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Abstract: With the continued miniaturization of devices in the semiconductor industry, atomic
layer deposition (ALD) of silicon nitride thin films (SiNx) has attracted great interest due to the
inherent benefits of this process compared to other silicon nitride thin film deposition techniques.
These benefits include not only high conformality and atomic-scale thickness control, but also low
deposition temperatures. Over the past 20 years, recognition of the remarkable features of SiNx

ALD, reinforced by experimental and theoretical investigations of the underlying surface reaction
mechanism, has contributed to the development and widespread use of ALD SiNx thin films in
both laboratory studies and industrial applications. Such recognition has spurred ever-increasing
opportunities for the applications of the SiNx ALD technique in various arenas. Nevertheless, this
technique still faces a number of challenges, which should be addressed through a collaborative effort
between academia and industry. It is expected that the SiNx ALD will be further perceived as an
indispensable technique for scaling next-generation ultra-large-scale integration (ULSI) technology.
In this review, the authors examine the current research progress, challenges and future prospects of
the SiNx ALD technique.

Keywords: review; atomic layer deposition; plasma-enhanced ALD (PEALD); silicon nitride; thermal
ALD; surface reactions

1. Introduction

Silicon nitride (SiNx) has been extensively employed in research and engineering studies.
In microelectronics, the SiNx thin films deposited by chemical vapor deposition (CVD) provide
many critical functions in the device fabrication process, serving as a dielectric layer, charge storage
layer, stress liner, masking layer, barrier, and passivation layer [1,2]. Low-pressure CVD (LPCVD)
SiNx films exhibit high conformality and excellent etch resistance [3]. However, the high deposition
temperatures (usually ≥700 ◦C) exceed the thermal budget of advanced ultra-large-scale integration
(ULSI) technology. Plasma-enhanced CVD (PECVD) is capable of growing films at low temperatures
(≤400 ◦C) [3]. Unfortunately, the etch resistance and the step coverage performance of PECVD SiNx

films usually cannot compete with those of LPCVD SiNx films [4,5]. Moreover, neither of these two
techniques can control the film thickness precisely at the atomic-scale due to the intrinsic gas-phase
CVD reaction mechanism. In order to deposit high-quality conformal SiNx thin films with a low
thermal budget, atomic layer deposition (ALD) is considered a suitable technique [6]. The sequential,
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self-limiting surface reaction characteristics allow ALD to control SiNx film thickness with atomic-scale
precision. The ALD technique has been widely investigated for its performance in depositing thin
films for use as high-k dielectrics (e.g., Al2O3, HfO2, ZrO2) and interface passivation layers of III−V
semiconductors [7–9]. For a comprehensive introduction to the ALD technique, readers are referred to
many existing reviews on this topic [6,10–13].

To date, SiNx thin films have been successfully deposited by both thermal ALD and
plasma-enhanced ALD (PEALD). While thermal ALD relies on substrate and chamber heating to
drive reaction kinetics at the surface, plasma-enhanced ALD, as the name suggests, takes advantage
of the additional energy supplied from plasma to enhance the low-temperature reactivity of species,
particularly the nitrogen (N) source, such as ammonia (NH3) [14,15]. The need for highly conformal
SiNx thin films in the semiconductor industry has driven intense interest in SiNx ALD, namely the
low-temperature PEALD technique. Figure 1 illustrates the number of publications involving SiNx

ALD over the past two decades. Despite the evident interest in and growing need to understand the
process, comprehensive reviews on SiNx ALD are not available. The main goal of this work is to
provide a brief yet insightful overview of this technique, discuss the current research progress and
describe the challenges of SiNx ALD through existing publications.
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Figure 1. Number of publications per year with respect to atomic layer deposition (ALD) of silicon
nitride (SiNx) since the first report by Goto et al. was available in 1996 [16], as retrieved in the Web
of Science and Google Scholar (through 31 July 2016). The key words for searching included the
combination of “atomic layer deposition/atomic layer CVD/plasma-enhanced ALD/plasma-assisted
ALD/ALD/PEALD” and “silicon nitride/Si nitride/Si3N4/SiN/SiNx”. Irrelevant publications were
not considered.

The structure of the review has been organized in the following manner. Section 2 will discuss the
current research progress, describing first the growth of SiNx thin films via ALD (thermal ALD and
PEALD, respectively) and clearly tabulating the key process parameters and results from available
reports (through 31 July 2016). Section 2 will also outline the current and potential applications of this
technique, highlighting the importance of surface reaction chemistry in SiNx ALD through discussion
of several studies. Section 3 will elaborate upon the challenges facing SiNx ALD from several aspects.
Finally, Section 4 will conclude this work, providing an outlook of the SiNx ALD technique.

2. Current Research Progress

In this section, a number of available reports on ALD SiNx were collected and analyzed for both
thin film growth parameters and applications as well as studies on the surface reaction mechanism.
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2.1. Growth of Silicon Nitride (SiNx) Thin Films via Atomic Layer Deposition (ALD)

2.1.1. Thermal ALD

As summarized in Table 1, previous research has demonstrated that growth of SiNx thin films via
thermal ALD can be achieved using chlorosilanes as the silicon (Si) source and either ammonia (NH3)
or a more reactive hydrazine (N2H4) as the nitrogen (N) source. Thermal ALD SiNx films are typically
deposited at high temperatures (above 450 ◦C). In the pioneering work by Morishita et al. in 1997, ALD
SiNx films were successfully deposited using Si2Cl6 and N2H4 between 525 and 650 ◦C [17]. However,
hydrazine (N2H4), commonly used as rocket fuel, is a very dangerous chemical to handle [18]. NH3

is considered a good alternative reactant, and has eventually become the most widely used reactant
for SiNx thermal ALD. As shown in Table 1, several chlorosilane precursors including SiCl4, SiH2Cl2,
Si2Cl6 and Si3Cl8 have been extensively investigated for SiNx thermal ALD [17,19–34]. It is also
particularly important to point out the fact that SiNx thermal ALD using non-chlorosilane-based
precursors has not yet been reported.

Table 1. Overview of silicon nitride thin films deposited by thermal ALD.

Precursor Reactant Deposition Temp. (◦C) GPC (Å/Cycle) Refractive Index References

SiCl4 NH3 427–627 2.45 2.01 [19]
SiCl4 NH3 375, 550–600 0.9–1.5 – [20–26]
SiCl4 NH3 500 ~1.3 – [27]
SiCl4 NH3 350–400 0.55 * – [28]

SiH2Cl2 NH3
(HF) 375 ~1 1.9 [29]

SiH2Cl2 NH3 375, 550 ~0.9 – [30]
SiH2Cl2 NH3 500 ~1.2 – [27]
SiH2Cl2 NH3 450 0.8 ~2.3 [31]
Si2Cl6 N2H4 525–650 2.3 2.07 [17]
Si2Cl6 NH3 515–557 2.4–2.8 1.7–1.8 [32]
Si2Cl6 NH3 300 0.56 – [34]
Si3Cl8 NH3 300–500 0.3–0.6 – [33]

The precursor, the reactant, deposition temperature (◦C), growth per cycle (GPC, Å/cycle), refractive index (R.I.)
and references are given for reports through 31 July 2016. “HF” is hot filament, which can efficiently dissociate
the reactant molecules (e.g., NH3) and enhance the reactivity. Readers can find more descriptions of the hot
filament chemical vapor deposition (CVD) technique (also known as catalytic CVD or hot wire CVD technique)
in the references [35–38]. “*” is the result of depositing SiNx film on Ge wafer. “–” is not specified.

2.1.2. Plasma-Enhanced ALD

Plasma-enhanced ALD (PEALD) is attracting great attention due to its many advantages [14,39].
No longer limited to chlorosilane precursors and NH3 plasma, PEALD offers a greater variety of choice
for both silicon precursors (SiH4, trisilylamine, alkyl-aminosilanes, etc.) and plasma gases (N2, N2/H2).
PEALD SiNx films are typically deposited at low temperatures (below 500 ◦C). As shown in Table 2,
an overview of SiNx deposition via PEALD is tabulated.

Direct, remote plasma or radical-assisted types of reactor design allow for versatile process control
of ion energy and ion flux density towards the substrate. A more detailed description of the types of
reactor designs for PEALD can be found in another review paper [14]. The standard PEALD process
only employs plasma during the reactant gas steps and plasma treatment steps. Recently, a report
has proposed modifying the process sequence by using an inert gas plasma (such as argon plasma) to
activate silicon precursors [40]. It should be noted, however, that any plasma-enhanced mechanism
may also incorporate parts of the thermal ALD reaction kinetics, especially at higher temperature.

The silicon precursors for SiNx ALD can be simply classified into three general types, as shown
in Table 3. Type I precursors are the chlorine-containing precursors (chlorosilanes), which are easy
to synthesize, cost-effective, and typically have a good thermal stability. Type II precursors (with
carbon) and type III precursors (without carbon) both belong to the chlorine-free subset of precursors.
Alkyl-aminosilanes are representatives of type II precursors, which are free of chlorine atoms and
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demonstrate decent thermal stability. However, these precursors contain carbon atoms, which raises
the concern of carbon residue in the films [41]. In addition, a lower growth per cycle (GPC) is typically
observed when using a type II precursor. As shown in Figure 2, the GPC is typically less than 1 Å/cycle.
This behavior coincides well with the large, complex structure of the molecules. The use of chlorine-free
and carbon-free precursors (type III) is considered a promising solution to address impurity concerns.
However, the thermal stability and vapor pressure of precursors, the film conformality, and the film
quality still need to be carefully evaluated.

Table 2. Overview of silicon nitride thin films deposited by plasma-enhanced ALD.

Precursor Plasma Gas Reactor/Type Deposition
Temp. (◦C)

GPC
(Å/Cycle)

Refractive
Index References

SiH3Cl NH3 Radical/– 400 – – [42,43]
SiH2Cl2 NH3 Remote/MW 250–400 0.91 1.6 [16,44]
SiH2Cl2 NH3 Remote/– 350–400 ~1.0 – [45]
SiH2Cl2 NH3 Remote/CCP 595 – – [46]
SiH2Cl2 NH3 Radical/– 500 – – [42,43]
SiH2Cl2 NH3 –/– 350–500 – – [47]
SiH2Cl2 NH3 Remote/ICP 350 0.24 – [48]
Si2Cl6 NH3 Direct/CCP 350–450 1.2 1.9 [49]
Si2Cl6 NH3 –/– 200–500 0.31–0.38 – [50]

SiH(N(CH3)2)3 N2/H2 Remote/ICP 350 0.4 1.95 [51]
SiH(N(CH3)2)3 N2 Remote/ICP 350 0.11–0.12 – [48,52]
SiH2(NHtBu)2 N2 Remote/ICP 100–500 0.15–0.93 1.63–1.96 [53–56]
C9H29N3Si3 N2 Direct/CCP 250–400 0.36 1.93 [57]
C6H17NSi NH3 Direct/CCP 325 0.35–0.7 1.7–1.8 [40]
C9H25N3Si NH3 Direct/CCP 325 <0.1 – [40]
C9H25N3Si NH3 –/– 270 ~0.07 – [58,59]
C8H22N2Si N2/H2 Remote/ICP – – – [60]

SiH4 N2 Direct/CCP 250–400 0.25–2.5 1.7–1.85 [4,61]
SiH4 N2/H2 Direct/CCP 350 0.1 – [62]

(SiH3)3N N2/H2 Direct/– 300–400 1.4–2.1 2.04–2.16 [5]
(SiH3)3N NH3 Remote/ICP 150–350 0.65 1.65–1.80 [2,63,64]
(SiH3)3N N2 Direct/CCP 250–300 1.2 2.07–2.2 [65]
(SiH3)4Si N2 Direct/CCP 250–300 1.4 2.07–2.14 [65]

The precursor, the plasma gas (only nitrogen-containing reactant gas, not carrier gas), reactor type (radical,
remote or direct, CCP = Capacitively Coupled Plasma, ICP = Inductively Coupled Plasma, MW = Microwave),
deposition temperature (◦C), growth per cycle (GPC, Å/cycle), refractive index (R.I.) and references are given
for reports through 31 July 2016. “tBu” is tertiary butyl. “–” is not specified. SiH(N(CH3)2)3 = 3DMAS,
Tris(dimethylamino)silane; SiH2(NHtBu)2 = BTBAS, Bis(tertiary-butyl-amino)silane; C9H29N3Si3 = DTDN-2H2,
DNF Co., Ltd.; C6H17NSi = DIPAS, Di(isopropylamino)silane; C9H25N3Si = TIPAS, Tris(isopropylamino)silane;
C8H22N2Si = BDEAS, Bis(diethylamino)silane; (SiH3)4Si = NPS, Neopentasilane; N(SiH3)3 = TSA, Trisilylamine.

Table 3. Classification of the silicon precursors used in SiNx ALD process.

Type Classification Examples Major Potential
Impurities Deposition Method

I Chlorine-containing
precursors

Chlorosilanes: SiH2Cl2,
Si2Cl6, etc. Cl, H, O PEALD, Thermal ALD

II Carbon-containing
precursors

Alkyl-aminosilanes:
3DMAS (SiH(N(CH3)2)3),

BTBAS (SiH2(NHtBu)2), etc.
C, H, O PEALD

III Chlorine-free and
carbon-free precursors

SiH4, TSA (N(SiH3)3), NPS
((SiH3)4Si), etc. H, O PEALD
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Although the first study of SiNx thermal ALD was reported by Morishita et al. in 1997 [17],
the first SiNx PEALD process was reported by Goto et al. in 1996, one year earlier [16]. Both of these
initial reports used dichlorosilane (SiH2Cl2) as the Si precursor. Yet, the PEALD process reported
growth between 250 and 400 ◦C using a remote NH3 plasma, while the thermal ALD process required
a much higher growth temperature (375–500 ◦C). Following these initial reports, investigations into
SiNx ALD continued to focus on type I chlorosilane precursors. Type II and type III precursor studies
were not reported until nearly a decade later.

In 2008, Fang et al. demonstrated SiNx ALD using a type II precursor tris(dimethylamino)silane
(3DMAS, SiH(N(CH3)2)3) and remote inductively coupled (ICP) N2/H2 plasma [51]. However, the film
exhibited a 5–10 atomic % carbon impurity concentration, which might seriously degrade film quality.
Bis(tertiary-butyl-amino)silane (BTBAS, SiH2(NHtBu)2) is another candidate type II precursor. When
employed in an LPCVD SiNx process, BTBAS allows the growth to occur at a reduced temperature
regime (550–600 ◦C) [66]. Recently, Knoops et al. reported a PEALD SiNx process using BTBAS
and remote ICP N2 plasma [53–56,67]. High-quality films were obtained (e.g., high mass density
~2.9 g/cm3, high R.I. ~1.96, N/Si ratio ~1.4, low H content ~5%, and extremely low wet etch rate
~1 nm/min in 7:1 buffered HF) and a much lower carbon impurity (~2 atomic %) concentration
was reported than that from previous studies [51]. The high mass density and low H content could
account for the low wet etch rate of the films [52,68,69]. However, the main shortcoming of this novel
process was the fairly low GPC (0.32–0.15 Å/cycle at 200–500 ◦C). The chemical formula of BTBAS is
C8H22N2Si, meaning that each of these large molecules contains only one Si atom. Knoops et al. have
attributed the low GPC to both the large size of the BTBAS molecule, which could contribute to steric
hindrance effects during the growth, and the low density of Si feedstock per precursor molecule.

A concern of both type I and type II precursors is chlorine or carbon impurity incorporation into
the film. The use of type III precursors can fundamentally address this concern. King reported a SiNx

ALD process using a standard industrial precursor SiH4 and direct N2 plasma [4,61]. However, a
long N2 plasma exposure time (>60 s) was required to achieve saturation in GPC using this process
because of the short lifetime of the reactive atomic nitrogen species (N, N+) [70]. Other chlorine-free
and carbon-free precursors such as trisilylamine (TSA, N(SiH3)3) or neopentasilane (NPS, (SiH3)4Si)
are also considered good candidates for PEALD SiNx [2,5,63–65]. Compared to the SiH4 molecule,
which has only one Si atom, TSA has three Si atoms and one N atom in the molecule while NPS has
five Si atoms in the molecule. With a higher building block concentration (Si, N atoms) of the silicon
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nitride chemical structure in the precursor molecule, these precursors might be helpful in improving
GPC [53]. Triyoso et al. have grown SiNx films using TSA and direct N2/H2 plasma at 300 ◦C and
400 ◦C, achieving a reasonably high GPC (1.4–2.1 Å/cycle) and refractive index (R.I.) (2.04–2.16) [5].
Coupled with a different plasma (remote, NH3), Jang et al. also successfully demonstrated SiNx ALD
using TSA [2,63,64]. Compared with the former study, this process showed a lower GPC (0.65 Å/cycle)
and a lower R.I. (1.65–1.80) within a low-temperature regime from 150 to 350 ◦C. This can likely
be attributed to differences between the two deposition systems and the plasma chemistry (direct
N2/H2 plasma vs. remote NH3 plasma), which can consequently make differences in the plasma
density and the composition of gas-phase nitrogen-containing reactive species. Recently, Weeks et
al. compared two type III precursors (NPS and TSA) using direct N2 plasma ALD [65]. At identical
process conditions, the films grown with NPS had a slightly higher GPC (1.4 Å/cycle vs. 1.2 Å/cycle),
though they demonstrated a slightly lower R.I. as described in Table 2.

2.2. Applications of SiNx ALD

Due to the decreasing device size and expanding interest in 3D integration, it is indispensable
to grow SiNx thin films with superior step coverage and precise thickness control. ALD proves to be
effective in meeting the demanding requirements and offers several additional benefits. In this section,
applications of the SiNx ALD technique will be discussed in detail.

2.2.1. Gate Spacer

Considerable effort has been devoted to using ALD SiNx thin films as gate spacers in advanced
logic and memory devices. A gate spacer acts as a sidewall protection layer of the gate stack and
defines the regions of ion implantation. As device dimensions continue downscaling and design rule
complexity continues to increase, three requirements for gate spacers should be considered [53]:

• Good conformality

A gate spacer must be conformal with minimal wafer loading effects, which ensures that spacer
thickness is homogeneously distributed across the wafer. Additionally, the spacer shape is a
critical factor that will affect the profile of implanted dopants and will, therefore, define the p-n
junction. A steeper sidewall will result in a more well-defined source/drain region [5].

• Good etch resistance

High-k metal gate (HKMG) technology has replaced poly/SiON technology in advanced
technology nodes [71,72]. Gate spacers with a low wet etch rate (i.e., good etch resistance)
are required to keep the encapsulated HKMG stacks still intact after the subsequent cleaning and
etching steps [43].

• Low deposition temperature

A low deposition temperature can prevent undesirable regrowth of the HKMG stack (e.g.,
oxidation of TiN, property changes of high-k dielectrics) [43,73–75]. In addition, a low process
temperature after implantation is beneficial in preventing the diffusion of dopant atoms [2,43].

In an early investigation, Yang et al. reported that using an ALD SiO2/SiNx thin film stack as
the gate spacer functioned to reduce the short channel effect for sub-90 nm technology [46]. Triyoso
and Koehler et al. employed low-temperature (300–500 ◦C) PEALD SiNx thin films as the spacer or
encapsulation liner for 32/28 nm HKMG technology [5,42,43,76]. They found that the transistors using
a PEALD SiNx spacer demonstrated better performance than those using a PECVD SiNx spacer. For
future 7/5 nm technology nodes, PEALD SiNx can still function as the gate spacer for III–V and Ge
high mobility channel transistors [77]. Recently, Djara et al. reported CMOS-compatible n-channel
InGaAs on-insulator FinFETs using PEALD SiNx gate spacers [78].
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2.2.2. Gate Dielectric

Prior to the prevalence of high-k materials as the gate dielectric, SiNx had been considered an
attractive candidate to replace SiO2 because of its higher dielectric constant and ability to suppress
boron penetration through gate dielectrics [22]. Nakajima et al. demonstrated that using ALD
SiNx as the gate dielectric material could significantly suppress boron penetration and improve
reliability [20–26]. Hong et al. reported a SiNx(ALD)/SiO2/SiNx(ALD) sandwich-structure as a
tunneling gate dielectric for flash memory application [79,80]. In comparison with a single-layer
tunneling dielectric using SiO2, the sandwich-structured tunneling dielectric demonstrates a tunable
tunneling current with both a higher tunneling current under high electric field and a lower tunneling
current under low electric field. These tunneling current-voltage characteristics are attainable due to the
modified tunneling barrier profile and are helpful in obtaining better programming characteristics and
data retention in flash memory. In addition, ALD SiNx can also serve as a charge trap layer in charge
trap flash (CTF) memory and as a part of inter-poly dielectric (IPD) stacks (e.g., oxide-nitride-oxide
stacks) in floating gate flash memory [2,63,64].

Gallium nitride metal-insulator-semiconductor high electron mobility transistors (GaN
MIS-HEMTs) are being studied for power device applications [7,81–88]. However, it has been reported
that trapping at the oxide dielectric/GaN interface, which might originate from Ga–O bonds, may
contribute to instability in the threshold voltage (Vth) [89,90]. A nitride-based gate dielectric such as
SiNx can potentially improve the interface quality [91,92]. Recently, several researchers employed
PEALD SiNx as a gate dielectric layer of GaN MIS-HEMTs and achieved improvement of power
device performance [93–100]. This suggests that the application of ALD SiNx could extend to GaN
power electronics.

2.2.3. Encapsulation Layer

Encapsulation of flexible organic devices is widely adopted to isolate devices from ambient
moisture and oxygen. Low process temperatures (generally <120 ◦C) are required to avoid thermal
degradation of the organic layers [101–103]. Employing an inorganic ALD film (e.g., Al2O3, SiO2) as a
moisture permeation barrier layer has been considered a good approach [103–107]. However, such
low temperatures are often not viable for SiNx thermal ALD because the thermal energy is insufficient.
In 2011, King showed that PEALD SiNx films deposited using SiH4 and N2 plasma had excellent
moisture-barrier performance [4]. However, the relatively high deposition temperature (250–400 ◦C)
is not compatible with organic devices. More recently, Andringa et al. found that outstanding
moisture-barrier performance could be obtained using PEALD SiNx deposited at a low temperature
(80–200 ◦C) [55].

2.2.4. Deposition of Composite Films

Another benefit of ALD is the so-called “digital alloying” or “digital doping” capability. It is a
unique and facile route for obtaining ternary or quaternary composite thin films. Many composite
materials including III–N semiconductors (AlxGa1−xN, InxGa1−xN, etc.) and oxides (HfxZr1−xO2,
Al-doped ZnO, etc.) have been prepared with this kind of approach [108–113]. Based on this concept,
Kim et al. successfully reduced the dielectric constant of ALD SiNx gate spacer by alloying with
boron nitride [114]. They demonstrate that this technique can reduce parasitic capacitance. Recently,
PEALD SiN–AlN composite films with excellent etch resistance in HF acid were also developed
by Kim et al. [52]. In addition, researchers also studied ALD–TiSiN for use as a gate electrode and
diffusion barrier, and ALD–RuSiN composite films for use as a Cu diffusion barrier [58,59,62,115–118].

2.2.5. Stressor

The channel strain can be intentionally modulated to enhance the carrier mobility by utilizing
stressor layers [119]. PECVD SiNx films with high tensile/compressive stress have been used as contact
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etch stop liners (CESL) and adopted in stress memory technique (SMT) to improve CMOS transistor
performance [120,121]. However, reports regarding how to control the stress in ALD SiNx thin films
are scarce. Nagata et al. found that the stress of PEALD SiNx film was dependent on the deposition
temperature [47]. PEALD SiNx films showed higher stress and better stress uniformity, in comparison
with the SiNx films deposited by thermal ALD. However, other important factors (e.g., precursors,
plasma conditions, plasma treatment) which may modulate the stress were not studied. King and
Triyoso et al. reported that the intrinsic stress of PEALD SiNx films could be modulated to be either
compressive or tensile by varying low-frequency power [4,5], which also holds true for PECVD SiNx

films [122,123].

2.3. A Highlighted Topic: The Surface Reactions of SiNx ALD

It is well known that ALD is based on the self-limiting surface reactions. Thus it is essential to
understand the surface reaction mechanism. SiNx ALD consists of two half-cycle reactions: “Silicon
precursor half-cycle reaction” and “Nitrogen reactant half-cycle reaction”, as shown in Figure 3.
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During the silicon precursor half-cycle reaction, chemisorption interactions allow precursor
molecules to “stick” to the surface. Excess precursor molecules which are physisorbed and reaction
byproducts will be removed during the purging step. Consequently, the new surface is dominantly
terminated by ligands from the adsorbed silicon precursor molecules (e.g., alkylamino groups, –SiClx
groups). The nitrogen reactant half-cycle reaction serves the purpose of eliminating the undesired
surface components (such as the ligands containing carbon, chlorine, hydrogen) and forming the
silicon-nitrogen bonds. Eventually, after one cycle reaction, the dominant components on the new
surface will be nitrogen-containing reactive sites (e.g., under-coordinated N atoms, –NHx, dangling
bonds). As recently elaborated in the paper authored by Ande et al., the relation between the two
half-cycle reactions of SiNx ALD should be reciprocal: the surface after the former reaction can facilitate
the following reaction, otherwise, the film growth will not be sustainable [49].

Experimentally, the surface reactions have been investigated using in situ Fourier Transform
Infrared Spectroscopy (FTIR), Optical Emission Spectroscopy (OES), and Quadrupole Mass
Spectrometry (QMS) [19,27,32,33,56,67]. For example, Klaus et al. analyzed the surface FTIR spectrum
for the thermal ALD reaction between SiCl4 and NH3 [19]. The repeated recurrence of amino and
chlorine characteristic peak revealed the reconstruction of surface components after each half-cycle
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reaction. In addition to the FTIR analysis on the film surface, Bosch et al. recently combined FTIR,
OES, and QMS to analyze the gas-phase species during the ALD reactions between BTBAS and
N2 plasma [56,67]. This systematic study has revealed a lot of useful information such as surface
termination, plasma species, impurities in the films, and reaction byproducts.

Calculations based on first-principles Density Functional Theory (DFT) are widely employed to
determine thermodynamics and kinetics for ALD SiNx reactions. The early stage studies focused on
the adsorption of an individual molecule such as SiH4, chlorosilane or NH3 on the silicon surface
and did not specifically focus on ALD reactions [124,125]. These early works preceded systematic
studies of SiNx ALD surface reactions and formed the cornerstone for later theories. Later in
2004, Mui et al. investigated SiNx ALD with SiH4 and NH3 using DFT calculations [126]. This
pioneering work has revealed that the reactions have to overcome high activation barriers which is
challenging for thermal ALD [127]. Recently, the collaboration between academia and industry has
contributed to the surge of theoretical simulation studies of SiNx ALD [34,54,57,127–129]. Murray
et al. found that the orientation of hydrogen atoms connected to the hydroxyl (–OH) and amine
(–NH2) groups is quite different [128]. To form Si–N bonds, the silicon precursor molecules have
to interact with amine groups laterally. This pathway is more difficult than the interactions with
hydroxyl groups in a vertical way to form Si–O bonds. In terms of aminosilane molecules, Huang et al.
predicted the high-activation barriers of the ALD half-cycle reactions between bis(diethylamino)silane
(BDEAS, C8H22N2Si), bis(tertiary-butyl-amino)silane (BTBAS, SiH2(NHtBu)2) and amine groups [127].
Interestingly, the above predictions yielded good agreement with the experiment results reported by
Knoops et al., who demonstrated high-quality ALD SiNx thin films using BTBAS and N2 plasma [53].
In contrast, the attempts to deposit SiNx using N2/H2 or NH3 plasma failed. Both the experimental
results and DFT calculation reported by Ande et al. reveal that the effective adsorption of silicon
precursor molecules (BTBAS) only occurs on a surface composed of under-coordinated nitrogen and
silicon atoms [54]. The interactions between silicon precursor molecules and under-coordinated atoms
are favorable as long as the steric hindrance effects of nearby –NHx and –H surface groups are not
present. An N2 plasma, without the presence of hydrogen-containing reactive species (e.g., NHx,
H), can create a surface composed of under-coordinated nitrogen and silicon atoms. In contrast,
a hydrogen-containing plasma (H2, N2/H2, or NH3 plasma) can passivate the under-coordinated
nitrogen and silicon atoms by generating –NHx and –H surface groups. The presence of these surface
groups is unfavorable for the adsorption of silicon precursor molecules.

Similar findings were also reported by King and Yusup et al., investigating SiNx ALD using SiH4

and chlorosilanes (SiCl4 and Si2Cl6) as the respective silicon precursor [4,34]. It is necessary to point
out the fact that an NH3 gas or NH3 plasma exposure step is still essential when using chlorosilane as
the silicon precursor. The nitrogen radicals in an N2 plasma are not reactive with the chlorine ligands.
Nevertheless, Yusup et al. have demonstrated that introducing an additional N2 plasma treatment
step prior to Si2Cl6 exposure in a thermal ALD cycle (process sequence: purge/Si2Cl6/purge/NH3

gas/purge/N2 plasma treatment) can increase the GPC nearly twice (from 0.59 Å/cycle to
1.1 Å/cycle) [34]. The Si2Cl6 dosage for the saturation growth has also been reduced by approximately
one order of magnitude (from 107 L to <106 L). The authors have proposed that an N2 plasma is
able to recover the under-coordinated surface atoms and consequently enhance the adsorption of
Si2Cl6 molecules.

3. Challenges of SiNx ALD

While SiNx deposition via ALD offers several benefits over LPCVD and PECVD approaches, many
challenges including the inherent slowness of film growth still exist and hinder the industrialization of
SiNx ALD. In this section, we will discuss several critical challenges with SiNx ALD.
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3.1. Thermal ALD

3.1.1. Limitation of the Deposition Temperature

From the perspectives of process integration, the high temperature of LPCVD process (usually
≥700 ◦C) can be avoided by using a thermal ALD process. As mentioned in Section 2, because of the
high-energy barriers of each half-cycle ALD reaction, the deposition temperatures of SiNx thermal
ALD typically exceed 450 ◦C. To obtain sufficient reactivity and desired film quality, thermal ALD SiNx

still requires a higher deposition temperature (500–600 ◦C). The processes within this temperature
regime may not be compatible with the advanced ULSI technology and the chlorosilane precursors
may be subjected to thermal decomposition [32]. Consequently, thermal ALD of high-quality SiNx

films can only be applied to the applications without a rigid restriction on high deposition temperature.
Therefore, it is necessary to employ the extra energy supplied from plasma or other pathways to reduce
the deposition temperature without sacrificing the SiNx film quality.

3.1.2. Excess Precursor Dosage and Dosing Time

Chipmakers have always been sparing no efforts to maximize the throughput (e.g., reduce
process time per wafer) and minimize the cost (e.g., reduce material consumption). In terms of the
ALD process, once the saturation growth is satisfied, minimizing the dosage and the dosing time
of precursor is desired. However, the previous reports (see Table 4) showed that a high dosage
of precursor (107–1010 L) was required for the saturated reaction in SiNx thermal ALD. The dosing
pressure of precursor is typically in the range of 0.1–10 Torr, which corresponds to approximately
101–103 s dosing time. This raises great challenges from the manufacturing point of view. Fortunately,
as also shown in Table 4, the use of plasma-enhanced ALD or hot filament (HF) ALD could greatly
reduce the precursor dosage by several orders of magnitude [16,29,44,49].

Table 4. Examples of the precursor dosage employed in SiNx ALD for the saturation growth.

ALD Precursor Reactant Dosing
Pressure (Torr) Dosage (L) Deposition

Temp. (◦C)
GPC

(Å/Cycle) References

Thermal SiCl4 NH3 10 ~1 × 1010 427–627 2.45 [19]
Thermal SiCl4 NH3 170 ~5 × 1010 375, 550 ~0.8 [24]
Thermal SiH2Cl2 NH3 – ~6 × 109 450 0.8 [31]
Thermal Si2Cl6 NH3 1 ~1 × 107 525–650 2.3 [17]
Thermal Si2Cl6 N2H4 1 ~2 × 108 515–557 2.4–2.8 [32]
Thermal SiH2Cl2 NH3

(HF) 0.06 ~5.4 × 106 375 ~1 [29]
Plasma SiH2Cl2 NH3 0.06 ~5.4 × 106 250–400 ~0.9 [16,44]
Plasma Si2Cl6 NH3 ~0.07 ~8 × 105 350–450 1.2 [49]
Plasma (SiH3)3N NH3 0.3 ~6 × 104 150–350 0.65 [2,63,64]

Note: Dosage unit “L” represents langmuir, 1 L corresponds to an exposure of 1 × 10−6 Torr during 1 s. “HF”:
hot filament

3.2. Plasma-Enhanced ALD

Degradation of the Conformality

Due to the superior step coverage of thermal ALD, it has become the method of choice for
depositing SiNx thin films conformally on high aspect ratio (AR) structures. However, as shown in
Figure 4, this unique feature which differentiates thermal ALD from the other methods becomes less
straightforward when plasma is involved [65]. The directionality and short mean free path of reactive
species in the plasma become detrimental for high AR and complexed features. For example, a typical
trench structure consists of the top-surface, the sidewall, and the trench bottom. The transformation
of reactive radicals in the nitrogen-containing plasma to non-reactive molecules (e.g., N2, H2) will
occur, through a “recombination process” proposed by Knoops et al. [130]. Consequently, different
reactivity and growth rates will occur selectively at different locations, resulting in the degraded step
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coverage and the variation of film properties (density, composition, wet etch rate, etc.) throughout
the structure. In addition, Knoops et al. found that the byproduct components in the gas phase could
be unintentionally “redeposited” back to the film surface [56,67]. Thus, the effects of directionality,
“recombination process,” and “redeposition” should be carefully reduced by optimizing the plasma
conditions [14].Materials 2016, 9, 1007 11 of 19 
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In addition, the selection of silicon precursor and nitrogen-containing plasma gas is crucial for
improving conformality [131–133]. For example, Tang et al. have reported that the conformality of an
N2-plasma-based process is inferior to that of an NH3-plasma-based process [131,132]. This can be
attributed to the fact that the lifetime of reactive radicals in an N2 plasma is shorter than that in an
NH3 plasma. Additionally, as explained previously in Section 2.3, the difference in surface termination
after plasma exposure (e.g., under-coordinated surface atoms after N2 plasma exposure vs. –NHx

and –H groups passivated surface after NH3 plasma exposure) can influence the adsorption of silicon
precursor molecules. This may account for the difference in conformality as well. Nevertheless, the use
of N2 plasma to grow SiNx films can suppress the hydrogen incorporation directly from the reactive
species in the plasma. A lower hydrogen content in the PEALD SiNx films is helpful in reducing
the wet etch rate [52,68,69]. It is also beneficial for the applications that prefer a hydrogen-free or
ammonia-free plasma process.

3.3. Other Common Challenges

3.3.1. Chlorine Impurities and Byproducts from the Chlorine-Containing Precursors

The concern with the high cost of SiNx ALD precursors may be solved by using chlorosilane-based
precursors. However, the chlorine impurities and process byproducts, ammonia chloride (NH4Cl),
raise new challenges [134]. The unwanted incorporation of chlorine may cause a device-reliability
issue. Further decreasing deposition temperature below the thermal decomposition temperature
(~330 ◦C) of NH4Cl will lead to incomplete removal of byproducts from the surface. Additionally,
the defects and undesired system downtime associated with NH4Cl will reduce productivity. More
importantly, some applications prefer a halide-free process [4,135–137].
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3.3.2. Substrate Sensitivity

The initial surface reactions of SiNx ALD is extremely critical and immensely sensitive to the
substrate that is used [13]. Various materials, including silicon, compound semiconductors, organics,
graphite, and two-dimensional (2D) materials (graphene, MoS2, black phosphorus, etc.), can be used as
the substrate for SiNx ALD [138–142]. This uncertainty in the reaction surface exacerbates the difficulty
in creating a universal SiNx ALD process to fulfill all requirements. For example, Yokoyama et al.
observed that there was a growth delay in ALD SiNx on the LPCVD Si3N4 surface while no delay was
observed on the hydrogen-terminated Si surface [29].

In the past few years, some novel devices based on 2D materials have been proposed for
beyond CMOS nanoelectronics [143–146]. To grow high-k gate dielectrics on 2D materials using
ALD, several surface functionalization techniques have been successfully adopted to activate the
chemically inert surface [147–149]. PECVD SiNx film has been successfully employed as a gate
dielectric layer for graphene field-effect transistors (GFET), a passivation layer of MoS2 field-effect
transistors [139,140,150]. ALD is expected to be a better approach to growing high-quality SiNx thin
films on 2D materials. However, the lack of surface reaction sites on 2D materials makes SiNx ALD
difficult. To our best knowledge, studies on this topic have not been reported yet. Therefore, SiNx

ALD on 2D materials is expected to encounter many technical issues (e.g., non-uniform film growth,
unintentional damage, and doping of 2D materials) in the early development stage [151].

4. Conclusions and Outlooks

Atomic layer deposition (ALD) is an ideal approach to growing SiNx thin films to fulfill the
requirements of ULSI technology downscaling to the sub-10 nm technology node. In the past
two decades, there has been remarkable progress in the development of the silicon nitride (SiNx)
ALD technique.

This review has presented a brief introduction to the motivation of SiNx ALD. Subsequently, SiNx

thin film growth using thermal ALD and plasma-enhanced ALD has been tabulated and described in
detail. By analyzing the correlation between precursors and growth per cycle (GPC), it is found that the
carbon-containing precursors show a lower GPC, which may relate to the size and complexity of the
molecule structure. In addition, various critical applications have been examined in depth. Specifically,
the importance of surface reactions of SiNx ALD has been discussed. The experimental and theoretical
findings will provide the readers with a guideline for the process design and optimization. Finally,
some of the challenges faced when working with SiNx ALD have been considered.

Regarding the important applications in semiconductor technology and relatively short
development history (~20 years), the prospects for SiNx ALD are very promising as manufacturing
approaches atomic-scale dimensions. The design, development and optimization of precursors, process
sequences, reactors and plasma sources require collaborative work between the scientific and industrial
communities. New findings will be reported to understand the underlying mechanism, and new
approaches will be proposed to address the challenges. Additionally, with the improvements of this
technique, the applications will be ultimately expanded into those unexploited areas such as biology
and the medical industry. It is evident that, shortly, great benefits will be gained from SiNx ALD.
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