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Podocytes are specialized epithelial cells that cover the outer surfaces of glomerular cap-
illaries. Unique cell junctions, known as slit diaphragms, which feature nephrin and Neph
family proteins in addition to components of adherens, tight, and gap junctions, connect
adjacent podocyte foot processes. Single gene disorders affecting the slit diaphragm result
in nephrotic syndrome in humans, characterized by massive loss of protein across the cap-
illary wall. In addition to specialized cell junctions, interconnecting podocytes also adhere
to the glomerular basement membrane (GBM) of the capillary wall. The GBM is a dense
network of secreted, extracellular matrix (ECM) components and contains tissue-restricted
isoforms of collagen IV and laminin in addition to other structural proteins and ECM regu-
lators such as proteases and growth factors. The specialized niche of the GBM provides a
scaffold for endothelial cells and podocytes to support their unique functions and human
genetic mutations in GBM components lead to renal failure, thus highlighting the impor-
tance of cell–matrix interactions in the glomerulus. Cells adhere to ECM via adhesion
receptors, including integrins, syndecans, and dystroglycan and in particular the integrin
heterodimer α3β1 is required to maintain barrier integrity.Therefore, the sophisticated func-
tion of glomerular filtration relies on podocyte adhesion both at cell junctions and at the
interface with the ECM. In health, the podocyte coordinates signals from cell junctions
and cell–matrix interactions, in response to environmental cues in order to regulate filtra-
tion and as our understanding of mechanisms that control cell adhesion in the glomerulus
develops, then insight into the effects of disease will improve. The ultimate goal will be
to develop targeted therapies to prevent or repair defects in the filtration barrier and to
restore glomerular function.

Keywords: podocyte, adhesion and signaling molecules, cell junction, extracellular matrix, nephrotic syndrome

INTRODUCTION
The glomerulus is a highly sophisticated organelle that performs
selective filtration of circulating blood. With a diameter of between
110 and 280 µm in humans (1), the glomerulus is a spherical bun-
dle of capillaries contained by a cellular Bowman’s capsule. The
capillaries are lined by fenestrated endothelial cells and covered by
specialized epithelial cells known as podocytes (Figure 1). Between
the cell layers, there is a thick glomerular basement membrane
(GBM) providing a structural scaffold to support the capillary
wall. Endothelial cells and their associated glycocalyx (2), the
GBM, and podocytes together form the glomerular filtration bar-
rier, which allows free permeability to water and small solutes but
prevents the loss of macromolecules or cells from the blood into
the primary filtrate. Each human kidney contains approximately
1 million glomeruli, and they perform this selective filtration to
generate a remarkable 180 l of filtrate per day (3).

Glomerular disease is characterized by reduced barrier integrity
with consequent loss into the urine of protein (proteinuria) and
or blood cells (hematuria). Barrier dysfunction is characterized by
flattening or effacement of podocyte foot processes, as visualized

by electron microscopy (Figure 2). Causes of barrier disruption
range from congenital disorders associated with genetic mutations
to acquired disease linked to a range of inflammatory or metabolic
disturbances, which may specifically target the glomerulus or be
part of a wider systemic illness, such as diabetes mellitus. Per-
sistent glomerular dysfunction with proteinuria leads to chronic
and ultimately end-stage kidney disease with a rapidly accelerating
impact on worldwide healthcare costs. Dialysis and transplanta-
tion therapies are not globally accessible and the risk of recurrent
glomerular disease following transplantation can be as high as 30%
(4). There are currently limited therapies to slow the progression
of glomerular disease and, therefore, a significant need to build
our understanding about both normal glomerular function and
the dysfunction associated with pathology.

The integrity of the glomerular filtration barrier depends on
both cell–cell adhesion and cell–matrix adhesion, which have been
predominantly investigated in podocytes, although undoubtedly
critical for the glomerular endothelium. Cell–cell and cell–matrix
adhesion receptors connect adjacent cells or matrix ligands to
the cellular cytoskeleton, and they are vital conduits for the

www.frontiersin.org October 2014 | Volume 5 | Article 160 | 1

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00160/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00160/abstract
http://www.frontiersin.org/people/u/129042
mailto: rachel.lennon@manchester.ac.uk
mailto: rachel.lennon@manchester.ac.uk
http://www.frontiersin.org
http://www.frontiersin.org/Diabetes/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lennon et al. Cell adhesion in the glomerulus

FIGURE 1 | A schematic representation of the glomerulus in
cross-section. The glomerular capillaries are lined on the inside with
fenestrated endothelial cells, which are attached to the glomerular
basement membrane (GBM). Podocytes cover the outer aspect of GBM

with large cell bodies and inter-digitating foot processes. Mesangial cells
and their associated extracellular matrix (ECM) connect adjacent
capillaries, and the capillary bundle is contained within Bowman’s
capsule.

transmission of signals in and out of cells. These receptors are
highly conserved in evolution and are a fundamental require-
ment for tissue development. The glomerular filtration barrier
is a highly complex structure, and we require deep understand-
ing to appreciate how the barrier is formed during development,
regulated in health, and disrupted in disease. This review focuses
on the importance of podocyte adhesion for a healthy glomeru-
lus. Cell–matrix adhesion is introduced initially with a review of
the glomerular extracellular matrix (ECM) and our understand-
ing about cell adhesion to ECM ligands. Cell–cell adhesion follows
with a review of the unique podocyte slit diaphragm. Finally, we
discuss the prospects for therapy to target defects in adhesion for
patients with glomerular disease.

THE GLOMERULAR EXTRACELLULAR MATRIX
Extracellular matrix is essential for multicellular life providing
a structural scaffold with appropriate mechanical properties to
support adjacent cells (5). It comprises a complex network of
glycosaminoglycans and fibrous proteins, which are synthesized
and secreted by cells. Podocytes and glomerular endothelial cells
adhere to ECM networks via cell surface receptors. This cell–ECM
interface forms a signaling platform that controls all aspects of cell
fate decisions, including shape, growth, differentiation, and sur-
vival (5, 6). In addition to this signaling platform, the ECM mod-
ulates cell–cell signaling by sequestering secreted growth factors
and cytokines, forming reservoirs for controlled release (5).

Basement membranes are condensed sheets of ECM with a
supramolecular assembly built around two major networks of
laminin and collagen IV. In the glomerulus, ECM is organized as
the GBM of the capillary walls and basement membrane of Bow-
man’s capsule, in addition to the loose mesangial ECM between
capillary loops (Figure 1). The mature GBM is thicker than most
basement membranes (300–350 nm in humans), and it represents
a fusion of two membranes, one derived from podocytes and
the second from endothelial cells during glomerular development
(7). The study of human glomerular disease led to the discovery
of tissue-restricted isoforms of laminin and collagen IV in the
mature GBM, and these are key components of this specialized
extracellular niche (8, 9).

Laminins are self-assembling heterotrimeric glycoproteins (10,
11) and an absolute requirement for basement membrane forma-
tion (12, 13). All laminin heterotrimers contain α, β, and γ chains.
The trimeric protein has a cruciform shape with one long arm and
three short arms and the short arms contain the amino terminal
(LN) domains of the laminin heterotrimer. These short arms also
form the nodes within the laminin network, exclusively via inter-
actions between the chain specific LN domains (14–16). The long
arms contain the globular (LG) domains with cell surface receptor
binding sites (17–21).

The developing GBM contains laminin α5β1γ1 (laminin-511),
but the mature GBM comprises predominately laminin-521. A
complete laminin-521 network is the key for a functional GBM
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Lennon et al. Cell adhesion in the glomerulus

FIGURE 2 | A schematic representation of the glomerular filtration
barrier. (Top panel) transmission electron micrograph and schematic of the
normal architecture of the multi-layered glomerular filtration barrier. (Bottom

panel) transmission electron micrograph and schematic of glomerular filtration
barrier defects, including loss of slit diaphragms and podocyte foot process
effacement, in addition to thickening of the glomerular basement membrane.

as mutations in LAMB2, the gene encoding the laminin β2 chain,
cause Pierson syndrome in human beings. Affected individuals
have a spectrum of pathology dependent on the type of muta-
tion with truncating mutations causing congenital nephrotic syn-
drome, microcoria, muscular hypotonia, and neurodevelopmental
deficit (22, 23). Lamb2 mutations in mice are also associated
with glomerular dysfunction. Mice with null mutations die after
3 weeks of age with severe proteinuria and neuromuscular defects
(24). These animals have accumulation of ectopic laminin chains
in the GBM, including α1, α2, α3, β1, β3, and γ2; however, these
chains do not compensate for the loss of the β2 chain, possibly due
to low expression or the absence of a complete laminin network
(25). The theory that insufficient expression of laminin chains
accounts for the observed lack of compensation is supported by
the finding that podocyte overexpression of Lamb1 in Lamb2 null
mice ameliorates proteinuria (26).

Unlike the laminin network, the collagen IV network is dispens-
able for basement membrane formation; however, it appears to be
important for strength and stability (27). Collagen IV forms het-
erotrimers comprising three alpha chain combinations (α1α1α2,
α3α4α5, or α5α5α6). Each alpha chain contains three distinct
domains; an amino terminal 7S domain rich in cysteines and
lysines, which is essential for inter-chain crosslinking through
disulfide bonds and lysine/hydroxylysine crosslinks; a long col-
lagenous repeat domain, around 1400 amino acids in length; and
a carboxy terminal non-collagenous domain (NC1) (28). A novel
chemical bond, not previously identified in biomolecules, the sul-
filimine bond (-S=N-), was recently discovered in collagen IV.

This bond crosslinks lysine/hydroxylysine-211 and methionine-93
of adjoining protomers in the NC1 domains of both collagen IV
α1α1α2 and α3α4α5, which may provide additional resistance of
the network to mechanical strain (29). Furthermore, peroxidasin,
an enzyme found in basement membranes, catalyzes the formation
of the sulfilime bond (30), and in ground breaking recent work,
ionic bromide was shown to be a cofactor required for peroxidasin-
catalyzed formation of the sulfilimine crosslinks in collagen IV
networks (31), thus describing the first known essential function
for bromine in animals.

From the capillary loop stage of glomerular development, the
GBM comprises predominantly α3α4α5 networks of collagen IV,
and as with laminin, the developmental collagen IV transition
is critical for GBM maturation. Mutations leading to a reduc-
tion or absence of the α3α4α5 networks cause human Alport
syndrome characterized by a renal phenotype of hematuria, pro-
teinuria, and progressive renal failure (28, 32). The GBM in Alport
syndrome has increased collagen IV α1α1α2, which is unable to
compensate for the lack of the α3α4α5 network. As a consequence,
the GBM develops splits and a typical basket-weave appearance,
leading to speculation that mechanical strain cannot be tolerated
perhaps due to fewer disulfide bonds in the α1α1α2 network rel-
ative to α3α4α5 and consequently a weaker GBM. This concept
is further supported by the observation that reducing mechani-
cal strain in the glomerulus with angiotensin-converting enzyme
(ACE) inhibitors, which lower blood pressure as well as transcap-
illary filtration pressure, significantly delays disease progression in
Alport syndrome (33–35).
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The laminin and collagen IV networks are indirectly linked
via nidogens (36) and the heparan sulfate proteoglycans, per-
lecan (37, 38), and agrin (39). Podocyte-specific deletion of agrin
from the GBM resulted in a significant reduction in the negative
charge associated with the barrier, however, alone or combined
with knockout of perlecan, agrin deletion was not associated with
proteinuria, therefore questioning the role of charge selection in
glomerular filtration (40). Nidogen 1 and 2 are dumbbell-shaped
proteins and bind to both laminin and collagen IV. Mice with
knockout of either nidogen 1 or 2 are viable and have normal
basement membranes. Deletion of both isoforms, however, causes
perinatal lethality (41). This is consistent with a degree of redun-
dancy in their ability to bind collagen IV and laminin. Surprisingly,
the GBM has a normal appearance even in the double (Nid-1,
Nid-2) knockout. This suggests that nidogen is dispensable for the
formation of the GBM, but again it may be required for the GBM
to resist mechanical strain. Taken together, it is likely that agrin,
perlecan, and nidogens are important for overall basement mem-
brane strength by contributing to the crosslinking of the collagen
and laminin networks to each other and to the cell surface.

While these and other investigations detail the composition
of the glomerular ECM, it has been more challenging to eluci-
date the relative position of ECM proteins in the GBM. However,
a systematic analysis of the spatial arrangement of ECM com-
ponents within basement membranes, with respect to each other
and to their cell–adhesion receptors, was recently performed using
super resolution microscopy (42). This investigation found two
separate laminin networks, one produced by podocytes the other
produced by endothelial cells. The collagen IV α3α4α5 network
was distributed along the center of the GBM alongside nido-
gen, consistent with its putative crosslinking function. The human
GBM is approximately twofold thicker than the mouse GBM, and
interestingly, this study found increased thickness of the human
collagen IV a3a4a5 network, and potentially, an additional layer of
laminin-521 closer to the center of the GBM (42).

Thus, candidate-based investigations of the glomerular ECM
have significantly advanced our understanding about key compo-
nents. However, more recently unbiased, global approaches have
shown that the glomerular ECM is a highly complex extracellu-
lar niche. In our own proteomic analysis of human glomerular
ECM, we identified 144 structural and regulatory ECM proteins
and found that more than 50% were expressed in the GBM
(43). Together with the analysis of cell-derived ECM produced
by glomerular cells in culture, we found a common core of highly
connected and clustered ECM proteins, which may be important
for ECM assembly (44). Overall, the glomerular ECM is a com-
plex scaffold of interacting proteins, which are likely to be highly
dynamic and are unique in order to support the complex function
of the glomerular filtration barrier.

PODOCYTE ADHESION TO THE GBM
In order to adhere to the GBM, podocytes and endothelial cells
utilize transmembrane adhesion receptors and the cell–matrix
adhesion of podocytes was recently reviewed elsewhere (45). Adhe-
sion receptors contain extracellular domains, which can bind to
specific ECM proteins and intracellular domains that recruit effec-
tor proteins and link adhesion receptors to the cell cytoskeleton

(Figure 3). A major family of proteins responsible for cell–ECM
adhesion is the integrins.

Integrins are αβ-heterodimers that propagate signals from
within the cell to the immediate extracellular environment in
addition to outside–in signaling. All integrins link to the actin
cytoskeleton, with the exception of α6β4, which links to inter-
mediate filaments (6). Conformational changes in these receptors
are central to the regulation of integrin receptor activity. Inte-
grins adopt either a low affinity bent conformation, a primed
or active high affinity extended conformation, or a ligand occu-
pied state (46). Integrins form 24 different αβ combinations (6),
which have differing affinities for ECM ligands and also have dif-
ferential recruitment of proteins to their cytoplasmic domains
(47). Laminin-binding integrins include α1β1, α2β1, α3β1, α6β1,
α10β1, and α7β1, and the collagen binding integrins are α1β1,
α2β1, α10β1, α11β1, and αXβ2 (48).

Upon integrin engagement of the ECM, there is integrin clus-
tering and activation. Integrins lack intrinsic enzymatic activity;
therefore, in order to propagate signals into the cell, active integrins
must recruit a number of adaptor and effector proteins into sites
known as focal adhesions. At least 232 protein components are
recruited to adhesion complexes in a cell type and context depen-
dent manner, demonstrating the potential for adhesion signaling
to bring about different cellular outcomes (49). In addition, global
analyses of adhesion complexes using mass spectrometry suggest
an even larger number of proteins may be recruited to focal adhe-
sions (50–52). Examples of the groups of proteins recruited to sites
of active integrins are adaptors, actin remodeling proteins, sig-
naling proteins, GTPase regulators including guanine-nucleotide
exchange factors (GEFs) and GTPase activating proteins (GAPs)
in addition to numerous serine, threonine and tyrosine kinases,
and phosphatases. This signaling nexus controls all aspects of
cell fate and so does not just act as a mere anchoring point for
cell attachment but also a signaling hub to alter cell behavior.
Furthermore, integrin association and cross talk with other trans-
membrane receptors such as syndecans increases the potential for
regulation of integrin-mediated adhesion (53, 54).

The α3β1 heterodimer is the most highly expressed integrin on
the podocyte cell surface, and is thought to be the most important
link between the podocyte and the GBM (55–57). Homozygous
mutations in ITGA3, the gene encoding integrin α3, in humans
leads to congenital nephrotic syndrome, interstitial lung disease
and epidermolysis bullosa (58) with defects in the GBM. In addi-
tion, a mutation in ITGA3 causing a gain of glycosylation and
preventing α3β1 dimer formation causes fatal interstitial lung dis-
ease and congenital nephrotic syndrome (59). This phenotype is
recapitulated in mice lacking the integrin α3 subunit, which die
within the first day of life due to developmental defects in the kid-
neys and lungs, including loss of specialized podocyte morphology
and thickened irregular GBMs (60). Moreover, podocyte-specific
deletion of Itga3 in the mouse also resulted in a disorganized GBM
with thickening and protrusions and an inability of podocytes
to form mature foot processes (61). Human mutations affecting
integrin-β1 have not been described, to date, and this may be
due to embryonic lethality since integrin-β1 forms at least 12 het-
erodimers. However, the role of this integrin has been studied with
podocyte-specific deletion of Itgb1 in the mouse. This resulted
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Lennon et al. Cell adhesion in the glomerulus

FIGURE 3 | Molecular components of the podocyte cell–matirx interface.
Podocytes adhere to the underlying GBM using transmembrane adhesion
receptors. The laminin-binding integrin α3β1 and the associated tetraspannin
CD151 are highly expressed on the podocyte cell surface, in addition to
adhesion receptors for other ECM ligands. Adhesion complexes form when

activated integrins recruit adaptor, scaffold, and signaling proteins to their
cytoplasmic tails. Integrins link to the actin cytoskeleton via two major axes;
talin, vinculin, paxillin and integrin-linked kinase (ILK), PINCH, parvin.
Podocytes attach to an ECM network containing laminin-521 networks,
collagen IV α3α4α5 networks, agrin, perlecan, and nidogen.

in a severe phenotype of proteinuria from birth and renal fail-
ure by 3 weeks featuring both glomerular and tubular pathologies
(62, 63).

The tetraspannin CD151 binds tightly to integrin α3β1 (64)
and humans with mutations in CD151 develop hematuria and
proteinuria progressing to end-stage kidney disease in addition
to pretibial epidermolysis bullosa, sensorineural deafness, and β-
thalassemia minor (65). In mice, deletion of Cd151, both globally
and specifically in podocytes, caused early proteinuria with abnor-
malities of the GBM loss of podocyte foot processes, glomeru-
losclerosis, loss of podocytes, and renal failure. This phenotype,
however, is dependent on the genetic background of the mice,
with Cd151-knockout mice on the FVB background displaying
the pathological phenotype (61, 66, 67). It is hypothesized that
CD151 increases the strength of podocyte adhesion to the GBM
via integrin α3β1 engagement with laminin-521. Cd151-knockout
mice on the C57BL/6 background do not spontaneously develop

renal failure but when challenged with induced hypertension, they
develop significant proteinuria. Furthermore, treatment of the
susceptible Cd151-knockout FVB strain with ACE inhibitors ame-
liorated progression of renal failure. In addition to in vivo experi-
ments, in vitro experiments showed that podocytes lacking CD151
lose their resistance to shear stress when cultured on laminin (67).
This evidence supports a crucial role for integrin α3β1 as a major
adhesion receptor, and in combination with CD151, a complex
necessary to withstand mechanical forces within the glomerulus.

The laminin-binding integrin α6β4 may also be the key for the
development and maintenance of the glomerular filtration barrier.
Human mutations in ITGB4 have been described and associated
with junctional epidermolysis bullosa and pyloric atresia (68, 69).
In one of these patients, there was coincident nephrotic range
proteinuria and the study demonstrated reduced expression of
integrin-β4 in podocytes; however, the possibility of an alterna-
tive genetic explanation for the glomerular dysfunction in this
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case remains possible. Integrin αvβ3 has also been implicated in
glomerular dysfunction (70, 71). This fibronectin receptor was
shown to be activated following the induction of urokinase recep-
tor (uPAR) signaling leading to increased podocyte motility and
activation of GTPases. In a subsequent study, the same team iden-
tified soluble uPAR as a potential pathogenic mediator of disease
in nephrotic syndrome associated with focal segmental glomeru-
losclerosis (FSGS) where there was also activation of integrin-β3
(72). These studies raise the possibility that abnormal integrin
activation in the podocyte alters cell motility and this signaling
pathway could potentially be targeted therapeutically.

In addition to the integrin family of adhesion receptors, trans-
membrane heparan sulfate proteoglycan receptors, such as the
Syndecan family, are key regulators of cell-ECM interactions (54).
Cooperation of integrins and syndecans in adhesion formation has
been shown on a variety of ECM ligands including fibronectin,
vitronectin, and laminin (73–76). Syndecans regulate intergrin
trafficking to the cell surface (77), a process used by cells to regu-
late adhesion formation and disassembly (78–80). In addition to
modulating integrin dynamics, syndecans facilitate growth factor
binding to their receptors (81, 82). In podocytes null for EXT1,
a key molecule in herparan sulfate glycosaminoglycan assembly,
adhesion complexes were reduced in size, the actin cytoskeleton
was rearranged, and cell surface syndecan 4 upregulated (83).
However, mice null for EXT1 specifically in podocytes do not
develop significant proteinuria, despite some podocyte abnor-
malities, including a degree of foot process effacement (84). In
podocytes, autocrine signaling by the soluble vascular endothelial
growth factor receptor, sFLT1, also causes actin rearrangements
and this is associated with phosphorylation of both syndecan 1
and 4 within their EFYA motifs (85). Thus, there is accumulating
evidence that syndecans contribute to cell–matrix adhesion and
signaling in podocytes.

Dystroglycan is a cell surface adhesion receptor and comprises
a highly glycosylated extracellular α-dystroglycan subunit, which
can bind to laminins, and a non-covalently linked intracellular
β-dystroglygan subunit that links to the actin cytoskeleton via an
interaction with utrophin (86, 87). Dystroglycan is expressed by
podocytes (88) and the expression pattern is altered in glomerular
pathologies (89, 90). Therefore, it seemed likely that dystroglycan
was important for podocyte adhesion; however, defective glycosy-
lation of α-dystroglycan, which abrogates α-dystroglycan-laminin
interactions does not cause proteinuria, only mild podocyte foot
process effacement (91). Furthermore, podocyte-specific deletion
of dystroglycan in mice caused only mild GBM thickening (92).
These data suggest that dystroglycan is not a critical adhesion
receptor in podocytes.

FOCAL ADHESION COMPLEXES
A number of proteins link integrins to the actin cytoskeleton and
form focal adhesions (Figure 3). One such is talin-1, a 270 kDa
protein comprising an N-terminal globular head and flexible rod
domain. The head domain contains a FERM domain with bind-
ing sites for the integrin-β subunit cytoplasmic tail, F-actin, focal
adhesion kinase (FAK), and PIPK1γ90. The rod domain contains
an additional binding site for integrin, actin binding sites, and
multiple vinculin binding sites, and this domain can also bind

to RIAM (93). Finally, the C-terminal domain contains helices
responsible for talin dimerization. Binding of talin to the cyto-
plasmic tail of β-integrins triggers a conformational change in
the extracellular domain of integrins, which amplifies the affin-
ity of the integrin for the ECM. Talin dependent recruitment of
further proteins to active integrins causes the consequent forma-
tion of focal adhesions (94). Talin-1 expression in podocytes is
required for the specialized actin morphology of foot processes.
Podocyte-specific Tln1-knockout mice develop proteinuria and
die within 10 weeks. These mice, however, did not have major
defects in integrin β1 activation or podocyte adhesion. Neverthe-
less, the actin cytoskeleton was perturbed, and there was podocyte
foot process effacement. These data show that talin-1, a protein
known to be important in adhesion formation and linkage to the
actin cytoskeleton in vitro, is a key player in relaying signals from
integrins to the actin cytoskeleton in podocytes in vivo (95).

Another key adaptor protein involved in integrin-mediated
adhesion complex formation is vinculin, a 123 kDa protein
recruited by talin to focal adhesions and capable of binding to the
actin cytoskeleton (96). Vinculin comprises an N-terminal head,
proline rich neck, and a C-terminal tail domain (97, 98). Cyto-
plasmic vinculin assumes an autoinhibited inactive conformation
(99) and following talin recruitment, vinculin undergoes a con-
formational change revealing an open active state (100). Vinculin
is a force regulator and when extended by forces applied through
actin, there is subsequent recruitment and release of focal adhe-
sion proteins (101). This conformational change allows vinculin
to directly interact with a number of proteins including α-actinin,
Arp2/3, actin, and paxillin (102, 103). The vinculin head domain
modulates integrin clustering, whereas the tail domain links to
actin. Considering vinculin is an important link between inte-
grins and the actin machinery, this protein may have a key role in
the force sensing by podocytes via integrin α3β1.

Paxillin is another component of focal adhesions and it acts as
a scaffolding protein. It contains multiple protein-binding mod-
ules, many of which are regulated by phosphorylation. It localizes
to focal adhesions through phosphorylation of its C-terminal LIM
domains (104, 105). Paxillin is an important molecular adaptor;
its N-terminus controls most of its signaling activity that provides
docking sites for vinculin, FAK, Src, and Crk. Paxillin is recruited
to focal adhesion by talin (106) and brings about spatiotemporal
control of Rho family small GTPases by recruiting numerous GEFs
and GAPs (107).

Another highly studied focal adhesion protein is FAK. FAK is
non-receptor tyrosine kinase, recruited to focal adhesions by talin
and paxillin (108). FAK has a number of roles at focal adhesion
sites, including recruitment of p130Cas, Crk1/2, and Src family
kinases (109). Global deletion of FAK in mice is lethal in embryo-
genesis, causing a profound migration defect (110). The impor-
tance of FAK in podocytes was highlighted by the observation that
FAK is phosphorylated upon podocyte injury (111). Surprisingly,
podocyte-specific deletion of FAK in mice leads to a normal phe-
notype; however, these mice are protected from proteinuria and
podocyte injury after experimental podocyte insults (111). Addi-
tionally, podocyte injury was reduced when a FAK inhibitor was
administered in a mouse model of glomerular injury (111). A role
for FAK has also been found in Alport syndrome where ectopic
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laminins, α1 and α2, accumulate in the GBM. Laminin α2 caused
phosphorylation of FAK at Y397, and this phosphorylation was
associated with upregulation of the proteases MMP 9 and 10 and
GBM defects (112). FAK inhibition reduced proteinuria, MMP
levels, and GBM defects (112). These data, therefore, support a
role for FAK in glomerular dysfunction.

Integrin-linked kinase binds directly to the integrin β1 cyto-
plasmic tail and is important for signal transduction at adhesion
sites (113). ILK was originally identified as a kinase, but increasing
evidence suggests that is a pseudokinase (114–119). In fact, the
C-terminal kinase homology domain of ILK mediates multiple
protein–protein interactions at adhesion sites, including interac-
tions with α/β/γ-Parvin (120, 121). ILK also contains five ankyrin
domains that mediate interactions with PINCH-1/2 (122–124).
Kindlin 2 is another ILK interacting protein, which is expressed
in podocytes, localizes to focal adhesions and through either
ILK/PINCH/parvin or migfilin–filaminin interactions binds to the
actin cytoskeleton (125–127). It is through this scaffolding role that
ILK orchestrates focal adhesion signaling. The ILK/PINCH/parvin
complex influences the actin cytoskeleton (128), in addition to
negatively regulating cell contractility (129). Total loss of ILK or
PINCH in mice is lethal in embryogenesis, due to failure in epi-
blast polarization (128, 130). The interaction between ILK and

α-parvin is required for kidney development. Mutations in ILK
K220 disrupt α-parvin binding and cause renal agenesis (131).
Furthermore, a similar phenotype is observed when α-parvin is
genetically deleted in mice (131). Podocyte-specific loss of ILK in
mice causes GBM defects, loss of slit diaphragms, and podocyte
foot process effacement (132, 133). Moreover, ILK interacts with
nephrin at podocyte cell junctions, suggesting that ILK is a poten-
tial link between cell-cell and cell-ECM adhesion signaling (132).
Finally, increased expression of ILK is observed in a variety of
glomerular diseases (134, 135). This evidence strongly supports
an important role for ILK in adhesion signaling in podocytes.

Overall cell adhesion to the GBM occurs at a complex cell–
matrix interface (Figure 4). A wide range of scaffolding proteins
localize to focal adhesions and transmit information regarding the
extracellular environment via recruitment of effectors including
kinases, and GTPases. The cellular adhesome has been predomi-
nantly investigated in the context non-adherent cells or fibroblasts
but less so for epithelial cells, and similar analyses in glomerular
cells will help to build our understanding about the key cellu-
lar components that are involved in cell–matrix adhesion in the
glomerulus. These studies have the capacity to identify unexpected
and novel proteins at adhesion sites, which are considerably more
complex than previously thought.

FIGURE 4 |The complexity of adhesion signaling, a protein–protein
interaction view. A predicted protein–protein interaction network of
adhesion signaling complexes in podocytes. Nodes represent proteins
and lines between nodes represent experimentally derived
protein–protein interactions. Extracellular matrix (ECM) proteins are
green in color and adhesion signaling proteins are blue in color.

Integrins do not have intrinsic enzymatic activity; however, through
conformational changes, integrins can recruit tens to hundreds of
different proteins to adhesion sites. These adhesion sites are hubs for
cellular signaling, controlling all aspects of cell fate. Adhesion signaling
is determined by the composition and physical properties of the
extracellular matrix.
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ADHESION AT THE PODOCYTE SLIT DIAPHRAGM
The junction between adjacent podocyte foot processes is termed
the slit diaphragm and it is visible by electron microscopy as
an electron dense structure close to the GBM. This specialized
junction is thought to connect the entire length of adjacent foot
processes providing a structural component to the filtration bar-
rier. From early ultrastructural studies, a zipper-like substructure
was described where protein bridges emanating from the podocyte
plasma membrane link to a central filament in a lattice arrange-
ment with rectangular pores (136). The calculated cross-sectional
dimensions of these pores was 4× 14 nm, approximately the size
of an albumin molecule, and therefore, consistent with the obser-
vations from tracer studies using ferritin and dextrans that the slit
diaphragm contributed significantly to the retention of macromol-
ecules within the circulation (137, 138). Following these seminal
ultrastructural and tracer studies was the discovery of the first
unique slit diaphragm protein nephrin by positional cloning of
the gene in congenital nephrotic syndrome of the Finnish type
and leading, to further refinement of the zipper-like model of
the podocyte cell junction (139, 140). More recent ultrastructural
studies have used scanning electron microscopy to describe circu-
lar and ellipsoidal pores in the central region of the slit diaphragm,
with a mean diameter of 12.1 nm (141). Interestingly, the same
study demonstrated an increase in the size of some of these
pores with proteinuria, perhaps providing an explanation for the
increased transit of macromolecules across a defective filtration
barrier.

Many studies have also shown that the architecture of the
podocyte changes dramatically in human glomerular disease
with flattening of the actin-rich foot processes and loss of slit
diaphragms. Similar changes are observed in animal studies of
puromycin aminonucleoside (PAN)-induced nephrotic syndrome
or nephrosis (142). While these dramatic morphological changes
are associated with a profound barrier defect, remarkably these
changes seem to completely reverse especially in the subset of
patients with nephrotic syndrome who respond to treatment with
glucocorticoids.

COMPONENTS OF THE PODOCYTE SLIT DIAPHRAGM
The first junctions to form in podocytes are apical and have
been described as tight junctions (143). During glomerular devel-
opment, the junctional complexes descend toward the GBM
and widen to become the mature slit diaphragm. These are
highly specialized and unique junctions and many studies have
identified components associated with more classical types of
cell junctions. The zona occludens protein (ZO-1) was one of
the first proteins found to localize to podocyte foot processes
using immunogold labeling and electron microscopy (144).
Using immunostaining of murine podocytes in culture and rat
glomeruli, podocyte cell junctions were also shown to contain
classical components of adherens junctions including cadherin-3
and α-, β-, and γ-catenins (145). The tight junction components
JAM-A, occludin, and cingulin were also found to be associ-
ated with slit diaphragms (146) and the same study reported
that PAN nephrosis increased the expression of these tight junc-
tion components. There is also a report of the gap junction
protein connexin-43 localizing to the podocyte slit diaphragm,

and it was found to be upregulated in the early phase of PAN
nephrosis (147). Taken together, these findings suggest, not sur-
prisingly, that there is context-dependent composition of these
junctions.

In addition to components associated with other cell junc-
tions, the slit diaphragm also contains unique proteins (Figure 5).
Nephrin and the homologs Neph-1, Neph-2, and Neph-3 are
known members of this cell junction and are comprehensively
reviewed elsewhere (148). They are members of the immunoglob-
ulin superfamily of cell-adhesion receptors and are involved in
the development of specialized junctions in neurons and at the
slit diaphragm (148). Orthologs of these proteins are expressed in
Drosophila nephrocytes (149), which have nephrocyte diaphragms
structures with very similar composition to the mammalian slit
diaphragm (150). Interestingly, birds lack nephrin and Neph-3
but do form slit diaphragm-like structures (151). Further back in
evolution, Caenorhabditis elegans expresses the orthologs SYG-1
(Neph1) and SYG-2 (nephrin), and these are required for synapse
formation and specificity. Investigation of the crystal structures
of these orthologs revealed SYG-1 homodimers with a conserved
binding interface and an unusual, angled geometry in the het-
erophillic SYG1/2 complex (152). The crystal structures of nephrin
and Neph homologs remain unresolved; however, there is some
evidence for homophilic nephrin interactions. These interactions
were detected using recombinant nephrin protein and surface
plasmon resonance, and they were increased in the presence of
calcium (153).

FIGURE 5 | Molecular components of the podocyte slit diaphragm.
Podocyte slit diaphragms contain unique components, including nephrin,
Neph family proteins, and podocin in addition to components of tight, gap,
and adherens junctions, such as the cadherin-3 and FAT1. The adaptor
proteins Nck1/2, CD2AP, and Crk1/2, Src family kinases, in addition to many
more kinases and actin binding proteins localize to the podocyte slit
diaphragm. The interactions between nephrin and other Neph proteins are
thought to be homo- and heterophilic and recent structural analysis of the
orthologs SYG1/2 has suggested an angled conformation (152) as depicted
in this schematic.

Frontiers in Endocrinology | Diabetes October 2014 | Volume 5 | Article 160 | 8

http://www.frontiersin.org/Diabetes
http://www.frontiersin.org/Diabetes/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lennon et al. Cell adhesion in the glomerulus

Nephrin and Neph-1 are requisite components of the slit
diaphragm. Mutations in nephrin cause human congenital
nephrotic syndrome (139), which is most common in Finland,
although many mutations have now been described in individuals
with later onset of disease and from a diverse ethnic background
(154). Infants require albumin infusions to maintain intravascular
volume and ultimately proceed to removal of their kidneys prior
to dialysis and transplantation. This disease phenotype is mimic-
ked in the mouse where deletion of Nphs1 leads to early massive
proteinuria and the mice die within 24 h. Ultrastructural analysis
of their glomeruli has revealed the absence of slit diaphragms and
foot process effacement (155). Neph1 deletion in mice is also asso-
ciated with perinatal lethality with proteinuria and podocyte foot
process effacement (156). As yet, no human mutations in NEPH1
have been described but it is more widely expressed than nephrin,
and therefore, mutations may be incompatible with life.

Other notable members of the slit diaphragm complex include
podocin, a stomatin family protein that is also mutated in patients
with early onset nephrotic syndrome (157). Podocin is important
for the recruitment of proteins to the slit diaphragm complex and
for facilitating signaling (158). CD2AP is an adaptor protein and
its role in maintaining the integrity of the filtration barrier was
first described in mice (159) and more recently in human disease
(160). CD2AP and CIN85 appear to be important for the bal-
ance of receptor tyrosine kinase signaling in podocytes (161). FAT
atypical cadherin-1 has also been shown to regulate barrier forma-
tion and mice lacking this component have significant glomerular
defects, in addition to eye and brain abnormalities (144).

The protein complex at the slit diaphragm includes the compo-
nents that make the connections between adjacent podocyte foot
processes in addition to the more dynamic network of proteins that

assemble intracellularly (Figure 6). To identify novel components
of this complex, unbiased approaches with mass spectrometry
have led to the discovery of proteins including IQGAP (162). These
global analyses will continue to assist in the identification of more
unexpected components of these junctions as methods to isolate
and analyze the junctions improve. To give an indication of the
scale of the components, a recent bioinformatic analysis of the
cadhesome has predicted an assembly of 170 components many
of which may be cell type and context specific (163).

SIGNAL TRANSDUCTION AT THE SLIT DIAPHRAGM
Over the past 16 years since the discovery of nephrin, a grow-
ing number of proteins have been linked to signaling at the slit
diaphragm and there are several recent, comprehensive reviews
(164, 165). Phosphorylation of nephrin and Neph family proteins
is the key to signal transduction. Tyrosine phosphorylation by Src
family kinases initiates a signal cascade and indeed the deletion
of Fyn resulted in barrier dysfunction (166). Phosphorylation by
Fyn leads to the recruitment of a number of proteins including the
adaptor proteins Nck1/2 (167, 168), Crk1/2 (169), CrkL (170), and
Grb2 (171, 172) in addition to PI3-kinase (173, 174). Following
recruitment, Nck binds phosphorylated nephrin and leads to actin
reorganization via the actin nucleation factor N-WASP (175). The
receptor Robo2 also links to Nck and is expressed in podocytes
(176). This receptor was found to inhibit actin reorganization
and it appears to negatively regulate signaling via nephrin and
Nck therefore to reduce podocyte foot process effacement. Crk is
recruited to phosphorylated nephrin via p130Cas and deletion of
Crk1/2 attenuated podocyte foot process effacement in a glomeru-
lar injury model (169). The p85 regulatory subunit of P13-kinase
also interacts with nephrin leading to downstream activation of

FIGURE 6 |The complexity of the podocyte slit diaphragm – a network
view. A predicted protein–protein interaction network based on interactions
of proteins localized to the slit diaphragm. Nodes represent proteins and lines

between nodes represent experimentally derived protein–protein
interactions. Labels represent Gene Ontology vocabularies significantly
(P < 0.05) enriched in proteins localized to the slit diaphragm.
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Akt (173) and subsequently to actin reorganization (174). Demon-
strating the importance of signaling via Akt, deletion of the Akt2
isoform was associated with barrier dysfunction (177) and Akt
phosphorylation in podocytes follows insulin signaling (178) and
is also linked to mTOR signaling (177).

Regulation of the podocyte actin cytoskeleton is, therefore, the
key to maintaining barrier integrity and actin reorganization in
podocytes is likely to relate directly to the dramatic podocyte foot
process effacement, which is seen across the spectrum of disease.
The actin crosslinking protein alpha-actinin-4 has been associated
with human nephrotic syndrome and mutations in ACTN4 are
associated with adult onset FSGS (179). Here, the mutated alpha-
actinin-4 protein binds filamentous actin more strongly than the
wild type protein, indicating that actin regulation is important
for normal podocyte function. Another class of actin regulators
is the GTPases, which in turn are regulated by GEFs, GAPs, and
GDIs. Podocyte-specific deletion of the GTPase RhoA did not
result in a barrier defect (180); however, activation of RhoA has
been described in a number of glomerular injury models in addi-
tion to human disease including mutations in the formin INF2,
leading to the commonest cause of adult onset FSGS (181). A num-
ber of studies have now investigated the role of Rac1 in podocytes,
which is required for lamellipodia formation. Rac1 is not essential
for glomerular development but overexpression leads to barrier
dysfunction either with constitutive activation of Rac1 (182) or
RhoGDI-alpha knockout (183). However, a number of studies
have also shown that Rac1 is protective (170, 184) and it is likely
that a fine balance is required. The GTPase CDC42 is linked to
the formation of filopodia and its absence results in early barrier
dysfunction (180, 185) and this may be due to links with apical-
basal polarity proteins, which are also required for slit diaphragm
formation (186).

The dynamic regulation of this specialized cell junction
undoubtedly requires quality control and recycling of compo-
nents, and it was recently shown using rat glomeruli that the
turnover rates of slit diaphragm proteins was high and was reg-
ulated by atypical protein kinase C (aPKC) (187). Accordingly,
the endocytic pathway components dynamin, synaptojanin, and
endophilin have been shown to be important for maintaining bar-
rier function (188). The correct localization of proteins is also the
key, and nephrin localization at the plasma membrane requires the
endocytic protein Myo1c (189). The long-tailed myosin, Myo1E,
may also contribute to endocytosis in podocytes (190, 191). The
role of calcium signaling at the slit diaphragm is also important
and mutations in the transient receptor potential cation channel
TRPC6 have been associated with adult onset FSGS (192, 193).

There are still many research questions to address in order to
understand how the specialized slit diaphragm is formed during
development, regulated in health, and disrupted in disease. Chemi-
cal and mechanical factors in the microenvironment are likely to be
the key, and although the barrier regulation by growth factors has
not been discussed here, there is growing evidence for the impor-
tant roles of vascular endothelial growth factor (VEGF-A) (85) and
insulin (178). Regarding mechanical cues, it would seem likely
that filtration forces contribute to the regulation of the barrier.
The molecules spanning the slit diaphragm are directly exposed
to force and it would be intriguing to determine whether some of

these components respond to force in a similar manner to VE cad-
herin, which was recently investigated using a tension biosensor
and shown to stretch in endothelial cells exposed to sheer stress
(194). Understanding some of these basic mechanisms of regula-
tion will be required to identify specific therapeutic strategies to
maintain or restore glomerular function.

PROSPECTS FOR ADHESION-BASED THERAPY FOR
GLOMERULAR DISEASE
Cell adhesion is clearly important to maintain normal barrier
function but what are the prospects for adhesion-based ther-
apies? Current therapies for glomerular disease include both
immunomodulation and inhibition of the renin-angiotensin-
aldosterone (RAAS) signaling pathway. RAAS pathway inhibition
with ACE inhibitors and angiotensin receptor blockers (ARBs)
are thought to act primarily by reducing glomerular hydrostatic
pressure. Immunomodulatory drugs such as glucocorticoids and
calcineurin inhibitors were initially thought to act via immune
cells; however, these agents may also directly target the podocyte
(195). The effects of existing and efficacious therapies on podocyte
adhesion have not been formally tested, although there are some
intriguing observations. Spironolactone (an inhibitor of aldos-
terone) was shown to reduce the urinary excretion of podocytes
in a rat model of diabetic nephropathy (196), and this presumed
reduction in podocyte detachment was associated with upregula-
tion of integrin α3. Furthermore, in a study of human podocytes in
culture, the glucocorticoid dexamethasone was shown to increase
nephrin expression (197).

The manipulation of integrin activation as a possible route to
therapy has been suggested in a series of recent studies. Activa-
tion of integrin-β3 has been implicated in the pathogenesis of
nephrotic syndrome associated with FSGS. In a subset of patients
with FSGS, there is strong evidence for the role of a circulating
and disease-causing factor, which can lead to recurrence of pri-
mary disease in transplanted kidneys. Soluble urokinase receptor
(suPAR) was identified as a pathogenic factor leading to activation
of integrin-β3 in mouse models and human disease (72) lead-
ing to the suggestion that therapy for this condition could involve
inhibition of the suPAR-integrin-β3 interaction by the use of small
molecule inhibitors. Indeed, a beneficial effect of such an inhibitor
has been shown in experimental glomerulonephritis (71).

Inactivation of integrin-β1 subunit has also been proposed,
a mechanism of disease in patients with FSGS (198). Five
patients with FSGS and positive B7-1 (CD80) immunostaining
in glomeruli were treated with the B7-1 inhibitor Abatacept. This
treatment was associated with a significant reduction in protein-
uria in patients, otherwise resistant to standard therapies. While
these discoveries suggest a role for manipulating signaling by
adhesion receptors, given the myriad roles of these receptors, the
challenge will be to target the treatment appropriately (199).

Disease-associated changes in ECM are likely to trigger a num-
ber of intracellular signaling events to influence cell adhesion.
By understanding more about the pathways involved, it may be
possible to target these therapeutically. In Alport syndrome, the
primary molecular defect in the ECM is absence of the collagen
IV–α3α4α5 network. Therefore, delivery of the wild type gene
could be a potential future therapy and proof of principle was
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recently shown by the induction Col4a3 in Col4 a3−/− mice
(200). Induced expression of collagen IV-α3 slowed disease pro-
gression and improved survival providing significant optimism for
the prospects of gene therapy; however, the major issue will be gene
delivery to the podocyte. Abnormal outside–in signaling from the
ECM could also be targeted, and in another study of Alport syn-
drome, inhibition of FAK in mice led to partial restoration of the
GBM and a reduction in proteinuria (112).

Manipulating signaling from slit diaphragm adhesion receptors
may also be a future therapeutic strategy. In patients with NPHS1
mutations, nephrin is thought to accumulate in the endoplasmic
reticulum and the hypothesis that chemical chaperones would
export nephrin to the plasma membrane was tested with sodium-4
phenylbutyrate in HEK293 cells. Several mutant nephrin proteins
were rescued using this strategy, and there was evidence to suggest
that the mutant proteins were functional (201). More recently,

inhibition of deleterious Neph-1 signaling was demonstrated with
a protein transduction approach involving the introduction of the
Neph-1 cytoplasmic tail, which attenuated the mislocalization of
Neph-1 in two models of podocyte injury (202).

Overall, these are a selection of many encouraging observations,
which indicate that adhesion-based therapy may be a prospect for
glomerular disease, although there is likely to be a long journey
for some of these therapies to achieve ultimate patient benefit.

SUMMARY
Podocyte adhesion is evidently important for glomerular barrier
integrity. Similarly, glomerular endothelial adhesion will be the
key but has not yet been investigated in detail. The genetic investi-
gations of human nephrotic syndrome have already demonstrated
the range of molecular function associated with podocytopathies
and severe glomerular barrier dysfunction (Figure 7) and these

FIGURE 7 |The range of molecular functions associated with
human podocytopathy. Genetic investigations in families with
nephrotic syndrome have led to the discovery of molecules required for
the development and or maintenance of the glomerular filter. These

include molecules associated with basement membranes, ECM
adhesion, cytoskeleton, slit diaphragm, mitochondrial function, and
transcription factors. This review has focused on the molecules
indicated in bold.
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include defects in adhesion. Networks of signaling proteins at the
cell–matrix interface and the cell–cell junctions are required to
maintain barrier function, and cross talk between these adhe-
sion complexes is likely to occur in response to mechanical and
chemical signals from within the glomerular microenvironment.
Improved understanding about cell adhesion in the glomerulus
may lead to the identification of therapies to prevent or repair
injury to this highly sophisticated filter.

KEY POINTS 1: MATRIX
• Extracellular matrix controls cell fate decisions and growth

factor signaling.
• The GBM is the ECM compartment of the glomerular filtration

barrier.
• The GBM contains at least 73 components including laminin

521 and collagen IV α3α4α5.
• Laminins are essential for basement membrane assembly.
• Collagen IV is required for structural strength of basement

membranes.
• The GBM contains two laminin networks separated by a collagen

IV α3α4α5 network along the centre of the GBM.
• Mutations in LAMB2 cause Pierson syndrome in humans, and

affected individuals have severe congenital nephrotic syndrome.
• Mutations leading to a reduction of the collagen IV α3α4α5 net-

works cause Alport syndrome humans, affected individuals have
progressive renal disease.

KEY POINTS 2: CELL-MATRIX ADHESION
• Integrins link the extracellular environment to the actin

cytoskeleton.
• Integrins do not have intrinsic enzymatic activity; therefore, they

recruit effector proteins, which mediate adhesion signaling.
• The laminin receptor integrin α3β1 is the most highly expressed

integrin on the podocyte cell surface.
• Homozygous mutations in ITGA3 in humans lead to congenital

nephrotic syndrome.
• The tetraspanin CD151 binds tightly to integrin α3β1 and

individuals with mutations in CD151 develop nephritis.
• Other podocyte cell surface receptors include syndecans and dys-

troglycan, but the importance of these receptors in the podocyte
has yet to be fully determined.

KEY POINTS 3: ADHESION COMPLEXES
• Adhesion complexes contain over 232 components, which are

dependent on cell type and context.
• Talin is an important linkage from integrins to the actin

cytoskeleton; podocyte-specific talin 1 knockout mice develop
proteinuria and die within 10 weeks.

• Focal adhesion kinase (FAK) is activated in podocytes during
glomerular injury.

• Use of FAK inhibitors in mouse models of glomerular disease
protects podocyte from injury and the animals from proteinuria.

• The ILK, PINCH, parvin axis is another key linkage from
integrins to the actin cytoskeleton.

• Mice, which express ILK, that cannot bind to α-parvin display
renal agenesis.

• Mice with podocyte-specific deletion of ILK express GBM
defects, loss of slit diaphragms, and podocyte foot process
effacement.

KEY POINTS 4: CELL-CELL ADHESION
• The junction between adjacent podocyte foot processes, termed

the slit diaphragm, contains both adherens and tight junction
components, in addition to unique components.

• Nephrin and the other NEPH family proteins are key members
of this cell junction.

• Mutations in slit diaphrgam proteins cause nephrotic syndrome.
• Slit diaphragm signalling has a major influence on the actin

cytoskeleton; adaptors such as NCK1/2, CD2AP, and CRK1/2
are involved in slit diaphragm actin linkage.
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