can mediate distinct transcrip-
tion levels over wide ranges of tissues and cell types
(Figure 3C).

Altered enhancer methylation predicts changes in the
expression profiles of cancer genes
Altered histone modifications have recently been demon-
strated in enhancers in cancer cells [32]. We therefore
explored whether methylation of enhancer DNA is also
altered in cancers. We analyzed the methylation levels of
the 1,911 distal methylation sites associated with the
expression of 486 genes in normal human mammary
epithelial cells versus mammary glandadenocarcinoma
(MCF7) cells. A subset of the predicted enhancers was
hypo- or hypermethylated in the cancer cells compared
to the normal cells. The genes associated with hypo-
methylated enhancers tended to be upregulated in the
cancer, and the genes associated with the hypermethy-
lated enhancers tended to be downregulated (Figure 4A,
upper row). Moreover, altered gene expression was better
correlated with altered enhancer methylation than with
altered promoter methylation (R = -0.37 versus R = -0.16,
respectively), and the effect of methylation differences on
gene expression was significantly higher in enhancer sites
than in promoter sites (P = 3.55e-15). Thus, enhancer
methylation is remarkably altered in cancer and, more-
over, enhancer methylation is more closely related to
changes in gene expression than promoter methylation.
To examine whether these patterns are exclusive to

mammary cells, we repeated the analysis in lung epithe-
lia. The analysis of normal human bronchial epithelial
cells versus epithelial lung carcinoma (A549) cells
revealed similar relationships between enhancer and pro-
moter methylation and gene expression (Figure 4A, mid-
dle row). We have further analyzed a set of 18 normal
cell types of various tissue origins versus 18 cancers of
various tissue origins (Table S2 in Additional file 1).
Once again, the methylation of enhancers was drastically
altered and was tightly connected with alteration of gene
expression, whereas promoters showed smaller altera-
tions and weaker correlation with expression (R = -0.51
versus R = -0.24); P <1e-20; Figure 4A, lower row). Thus,
alteration of enhancer methylation is common to many
cancer types, and is associated with substantial changes
in gene expression.
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Figure 3 Enhancer methylation defines gradients of cell-type transcription levels. (A)An example of gene-enhancer pair in the RSC1A1
gene region. Gray boxes mark an enhancer methylation site associated with expression of the RSC1A1 gene, and the promoter of this gene. The
x-y scatters below the map show methylation versus expression across the cell types for the promoter methylation sites (left), and for the
enhancer site (right). The middlescatter shows the methylation of the promoter sites versus methylation of the enhancer across the cell types.
(B) Similar to A, but for an enhancer within the first intron of the HSGG2 gene, interacting with HSGG2expression. (C) Models for enhancer
control of cell-type expression levels. Upper panel: The traditional model suggesting that enhancers act like cell-type-specific switches of gene
transcription, each of them supports expression in a given cell type (or types). Bottom: A refined model suggesting that even a single enhancer
site may functions as a dimmer switch, mediating gradients of transcription levels across many cell types as long as the promoter is
unmethylated and thus permissive for transcription. RMA, (Robust Multi-chip Average).
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Figure 4 Altered enhancer methylation predicts changes in the expression profiles of cancer genes. (A) Each of the x-y scatters shows
the difference in gene expression between normal and cancer cells as a function of the difference in methylation levels (for example, a
difference of +100 indicates that the given site was 0% methylated in the normal cells and 100% methylated in the cancer). The plots on the
left are for high-scoring enhancer sites associate with 486 genes,the right plots show the promoters of 394(out of 486) genes that were
associated with enhancers, and theplots in the middle show all promoters.Blue dots and clouds donate the frequencies of methylation-versus-
expression differences. Linear regression (red lines) and Pearson coefficients (R values) are shown for each scatter. (B) Same as in A, but for the
505methylation sites (out of the 1,911) in state 4 enhancers. (C)Left:Overlap between the genes (score ≥0.85) in the upper-left quadrants (that is,
genes thatwere upregulated by ≥0.25 expression units withdistal enhancers that were hypomethylated by ≥25%) in breast, lung, and the
collection of 18 normal versus cancer cell types. The numbers of overlapping genes are indicated. Right: Examples of GO groups that
significantly enriched among the 207 genes that were upregulated and hypomethylated in the various cancer types (the entire list is provided in
Table S4 in Additional file 1).
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Since our enhancers were specifically enriched in the
chromatin class defined as ChromHMM state 4 (Figure 2C),
and since enhancers in this state showed the highest methy-
lation differences compared to non-regulatory chromatin
(Figure S3 in Additional file 1), we hypothesized that state-4
enhancers would show the closest association with changes
in gene expression in cancers. Indeed, this group of enhan-
cers showed an even tighter correlation with gene expres-
sion levels compared with the entire group of enhancers
(R = -0.58 versus R = -0.51; Figure 4B).
We also sought to analyze what characteristics the

altered genes might share in addition to association with
enhancer methylation. For this, we first analyzed whether
the same genes tended to be upregulated or downregu-
lated across cancer types, and then asked whether they
belonged to defined gene-ontology (GO) categories. As
shown in Figure 4, a majority of the genes were hyper-
methylated and downregulated, and a smaller fraction of
the genes showed the opposite pattern. We found no sig-
nificant overlap between the genes that were hyper-
methylated and downregulated in mammary, lung or in
the sets of various cell types. These genes also showed no
significant GO clustering. Thus, the hypermethylated
genes might be cancer-type-specific (for example,
cell-type-specific genes that are downregulated in the
derived cancer). By contrast, the hypomethylated,upregu-
lated genes significantly repeated between cancer types
(Figure 4C, left), and 58 of them appeared in all cancer
types examined (P < e-20, compared with the null expec-
tation of 2.3 overlapping genes; Table S3 in Additional
file 1). GO analysis showed that the hypomethylated and
upregulated genes were frequently involved in cell grow-
ing-related functions (Figure 4C right; an extended list of
significant GO clusters is given in Table S4 in Additional
file 1). Thus, the hypomethylated enhancers associate
with genes that are active in many cancer types and sup-
port cell proliferation.
An interesting question raised from the above is

whether enhancer methylation may also distinguish
between cancer and normally-dividing cells. To examine
this, we compared Epstein-Barr virus-immortalizedlym-
phoblastoid(GM12878)cells, which are rapidly growing in
culture but otherwise have normal karyotype and no par-
ticular characteristics of cancer cells, with lymphoblastoid
(Jukat) cells derived from an acute leukemia.We identi-
fied 74 genes that were hypomethylated and upregulated
in the leukemia compared to the normal lymphoblas-
toids. As expected, these were not proliferative genes -
the proliferative genes were already active in the dividing
normal cells, so they were not expected to show differ-
ences compared to the cancer. Instead, this analysis cap-
tured genes that were involved in cancer-related processes
other than cellproliferation, such as the PRAME gene,
which is believed to inhibit myeloid differentiation in

certain myeloid leukemias[33] (Table S5 in Additional
file 1). Of the 74 upregulated genes, 31 were also hypo-
methylated and upregulated in the sets of normal versus
cancer cell types (Figure 4), a significantly higher number
than expected by chance (P = 7e-14). Thus, enhancer hypo-
methylation may associate with upregulation of genes
involved in a variety of cancer-related pathways.

Enhancer methylation maybe specifically altered in cancer
Finally, we asked whether the observed perturbations of
enhancer methylation in cancers (Figure 4) are fully
explained by a global perturbation of the DNA methyla-
tion blueprint in cancer cells, or are the outcome of
enhancer-specific processes. For this, we first analyzed the
overall differences between the methylation of normal and
cancer cells. As previously reported, methylation levels
along the genomes of normal cells from a given tissue (left
scatter in Figure 5A), or even from different tissues (left
scatter in Figure 5B), generally resemble each other. Can-
cer cells, however, are grossly differentiated from normal
cells: sites that are normally unmethylated tended to gain
methylation, sites that were normally methylated tended
to lose methylation, and partially-methylated regions
shifted to both directions, accumulating at the extremities
of the methylation scale (since larger and smaller shifts
must converge at the borders). Due to this effect, cancers
are overall more similar to each other than to the normal
tissues (Figure 5B). We also analyzed the overall shift in
the methylation of particular genomic sections. As
expected, promoters, which are generally unmethylated in
normal cells, tended to gain methylation in the cancer
samples (Figure 5C), while the rest of the genome was
slightly hypomethylated (Figure 5D). Surprisingly, high-
scoring enhancer sites demonstrated the most dramatic
shift between normal and cancer cells: they were partly
methylated in the normal cells, and become highly methy-
lated in the cancer (Figure 5E).
With these baseline analyses in hand, we then asked

whether any particular group of methylation sites
behaved as expected from the global trends, or stand
alone. Figure 5F,G shows the average alteration of a
given genomic site in cancer, as a function of its methy-
lation level in the normal cells. For example, if a given
site was 10% methylated in the normal cells, its average
methylation shift in the cancer, based on the analyses
shown in Figure 5A,B, was about plus 30% methylation.
We found that promoters (green lines in Figure 5E,G)
were behaving more or less as expected from the global
trend of the genome (black lines). In other words, the
alteration of promoter methylation in cancer was similar
to the alteration of non-promoter sites with similar nor-
mal methylation levels. Looking more carefully into the
promoter classes, it appeared that active promoters
tended to maintain low methylation against the global
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Figure 5 Enhancer methylation maybe specifically altered in cancer. (A,B)x-y scatters showing the methylation of sites across the genome
in a given cell type (or a collection of cell types) versus another cell type (or types).(A)Normal and cancerous lung epithelia: genome-wide
methylation of normal versus normal (left) or of cancer versus normal (middle and right) cell types. The given cell types are indicated, as listed in
table S2. (B) Normal and cancerous cell types of various tissue origins: genome-wide methylation of nine normal cell types of various tissue
origins, versus another nine cell types (left), of 18 cancer versus 18 normal cell types (middle), or of nine cancers versus other cancers (right). (C-
E) Distributions of methylation levels in the collection of normal and cancer samples shown in B, in promoter sites, in all sites excluding
promoters, or in the high-scoring enhancer sites. (F) Average gain or loss of methylation in cancer, as a function of the methylation levelin
normal cells: for any given level of methylation in the normal cells, the graph shows the average change in the cancer, according to the global
trend shown in B. Data are shown for all sites; for sites in the high-scoring enhancers; for sites in the promoters paired with the high-scoring
enhancers; or for sites in strong, weak or poised promoters. The analysis is based on methylation levels and chromatin states in human
mammary epithelial cells and MCF7 cells shown in A. (G)Same analysis as in F, but for 18 normal and 18 cancer cell types shown in B.
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trend, whereas poised (polycomb-repressed) promoters
gained more methylation than expected from the global
trend. Yet, the overall alteration of promoter methylation
in cancer was relatively close to that expected from the
global trend. The shift in the methylationof the high-
scoring enhancers, however, was clearly beyond what
could be expected from the global trend (Figure 5F,G).
Thus, the alteration of the high-scoring enhancer sites in
cancer is probably not simply the outcome of the global
loss of methylation control in cancer cells.Rather, these
sites may be under the effect of a more specific mechan-
ism, such as targeted methylation or demethylation and/
or cell selection.

Conclusions
The mapping of associationsbetween distal regulatory
sites and the genes they control is a challenging task,
which only recently began to be confronted on the gen-
ome-wide scale. Attempts to predict gene-enhancer pairs
were based on the profiling of chromatin states or tran-
scription factor binding [27,34], or of long-range DNA
looping [28,29].Here, we show that enhancers can be also
associated with genes using DNA methylation. In con-
trast to the above mapping approaches, methylation data
are readily available and are highly quantitative, and thus
may enhance mapping of gene-enhancer pairing.
We found that distal expression-related methylation sites

are abundant in the human genome, co-localizing with
enhancer chromatin marks, and are more predictive of
expression levels then promoter methylations. While not
all distal regulatory sites in the genome must exhibited pro-
moter-like methylation, we showed that a large number of
enhancer sites demonstrate reverse correlation between
methylation and expression, as in gene promoters.
We have further shown that hypomethylation state is

directly related to enhancer activity across cell types
(Figure S3 in Additional file 1). The observation that
hypomethylated enhancers bind more transcription fac-
tors than methylated ones (Figure 2E) suggests a possi-
ble mechanism underlying the connection between
DNA methylation and enhancer activity. Consistent with
this possibility, high-scoring enhancers are particularly
enriched within a defined chromatin state (Figures 2D),
which is particularly hypomethylated compared to non-
regulatory chromatin (Figure S3Cin Additional file 1).
Whether this chromatin state holds particularly active
enhancers, or perhaps a unique class of methylation-
related enhancers, remains to be elucidated.
The range of cell types we analyzed in this study was

determined by the availability of methylation and expres-
sion data. In addition, the RRBS and Infinium Human-
Methylation450 BeadChip methylation data we used
provide limited genomic coverage and are strongly biased
towards promoters and certain other portions of the

genome, while enhancers are not efficiently targeted.
Because of this, it is likely that more complete methylo-
mic coverage will expose many additional enhancer-gene
pairs. Whole-genome bisulfite sequencing approaches
have recently become popular and whole methylome
analyses of human tissues are rapidly accumulating.
Utilizing our approach, these additional data should
allow the production of more comprehensive maps of
enhancer-gene pairing across tissues, cell types and
conditions.
Unmethylated promoters are permissive for, but do not

necessarily determine, transcription initiation. We
showed that enhancer methylation associates with cell-
type-specific expression levels, even when the promoter
is constantly unmethylated (Figure 3). Moreover, enhan-
cer methylation characterizes small (and larger) expres-
sion differences. Thus, enhancers are not just on-off
switches of cell-type transcription levels, as previously
suggested, but may also mediate ranges of expression
levels across multiple cell types. In contrast to the tradi-
tional model of one enhancer site per cell type, we sug-
gest that a gradient of methylation states at a single
enhancer site may direct distinct expression levels in
many different cell types (Figure 3C).
In occasional examples, enhancer methylation level has

been suggested to be associated with the control of can-
cer-related genes[35-37]. However, to our knowledge this
is the first report on a global association between per-
turbed enhancer methylation and aberrant expression of
cancer genes. We have shown that hypomethylated enhan-
cers associated with the upregulation of many cancer
genes controlling various cellular functions (Figure 4C),
some of them involved in cell proliferation and some in
other cancer-related processes. Moreover, many of these
hypomethylated genes were found in most cancer types
examined, suggesting a pan-cancer mechanism. However,
the larger group of hypermethylated enhancers seemed to
target cancer-type-specific genes. Given the limited geno-
mic coverage of this study, many additional cancer-related
enhancers are expected in the genome.
To date, almost all studies of cancer-related methyla-

tion have focused on gene promoters and CpG islands.
Among these, the predominant event in cancers is hyper-
methylation of polycomb-repressed promoters [9-11].
This hypermethylation does not directly affect expression
levels, as the associated genes are inactive in the normal
tissue and generally remain inactive in the cancer
(although it may limit the potential for re-activation of
silenced genes in the cancer). Here, we established a very
different occurrence in the other large group of regula-
tory sites - the transcriptional enhancers. These sites are
drastically altered in cancers, to both hypo- and hyper-
methylation, and are closely related to substantial modifi-
cations in the expression levels of cancer-related genes
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(Figure 4). Moreover, their aberrant methylation in can-
cers might derive from targeted methylation or demethy-
lation or from selection of the altered cells (Figure 5).
Whether targeted or selected, aberrant enhancer methy-
lation may be involved in important events during cancer
development.
We have uncovered a class of distal methylation sites

that closely describe cell-type transcription levels. These
sites reside in a particular subclass of transcriptional
enhancers and are associated with cell-type-specific
enhancer activity, possibly through communication with
the binding of transcription factors. Methylation levels
of these enhancers associate with gradual expression dif-
ferences across cell types, even when the linked promo-
ters are consistently unmethylated across the cell types.
The radical changes in methylation of these sites in can-
cer is beyond that expected from the general profile of
the cancer methylome, and may reflect specific targeting
of the methylation and demethylation machinery to
these sites, and/or functional contribution to tumor
development. Further analyses of these sites may provide
crucial information about paradigms of gene expression
control in normal and cancerous cells.

Materials and methods
Imported datasets
The following datasets were downloaded from the
ENCODE website [38]:
1. DNA methylation data for 58 cells types, for which

expression data were also available. Methylation data
were the average of two RRBS experiments (52 of the
cell types, as detailed in Table S1 in Additional file 1) or
Infinium HumanMethylation450 BeadChip data (36 of
the RRBS cell types plus additional six cell types for
which only BeadChip data were available).
2. Expression data for the above cell types produced by

the Affymetrix Human Exon array. Gene-level expression
data for 17,862 genes was extracted from the raw data
following Robust Multi-chip Average normalization.
3. Histone chromatin immunoprecipitation (ChIP)-

sequencing peaks and ChromHMM annotation data avail-
able for six of the above cell types, including K562, human
mammary epithelial cells, human skeletal muscle myo-
blasts, normal human lung fibroblasts, GM12878 and
HepG2 cells.
4. ChIP-sequencing peaks data for 122 DNA binding

factors in various cell types.
Human whole-genome methylation data were from

Lister et al. [39]. Genomic locations are according to
human genome version hg19 of the human genome.
Gene sizes, start and end sites, promoters and alterna-
tive promoters are according to the RefSeq database
(National Center for Biotechnology Information,
Bethesda, MD, USA). Methylation and expression data

for somatic tissues of two individuals are from [30]
([GSE:30654] patients #1 and 2).

Data filtering and categorization
VMSs were CpGs with standard deviation >5 after omit-
ting outliers utilizing the Thomson’s Tau method (alpha =
0.1%). A ‘sample’ (gene-CpG pair) was the two-dimen-
sional matrix describing the methylation levels of a given
CpG site as a function of the expression levels of a given
gene across the cell types. For the RRBS data,only methy-
lation sites that were sequenced at least 10times in at least
60% (80% for the Support Vector Machine (SVM) algo-
rithm) of the cell types were included.

Machine learning
The following fourfeatures were extracted for each CpG-
gene sample: positive Pearson coefficient (0 if negative);
negative Pearson coefficient (0 if positive); positive Spear-
man coefficient (0 if negative); and negative Spearman
coefficient (0 if positive). Based on these features, we
learned a model distinguishing false from true samples,
applying a machine-learning algorithm. The SVMmap
algorithm is a SVM algorithm for predicting rankings. It
performs supervised learning using binary labeled train-
ing examples, with the goal of optimizing mean average
precision (MAP) [40]. We used SVM-MAP for ranking
the CpG-gene samples in 3,434 gene queries (RRBS data
in 52 cell types) containing 15,205 true samples and a 50-
fold excess of randomly selected false samples, where the
goal wasfitting a model that ranks the true samples above
the false samples. The regularization parameter was opti-
mized by dividing the gene queries into training and test
sets (4:1 ratio) and performing 10-fold cross-validation.
Query P -values (the probability of obtaining the top
ranked true sample by chance) were calculated for the
test set queries as follows:
We denoteX = minT(rank) , where T represents the

true samples. The event that X = x is equivalent to
selecting |T| − 1 samples from {x + 1, x + 2, . . . , n} .
Therefore the probability of this event can be obtained
by the hypergeometric distribution:

Pr (X = x) =

(
n − x

|T| − 1

)
(

n
|T|

)

And the probability that X ≤ minT(rank) is:

Pr (X ≤ x) =
x∑

i=1

(
n − i

|T| − 1

)
(

n

|T|

)
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The resulting model for the methylation-expression
relationship consisted of the following learned features:
positive Pearson coefficient = -0.0058, negative Pearson
coefficient = 0.0104, positive Spearman coefficient =
-0.0038, and negative Spearman coefficient = 0.0088.

Applying the learned model to the datasets
The model learned in gene promoters was applied to all
CpGs in 17,862 gene intervals (1 Mb upstream, gene-
body, 1 Mb downstream to each gene), resulting in
14,702,075 CpG-gene pairs.The scores were normalized
to a 0 to 1 range(c ∈ C a CpG site, g ∈ G a gene):

Score
(
c, g

)
=

〈
model, features(c, g)

〉 − min (s (C, G))

max (s (C, G)) − min (s (C, G))

Data analyses
Frequency map of high-scoring sites
The distribution of methylation-expression relationships of
the high-scoring sites over the cell types is a contour repre-
sentation of the model learned to distinguish true from
random pairs. The frequency map shown in Figure 2B is a
representation of the corresponding scatter plot (SVM-
MAP for 25 × 25 grids of high-scoring pairs), with smooth-
ing of each point around a sphere (radius = 3).
Enrichment of chromatin marks around the high-scoring
sites
ChIP-seq data (’modification score’) were downloaded
from the ENCODE website, averaged across the analyzed
cell types, normalized to a 0 to 1 scale, and averaged
across the high-scoring methylation sites. Loess smoothing
with a span of 10% was applied to the presented data.
Enrichment of chromatin states around the high-scoring
sites
ChromHMM states were identified for the CpG sites
across the cell types. (A state was called when a given site
was found in a given state in at least one of the cell types.
Sites may be related to more than one state). The actual
number of sites in a given chromatin category and a
given score level (‘real’), was divided by the number
obtained from shuffling the expression data between
genes 10 times (‘random’). P -values were calculated
based on the normal distribution of the shuffled data.
Binding of transcription factors to the high-scoring sites
ChIP-sequencing peaks data for 122 DNA binding factors
in fourcell types(GM12878, HepG2, HeLaS3, K562 were
downloaded. For every high-scoring site we counted the
number of factors that bind, and averaged across the cell
types. Random expectation and real versus random P-
values were obtained as above. The P -value for the dif-
ference between methylated and unmethylated sites was
calculated using the Wilcoxon rank-sum test for differ-
ence between averages.

Conserved sequences around the high-scoring sites
PhastConsdata (phastCons46wayPrimates and phast-
Cons46wayPlacental) were downloaded from the Univer-
sity of California, Santa Cruz genome browser and
plotted around the high-scoring sites.
Agreement with gene-enhancer pairing by long-range
chromatin interactions
From 5C data produced at the University of Massachu-
setts in threecell lines (Gm12878, HeLA-S3, K562) we
sorted out the enhancer sitesthat were probed by the 5C,
for which we also have at least one CpG site available to
our analysis at±500 base pairs from the probed enhancer.
We then located the TSS that obtained the highest score
in relation to the enhancer CpG. This yielded 318 inter-
actions, at distances of 10 kb to 1 Mb between the CpG
side and the TSS side. We then counted the number of
cases in which the maximum number of interaction
sequence reads (average of two repeats over three cell
types) washigher than the average interaction read num-
ber (98.23 reads). P -values were obtained by comparing
the binomial probability of the agreement in high versus
low scoringsites. We also compared the number of 5C
interaction reads inhigh-scoring (score≥0.85) enhancer-
TSS pairs, versusthe number interactions between these
enhancers and other TSSs at 10 kbto 1 Mb from the
enhancer sites. The P -value of the difference was calcu-
lated by the Wilcoxon Rank-Sum test.
Replication in uncultured samples
Methylation and expression data for bladder, lymph
node, ureter, lung, stomach, skeletal muscles and adipose
tissue biopsies of twoindividuals were downloaded from a
recently-published dataset [GSE:30654]. Out of the
enhancer-promoter interactions that were predicted in
the original set of the 58 cell types, 876 were also assessa-
ble in the new dataset (that is, methylation data were
available for the relevant CpG sites, and expression data
were available for the interacting genes). We re-scored
these gene-CpG pairs, using our model, in the new data-
set. If the interactions that were predicted in the 58 cell
types were not relevant to interactions in the uncultured
tissue samples, than we expected that 20.5 ±4.5out of the
876 would (by chance) obtain high-scoring (score>0.9)
interactionsin individual #1, and 19.9 ±3.5in individual
#2. Instead, we observed 29 in individual #1 (P = 0.0145)
and 28 (P = 0.0084) in individual #2. The P-value (normal
distribution, two-sided) indicated in the result and dis-
cussion section is for the average of both individuals
(expected = 20.21±3.206, observed = 28.5 interactions,
P = 0.0098).
Alteration in cancer
Differences betweennormal and cancer cells were mea-
sured by Robust Multi-chip Average expression units
and by methylation percentages. The distributions of
methylation and expression differences between normal
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and cancer samples (Figure 4) were smoothed (color
density representation) using a kernel density estimate
(transformation function = x^3). Linear regressions were
performed (red lines and Pearson coefficients in Figure
4). The P-value of the frequencies of signals in the
upper-left and lower-right quarters, in enhancers versus
promoters, were calculated using normal distribution of
two-proportion z test. P -valuesof the overlap between
genes in the cancer types were calculated based on the
expectation from random intersections between the
groups.
Gene ontology analysis
Analysis of GO terms of thehypomethylatedupregulated
genes was done with the GOrilla tool [41], using the list
of high-scoring genes as a background.

Additional material

Additional file 1: Supplementary tables and figures. Table S1.
Human cell types and DNA methylation data that used in the
development of the promoter-based model. Table S2.Normal and
cancer cell types used in the study. Table S3. Genes that are
hypomethylated and upregulated in the examined cancer types,
compared with normal cells.Table S4. Enriched GO groups among the
genes that were hypomethylated and upregulated in various cancers.
Table S5.Hypomethylatedupregulatedgenes in acute leukemia.Figure S1.
The overall structure of the DNA methylation data. Figure S2.
Methylation levels around TSSs as function of gene expression levels.
Figure S3.Genomic sites are hypomethylated when marked as enhancer
chromatin, compared with the methylation of the same sites in non-
regulatory chromatin.Figure S4.An example of a long-range enhancer-
promoter interaction captured by both methylation-based gene-
enhancer pairing and long-range chromatin interactions assessed by the
5C technique.Figure S5.Representative examples of methylation-based
gene-enhancer pairing.

Additional file 2: Data file. A CSV file (3.3 MB) denoting CpG position
and gene symbols for the 118,417 CpG-gene pairs that obtained score
>0.75.
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