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Abstract

Inference about the causal structure that induces correlations between two traits can be

achieved by combining genetic associations with a mediation-based approach, as is done in

the causal inference test (CIT). However, we show that measurement error in the pheno-

types can lead to the CIT inferring the wrong causal direction, and that increasing sample

sizes has the adverse effect of increasing confidence in the wrong answer. This problem is

likely to be general to other mediation-based approaches. Here we introduce an extension

to Mendelian randomisation, a method that uses genetic associations in an instrumentation

framework, that enables inference of the causal direction between traits, with some advan-

tages. First, it can be performed using only summary level data from genome-wide associa-

tion studies; second, it is less susceptible to bias in the presence of measurement error or

unmeasured confounding. We apply the method to infer the causal direction between DNA

methylation and gene expression levels. Our results demonstrate that, in general, DNA

methylation is more likely to be the causal factor, but this result is highly susceptible to bias

induced by systematic differences in measurement error between the platforms, and by hor-

izontal pleiotropy. We emphasise that, where possible, implementing MR and appropriate

sensitivity analyses alongside other approaches such as CIT is important to triangulate reli-

able conclusions about causality.

Author summary

Understanding the causal relationships between pairs of traits is crucial for unravelling

the causes of disease. To this end, results from genome-wide association studies are valu-

able because if a trait is known to be influenced by a genetic variant then this knowledge

can be used to test the trait’s causal influences on other traits and diseases. Here we discuss

scenarios where the nature of the genetic association with the causal trait can lead existing

causal inference methods to give the wrong direction of causality. We introduce a new

method that can be applied to summary level data and is potentially less susceptible to

problems such as measurement error, and apply it to evaluate the causal relationships

between DNA methylation levels and gene expression. While our results show that DNA
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methylation is more likely to be the causal factor, we point out that is it crucial to acknowl-

edge that systematic differences in measurement error between the platforms could influ-

ence such conclusions.

Introduction

Observational measures of the human phenome are growing ever more abundant, but using

these data to make causal inference is notoriously susceptible to many pitfalls, with basic

regression-based techniques unable to distinguish a true causal association from reverse causa-

tion or confounding [1–3]. In response to this, the use of genetic associations to instrument

traits has emerged as a technique for improving the reliability of causal inference in observa-

tional data, and with the coincident rise in genome-wide association studies it is now a promi-

nent tool that is applied in several different guises [3–6]. However, shifting from observational

associations to instrumentation does require more (often untestable) assumptions, and poten-

tial pitfalls remain. One that is often neglected is the influence of non-differential measure-

ment error on the reliability of causal inference.

Measurement error is the difference between the measured value of a quantity and its

true value. This study focuses specifically on non-differential measurement error where all

strata of a measured variable have the same error rate, which can manifest as changes in scale

or measurement imprecision (noise). Such variability can arise through a whole plethora of

mechanisms, which are often specific to the study design and difficult to avoid [7, 8]. Array

technology is now commonly used to obtain high throughput phenotyping at low cost, but

comes with the problem of having imperfect resolution, for instance methylation levels as mea-

sured by the Illumina450k chip are prone to have some amount of noise around the true value

due to imperfect sensitivity [9, 10]. Relatedly, if the measurement of biological interest is the

methylation level in a T cell, then measurement error of this value can be introduced by using

methylation levels from whole blood samples because the measured value will be an assay of

many cell types [11].

Measurement error will of course arise in other types of data too. For example when mea-

suring BMI one is typically interested in using this as a proxy for adiposity, but it is clear that

the correlation between BMI and underlying adiposity is not perfect [12], leading to the prob-

lem that phenotypes may be imprecisely defined. A similar problem of biological misspecifica-

tion is unavoidable in disease diagnosis, and measuring behaviour such as smoking or diet is

notoriously difficult to do accurately. Measurement error can also be introduced after the data

have been collected, for example the transformation of non-normal data for the purpose of sta-

tistical analysis will lead to a new variable that will typically incur both changes in scale and

imprecision (noise) compared to the original variable. The sources of measurement error are

not limited to this list [8], and its impact has been explored in the epidemiological literature

extensively [13, 14]. Given the near-ubiquitous presence of measurement error in phenomic

data it is vital to understand its impact on the tools we use for causal inference.

An established study design that can provide information about causality is randomisation.

Given the hypothesis that trait A (henceforth referred to as the exposure) is causally related

to trait B (henceforth referred to as the outcome), randomisation can be employed to assess

the causal nature of the association by randomly splitting the sample into two groups, subject-

ing one group to the exposure and treating the other as a control. The association between

the exposure and the outcome in this setting provides a robust estimate of the causal relation-

ship. This provides the theoretical basis behind randomised control trials, but in practice
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randomisation is often difficult or impossible to implement in an experimental context due to

cost, scale or inability to manipulate the exposure. The principle, however, can be employed

in extant observational data through the use of genetic variants associated with the exposure

(instruments), where the inheritance of an allele serves as a random lifetime allocation of dif-

ferential exposure levels [15, 16]. Two statistical approaches to exploiting the properties of

genetic instruments are widely used: mediation-based approaches and Mendelian randomisa-

tion (MR).

Mediation-based approaches employ genetic instruments (typically single nucleotide

polymorphisms, SNPs) to orient the causal direction between the exposure and the outcome.

If a SNP is associated with an exposure, and the exposure is associated with some outcome,

then it logically follows that in this simple three-variable scenario the estimated direct influ-

ence of the SNP on the outcome will be zero when conditioning on the exposure. Here, the

exposure completely mediates the association between the SNP and the outcome, providing

information about the causal influence of the exposure on the outcome. This forms the basis

of a number of methods such as genetical genomics [17], the regression-based causal infer-

ence test (CIT) [4, 18], a structural equation modelling (SEM) implementation in the NEO

software [5], and various other methods including Bayesian approaches [6]. They have

been employed by a number of recent publications that make causal inferences in large scale

‘omics datasets [6, 19–23].

MR can be applied to the same data—phenotypic measures of the exposure and the out-

come variables and a genetic instrument for the exposure—but the genetic instrument is

employed in a subtly different manner. Here the SNP is used as a surrogate for the exposure.

Assuming the SNP associates with the outcome only through the exposure, the causal effect of

the exposure on the outcome can be estimated by scaling the association between the SNP and

the outcome by the association between the SNP and the exposure. Though difficult to test

empirically, this assumption can be relaxed in various ways when multiple instruments are

available for a putative exposure [24, 25] and a number of sensitivity tests are now available to

improve reliability [26]. Additionally, if valid genetic instruments are known for both traits of

interest then MR can be performed in both directions (bi-directional MR), testing the influ-

ence of one trait on the other and vice versa, to infer the causal direction between the two phe-

notypes [27, 28].

By utilising genetic instruments in different ways, mediation-based analysis and MR models

have properties that confer some advantages and some disadvantages for reliable causal infer-

ence. In the CIT framework (described fully in the Methods) for example, the test statistic is

different if you test for the exposure causing the outcome or the outcome causing the exposure,

allowing the researcher to infer the direction of causality between two variables by performing

the test in both directions and choosing the model with the strongest evidence. The CIT also

has the valuable property of being able to distinguish between several putative causal graphs

that link the traits with the SNP (Fig 1). Such is not the case for MR, where in order to infer the

direction of causality between two traits the instrument must have its most proximal link with

the exposure, associating with the outcome only through the exposure.

Assuming biological knowledge of genetic associations can be problematic because if there

exists a putative association between two variables, with the SNP being robustly associated

with each, it can be difficult to determine which of the two variables is subject to the primary

effect of the SNP (i.e. for which of the two variables is the SNP a valid instrument? Fig 1). By

definition, we expect that if the association is causal then a SNP for the exposure will be associ-

ated with the outcome, such that if the researcher erroneously uses the SNP as an instrument

for the outcome then they are likely to see an apparently robust causal association of outcome

on exposure. Genome-wide association studies (GWASs) that identify genetic associations for
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complex traits are, by design, hypothesis free and agnostic of genomic function, and it often

takes years of follow up studies to understand the biological nature of a putative GWAS hit

[29]. If multiple instruments are available for an hypothesised exposure, which is increasingly

typical for complex traits that are analysed in large GWAS consortia, then techniques can be

applied to mitigate these issues [16]. But these techniques cannot always be applied in the case

of determining causal directions between ’omic measures where typically only one cis-acting

SNP is known. For example if a DNA methylation probe is associated with expression of an

adjacent gene, then is a cis-acting SNP an instrument for the DNA methylation level, or the

gene expression level (Fig 1)?

Fig 1. Gene expression levels (blue blocks) and DNA methylation levels (green triangles) may be correlated but the causal structure is

unknown. If a SNP (yellow circle) is associated with both DNA methylation and gene expression levels then it can be used as an instrument, but there

are three basic competing models for these variables. The causal inference test (CIT) attempts to distinguish between them. a) Gene expression

causes methylation. The left figure shows that the SNP influences gene expression levels that in turn influence methylation levels. The right figure

shows the directed acyclic graph that represents this model. Faded symbols represent the measured values whereas solid symbols represent the true

values. b) The same as in A, except the causal direction is from DNA methylation to Gene expression. c) A model of confounding, where gene

expression and DNA methylation are not causally related, but the SNP influences them each through separate pathways or a confounder.

https://doi.org/10.1371/journal.pgen.1007081.g001
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MR has some important advantages over the mediation-based approaches. First, the media-

tion-based approaches require that the exposure, outcome and instrumental variables are all

measured in the same data, whereas recent extensions to MR circumvent this requirement,

allowing causal inference to be drawn when exposure variables and outcome variables are

measured in different samples [30]. This has the crucial advantage of improving statistical

power by allowing analysis in much larger sample sizes, and dramatically expands the breadth

of possible phenotypic relationships that can be evaluated [26]. Second, the mediation-based

approach of adjusting the outcome for the exposure to nullify the association between the SNP

and the outcome is affected by unmeasured confounding of the exposure and outcome. This is

because adjusting the outcome by the exposure induces a collider effect between the SNP and

outcome [31], and in order to fully abrogate this association one must also adjust for all (hid-

den or otherwise) confounders. MR does not suffer from this problem because it does not test

for association through adjustment. Third, when MR assumptions are satisfied the method is

robust to there being measurement error in the exposure variable [32]. Indeed instrumental

variable (IV) analysis was in part initially introduced as a correction for measurement error in

the exposure [33], whereas it has been noted that both classic mediation-based analyses [13,

14, 34, 35] and mediation-based methods that use instrumental variables [36, 37] are prone to

be unreliable in its presence.

Using theory and simulations we show how non-differential measurement error in phe-

notypes can lead to unreliable causal inference in the mediation-based CIT method. Though

we only examine the CIT method in detail, we believe that attempting to adjust for mediat-

ing variables to make causal inference is susceptible to problems, which can be generalised

to other mediation-based methods. We then present an extension to MR that allows

researchers to ascertain the causal direction of an association even when the biology of the

instruments are not fully understood, and also a metric to evaluate the sensitivity of the

result of this extension to measurement error. Finally, to demonstrate the potential impact

of measurement error we apply this method to infer the direction of causation between

DNA methylation levels and gene expression levels. Our analyses highlight that because

these different causal inference techniques have varying strengths and weaknesses, triangu-

lation of evidence from as many sources as possible should be practiced in causal inference

[38].

Model

We model a system whereby some exposure x has a causal influence βx on an outcome y such

that

y ¼ ax þ bxx þ �x

In addition, the exposure is influenced by a SNP g with an effect of βg such that

x ¼ ag þ bgg þ �g

The α� terms represent intercepts, and henceforth can be ignored. The �� terms denote ran-

dom error, assumed independently and normally distributed with mean zero. Mediation-

based analyses that test whether x causally relates to y rely on evaluating whether the influence

of g on y can be accounted for by conditioning on x, such that

covðg; y � ŷÞ ¼ 0

where ŷ ¼ b̂xx and assuming no intercept y � ŷ ¼ �x. MR analysis estimates the causal
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influence of x on y by using the instrument as a proxy for x, such that

x̂ ¼ b̂gg

y ¼ bMRx̂ þ �MR

where βMR 6¼ 0 denotes the existence of causality, and βMR is an estimate of the causal effect.

Measurement error of an exposure can be modeled as a transformation of the true value (x)

that leads to the observed value, xo = f(x). For example, following Pierce and VanderWeele

[32] we can define

f ðxÞ ¼ amx þ bmxx þ �mx

where αmx and βmx influence the error in the measurement of x by altering its scale, and �mx

represents the imprecision (or noise) in the measurement of x. Measurement imprecision can

represent imprecise measurement due to limits on sensitivity of measuring equipment, or

arise because of phenotypes being imprecisely defined. The same model of measurement error

can be applied to the outcome variable y.
In this study we assume there is no measurement error in the SNP. Common genetic

variants are typically less susceptible to measurement error due to strict quality control proce-

dures prior to genome wide association studies. Any non-differential measurement error that

might be present (either because the SNP is poorly typed or because the SNP is not in complete

linkage disequilibrium with the causal variant) will reduce power in MR but will not incur

bias [3, 13, 32]. We also assume that measurement error in the exposure and the outcome are

uncorrelated.

Results

Mediation-based causal inference under measurement error

In the causal inference test (CIT), the 4th condition (see Methods) employs mediation for

causal inference, and can be expressed as covðg; y � ŷÞ ¼ 0, where ŷ ¼ âx þ b̂xxo. When mea-

surement error in scale and imprecision is introduced, such that yo is the measured value of y,
it can be shown using basic covariance properties (S1 Text) that

covðg; y � ŷÞ ¼ covðg; yoÞ � covðg; ŷoÞ

¼ bmybgbxvarðgÞ � DbmybgbxvarðgÞ

where

D ¼
b

2

mxvarðxÞ
b

2

mxvarðxÞ þ varð�mxÞ

Thus an observational study will find covðg; yo � ŷoÞ ¼ 0 when the true model is causal

only when D = 1. Therefore, if there is any measurement error that incurs imprecision in x (i.e.

var(�mx) 6¼ 0) then there will remain an association between g and yo|xo, which is in violation

of the the 4th condition of the CIT. Note that scale transformation of x or y without any

incurred imprecision is insufficient to lead to a violation of the test statistic assumptions, and

henceforth mention of measurement error will relate to imprecision unless otherwise stated.

We performed simulations to verify that this problem does arise using the CIT method.

Fig 2 shows that when there is no measurement error in the exposure or outcome variables

(ρx,xo = ρy,yo = 1) the CIT is reliable in identifying the correct causal direction. However, as mea-

surement error increases in the exposure variable, eventually the CIT is more likely to infer a
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Fig 2. The CIT was performed on simulated variables where the exposure influenced the outcome and the exposure was instrumented by a

SNP. The test statistic from CIT when testing if the exposure caused the outcome (the true model) is in red, and the test for the outcome causing the

exposure (false model) is in green. Rows of plots represent the sample sizes used for the simulations. As measurement imprecision increases

(decreasing values on x-axis) the test statistic for the incorrect model gets stronger and the test statistic for the correct model gets weaker.

https://doi.org/10.1371/journal.pgen.1007081.g002
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robust causal association in the wrong direction. Also of concern here is that increasing sample

size does not solve the issue, indeed it only strengthens the apparent evidence for the incorrect

inference.

Using MR Steiger to infer the direction of causality

If we do not know whether the SNP g has a primary influence on x or y then CIT can attempt

to infer the causal direction. Though bi-directional MR can be used to orient causal directions

[27], this requires knowledge of a valid instrument for each trait, and we were motivated to

develop the MR Steiger method that could operate on summary data to orient the direction of

causality using the same conditions as the CIT, where the underlying biology of a single SNP is

not fully understood. We go on to explore the scenarios in which the method is likely to return

the correct or incorrect causal directions.

We performed simulations to compare the power and type 1 error rates of MR and CIT

in detecting a causal association between simulated variables under different levels of impreci-

sion simulated in the exposure. Comparing the performance of methods with different sets of

assumptions can be difficult, but a basic comparison is shown in Fig 3. We observe that the

CIT is more conservative under the null model of no association owing to the omnibus test sta-

tistic comprising several statistical tests. The FDR using a p-value threshold of 0.05 appears to

be close to zero, whereas for the MR Steiger method the FDR is around 0.05. Using the same

p-value thresholds to declare significance in the non-null simulations, the general trend

appears to be that the CIT power reduces as measurement error in the exposure increases

more steeply than that of the MR Steiger method.

For a particular association, it is of interest to identify the range of possible measurement

error values for which the method will give results that agree or disagree with the empirically

inferred causal direction (Fig 4a, S2 Text). This metric can be used to evaluate the reliability of

MR Steiger test.

We show that in the presence of measurement imprecision, d = ρx,xo − ρx,yρy,yo (S2 Text)

determines the range of parameters around which the MR Steiger test is liable to provide the

wrong direction of causality (i.e. if d> 0 then the MR Steiger test is likely to be correct about

the causal direction). Fig 4b shows that when there is no measurement error in x, the MR Stei-

ger test is unlikely to infer the wrong direction of causality even if there is measurement error

in y. It also shows that in most cases where x is measured with error, especially when the causal

effect between x and y is not very large, the sensitivity of the MR Steiger test to measurement

error is relatively low.

Unmeasured confounding between the exposure and outcome can also give rise to problems

with the MR Steiger approach (S3 Text). The relationship between unmeasured confounding

and causal orientation is complex across the parameter space of possible confounding values

(S2 Fig). Based on the range of parameter values that we explored, when the magnitude of

the observational variance explained between the exposure and the outcome is below 0.2 the

MR Steiger method is unlikely to return the incorrect causal direction due to unmeasured

confounding.

Comparison of CIT and MR Steiger for obtaining the correct direction of

causality

We used simulations to explore the performance of the MR Steiger approach in comparison to

CIT for different levels of measurement error. The performance was compared in terms of the

rate at which evidence of a causal relationship is obtained for the correct direction of causality,

and the rate at which evidence of a causal relationship is obtained where the reported direction

Orienting the causal relationship between imprecisely measured traits using GWAS summary data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007081 November 17, 2017 8 / 22

https://doi.org/10.1371/journal.pgen.1007081


of causality is incorrect. Simulations were performed for two models, one for a “causal model”

where there was a causal relationship between x and y; and one for a “non-causal model”

where x and y were not causally related, but had a confounded association induced by the SNP

g influencing x and y independently.

Fig 3. Outcomes were simulated to be unrelated to the exposure (bottom plot, showing false positive rates on the y-axis) or causally

influenced by the exposure (top plot, showing true positive rates on the y-axis) with varying degrees of measurement imprecision applied

to the exposure variable (x axis). Results for MR and CIT were compared for varying sample sizes (columns of boxes).

https://doi.org/10.1371/journal.pgen.1007081.g003
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Fig 5a shows that, for the “causal model”, the MR analysis is indeed liable to infer the wrong

direction of causality when d< 0, and that this erroneous result is more likely to occur with

increasing sample size. However, the CIT is in general more fallible to reporting a robust

causal association for the wrong direction of causality. When d> 0 we find that in most cases

the MR Steiger method has greater power to obtain evidence for causality than CIT, and

always obtains the correct direction of causality. The CIT, unlike the MR Steiger test, is able to

distinguish the “non-causal model” from the “causal model” (Methods, Fig 5b), but it is evi-

dent that measurement error will often lead the CIT to identify the causal model as true, when

in fact the underlying model is this non-causal model.

The causal relationship between gene expression and DNA methylation

levels

We used the MR Steiger test to infer the direction of causality between DNA methylation and

gene expression levels between 458 putative associations. We found that the causal direction

commonly goes in both directions (Fig 6a), but assuming no or equal measurement error,

DNA methylation levels were the predominant causal factor (p = 1.3 × 10−5). The median reli-

ability (R) of the 458 tests was 3.92 (5%-95% quantiles 1.08–37.11). We then went on to predict

the causal directions of the associations for varying levels of systematic measurement error

for the different platforms. Fig 6a shows that the conclusions about the direction of causality

between DNA methylation and gene expression are very sensitive to measurement error. We

Fig 4. a) We can predict the values the MR Steiger test would take (z-axis) for different potential values of measurement error (x and y axes), drawn

here as the blue surface. When ρg,y > ρg,x, as denoted by the range of values where the blue surface is above the black plane, those values of

measurement error lead to our observed MR Steiger test inferring the wrong causal direction. Where the blue surface lies below the black plane, these

measurement error values support the inferred causal direction of X to Y. A measure of reliability, therefore, is the ratio of the negative and positive

volumes of the total space bound by the blue and black surfaces,R ¼
Vz�0
� Vz<0

. In this case, where r2
g;x ¼ 0:01 and r2

x;y ¼ 0:1, the R = 4.40, which means

that 4.40 times as much of the possible measurement error values are in support of the x! y direction of causality than y! x. b) Plots depicting the

parameter space in which the function d = cor(x, xO) − cor(x, y)cor(y, yO) is negative. When d is negative the MR Steiger test is liable to infer the wrong

direction of causality. Shaded regions show the parameter space where d is negative. The graph shows that for the majority of the parameter space of

the function, d is positive, especially where causal relationships are relatively weak.

https://doi.org/10.1371/journal.pgen.1007081.g004
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Fig 5. a) Outcome y was simulated to be caused by exposure x as shown in the graph, with varying degrees of measurement error applied to both. CIT

and MR were used to infer evidence for causality between the exposure and outcome, and to infer the direction of causality. The columns of graphs

denote intervals for he value of d = ρx,xo
− ρx,yρy,yo

, such that when d is negative we expect the MR Steiger test to be more likely to be wrong about the

direction of causality. Rows of graphs represent the sample size used in the simulations. For the CIT method, outcome 1 denoted evidence for

causality with correct model, outcomes 2 or 3 denoted evidence for causality with incorrect model, and outcome 4 denoted no evidence for causality. b)

As in (a) except the simulated model was non-causal, and a genetic confounder induces an association between x and y. Neither CIT nor MR are able

to identify this model, so any significant associations in MR are deemed to be incorrect, while outcomes 1 or 2 for the CIT are deemed to be incorrect.

https://doi.org/10.1371/journal.pgen.1007081.g005
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made a strong assumption that either methylation influenced gene expression or vice versa,

but it is certainly possible that the SNP is solely or additionally influencing some other trait

that confounds the association between gene expression and DNA methylation.

We performed two sample MR [30] for each association in the direction of causality

inferred by the Stieger test. We observed that the sign of the MR estimate was generally in the

same direction as the Pearson correlation coefficient reported by Shakhbazov et al [39] (Fig

6b). There was a moderate correlation between the absolute magnitudes of the causal correla-

tion and the observational Pearson correlation (r = 0.45). Together these inferences suggest

that even in estimating associations between ‘omic’ variables, which are considered to be low

level phenotypes, it is important to use causal inference methods over observational associa-

tions to infer causal effect sizes.

We also observed that for associations where methylation caused gene expression the causal

effect was more likely to be negative than for the associations where gene expression caused

methylation (OR = 0.61 (95% CI 0.36–1.03), Fig 6c), suggesting that reducing methylation lev-

els at a controlling CpG typically leads to increased gene expression levels, consistent with

expectation [40].

Fig 6. Using 458 putative associations between DNA methylation and gene expression we used the MR Steiger test to infer

the direction of causality between them. a) The rightmost bar shows the proportion of associations for each of the two possible

causal directions (colour key) assuming no measurement error in either gene expression or DNA methylation levels. The proportions

change when we assume different levels of measurement error in gene expression levels (x-axis) or DNA methylation levels

(columns of boxes). If there is systematically higher measurement error in one platform than the other it will appear to be less likely to

be the causal factor. b) The relationship between the Pearson correlation between DNA methylation and gene expression levels (x-

axis) and the causal estimate (scaled to be in standard deviation units, y-axis). c) Distribution of estimated causal effect sizes,

stratified into associations inferred to be due to DNA methylation causing expression (blue) and expression causing DNA methylation

(red).

https://doi.org/10.1371/journal.pgen.1007081.g006
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Discussion

Researchers are often confronted with the problem of making causal inferences using a statisti-

cal framework on observational data. In the epidemiological literature issues of measurement

error in mediation analysis are relatively well explored [41]. Our analysis extends this to related

methods such as CIT that are used in predominantly ’omic data. These methods are indeed

susceptible to the same problem as standard mediation based analysis, and specifically we

show that as measurement error in the (true) exposure variable increases, CIT is likely to have

reduced statistical power, and liable to infer the wrong direction of causality. We also demon-

strate that, though unintuitive, increasing sample size does not resolve the issue, rather it leads

to more extreme p-values for the model that predicts the wrong direction of causality.

Under many circumstances a practical solution to this problem is to use Mendelian rando-

misation instead of methods such as the CIT or similar that are based on mediation. Inferring

the existence of causality using Mendelian randomisation is robust in the face of measurement

error and, if the researcher has knowledge about the biology of the instrument being used in

the analysis, can offer a direct solution to the issues that the CIT faces. This assumption is

often reasonable, for example SNPs are commonly used as instruments when they are found

in genes with known biological relevance for the trait of interest. But on many occasions, espe-

cially in the realm of ’omic data, this is not the case, and methods based on mediation have

been valuable in order to be able to both ascertain if there is a causal association and to infer

the direction of causality. Here we have described a simple extension to MR which can be

used as an alternative to or in conjunction with mediation based methods. We show that this

method is still liable to measurement error, but because it has different properties to the CIT it

offers several main advantages. First, it uses a formal statistical framework to test for the reli-

ability of the assumed direction of causality. Second, after testing in a comprehensive range of

scenarios the MR based approach is less likely to infer the wrong direction of causality com-

pared to CIT, while substantially improving power over CIT in the cases where d> 0.

We demonstrate this new method by evaluating the causal relationships of 458 known asso-

ciations between DNA methylation and gene expression levels using summary level data. The

inferred causal direction is heavily influenced by how much measurement error is present in

the different assaying platforms. For example, if DNA methylation measures typically have

lower or equal measurement error compared to gene expression measures then our analysis

suggests that DNA methylation levels would be more often the causal factor in the association.

Indeed, previous studies which have evaluated measurement error in these platforms do sup-

port this position [42, 43], though making strong conclusions for this analysis is difficult

because measurement error is likely to be study specific. We also haven’t accounted for the

influence of winner’s curse, which can inflate estimates of the variance explained by SNPs,

with higher inflation expected amongst lower powered studies. Using p-values for genetic

associations from replication studies will mitigate this problem.

In our simulations we focused on the simple case of a single instrument in a single sample

setting with a view to making a fair comparison between MR and the various mediation-

based methods available. However, if there is only a single instrument it is difficult to separate

between the two competing models of g instrumenting a trait which causes another trait, and g
having pleiotropic effects on both traits independently [44]. Under certain conditions of mea-

surement error the CIT test can distinguish these models. We also note that it is straightfor-

ward to extend the MR Steiger approach to multiple instruments, requiring only that the total

variance explained by all instruments be calculated under the assumption that they are inde-

pendent. Multiple instruments can indeed help to distinguish between the causal and pleiotro-

pic models, for example by evaluating the proportionality of the SNP-exposure and SNP-
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outcome effects [16]. Additionally, if there is at least one instrument for each trait then bi-

directional MR can offer solutions to inferring the causal direction [16, 28, 45]. We restricted

the simulations to evaluating the causal inference between quantitative traits, but it is possible

that the analysis could be extended to binary traits by using the genetic variance explained on

the liability scale, taking into account the population prevalence [46]. However, our analysis

goes beyond many previous explorations of measurement error by assessing the impacts of

both imprecision (noise) and linear transformations of the true variable on causal inference.

Our new method attempts to infer causal directions under the assumption that horizontal

pleiotropy (the influence of the instrument on the outcome through a mechanism other than

the exposure) is not present. Recent method developments in MR [24, 25] have focused on

accounting for the issues that horizontal pleiotropy can introduce when multiple instruments

are available, but how they perform in the presence of measurement error remains to be

explored. An important advantage that MR confers over most mediation based analysis is that

it can be performed in two samples, which can considerably improve power and expand the

scope of analysis. However, whether there is a substantive difference in two sample MR versus

one sample MR in how measurement error has an effect is not yet fully understood. We have

also assumed no measurement error in the genetic instrument, which is not unreasonable

given the strict QC protocols that ensure high quality genotype data is available to most stud-

ies. We have restricted the scope to only exploring non-differential measurement error and

avoided the complications incurred if measurement error in the exposure and outcome is

correlated. We have also not addressed other issues pertaining to instrumental variables which

are relevant to the question of instrument-exposure specification. One such problem is expo-

sure misspecification, for example an instrument could associate with several closely related

putative outcomes, with only one of them actually having a causal effect on the outcome. This

problem has shown to be the case for SNPs influencing different lipid fractions, for example

[47, 48].

Mediation based network approaches, that go beyond analyses of two variables, are very

well established [37] and have a number of extensions that make them valuable tools, including

for example network construction. But because they are predicated on the basic underlying

principles of mediation they are liable to suffer from the same issues of measurement error.

Recent advances in MR methodology, for example applying MR to genetical genomics [49],

multivariate MR [48] and mediation through MR [50–52] may offer more robust alternatives

for these more complicated problems.

The overarching result from our simulations is that, regardless of the method used, infer-

ring the causal direction using an instrument of unknown biology is highly sensitive to

measurement error. With the presence of measurement error near ubiquitous in most obser-

vational data, and our ability to measure it limited, we argue that it needs to be central to any

consideration of approaches which are used in attempt to strengthen causal inference, and any

putative results should be accompanied with appropriate sensitivity analysis that assesses their

robustness under varying levels of measurement error.

Methods

CIT test

Here we describe how the CIT method [4] is implemented in the R package R/cit [18].

Assume an exposure x is instrumented by a SNP g, and the exposure x causes an outcome y, as

described above. The following tests are then performed:

1. H0: cov(g, y) = 0;H1: cov(g, y) 6¼ 0; the SNP associates with the outcome
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2. H0: cov(g, x|y) = 0; H1: cov(g, x|y) 6¼ 0; the SNP associates with the exposure conditional on
the outcome

3. H0: cov(x, y|g) = 0; H1: cov(x, y|g) 6¼ 0; the exposure associates with the outcome conditional
on the SNP

4. H0: cov(g, y|x) 6¼ 0; H1: cov(g, y|x) = 0; the SNP is independent of the outcome conditional on
the exposure

The term in the 4th test can be rewritten as covðg; yjxÞ ¼ covðg; y � ŷÞ where

y � ŷ ¼ y � ðâg þ b̂gxÞ is the residual of y after adjusting for x, and x is assumed to mediate

the association between the SNP and the outcome. The condition in the 4th test is formulated

as an equivalence testing problem that is estimated using simulations, comparing the estimate

from the data against empirically obtained estimates for simulated variables where the inde-

pendence model is true (full details are given in [4]). We note here that this approach is liable

to fail, even when there is a true causal relationship, when confounders of the exposure and

outcome are present, as these will induce collider bias.

If all four tests reject the null hypothesis then it is inferred that x causes y. The CIT measures

the strength of causality by generating an omnibus p-value, pCIT, which is simply the largest

(least extreme) p-value of the four tests, the intuition being that causal inference is only as

strong as the weakest link in the chain of tests.

Now we describe how we used the CIT method in our simulations. The cit.cp function was

used to obtain an omnibus p-value. To infer the direction of causality using the CIT method,

an omnibus p-value generated by CIT for each of two tests—pCIT,x!y, was estimated for the

direction of x causing y (Model 1), and for the direction of y causing x, pCIT,y!x (Model 2). The

results from each of these methods can then be used in combination to infer the existance and

direction of causality. For some significance threshold α there are four possible outcomes from

these two tests, and their interpretations are as follows:

• If pCIT,x!y< α and pCIT,y!x> α then model 1 is accepted

• If pCIT,x!y> α and pCIT,y!x< α then model 2 is accepted

• If pCIT,x!y> α and pCIT,y!x> α then no evidence for a causal relationship

• If pCIT,x!y< α and pCIT,y!x< α then there is potentially confounding (S1 Fig) and no call is

made.

For the purposes of compiling simulation results we use an arbitrary α = 0.05 value, though

we stress that for real analyses it is not good practice to rely on p-values for making causal

inference, nor is it reliable to depend on arbitrary significance thresholds [53].

MR causal test

Two stage least squares (2SLS) is a commonly used technique for performing MR when the

exposure, outcome and instrument data are all available in the same sample. A p-value for this

test, pMR, was obtained using the systemfit function in the R package R/systemfit [54]. Note that

the value of pMR is identical when using the same genetic variant to instrument the influence of

the exposure x on the outcome y, or erroneously, instrumenting the outcome y on the expo-

sure x.

The method that we will now describe is designed to distinguish between two models,

x! y or y! x. Unlike the CIT framework, this approach cannot infer if the true model is

x g! y. We also assume all genetic effects are additive.
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To infer the direction of causality it is desirable to know which of the variables, x or y, is

being directly influenced by the instrument g. This can be achieved by assessing which of the

two variables has the biggest absolute correlation with g (S2 Text), formalised by testing for

a difference in the correlations ρgx and ρgy using Steiger’s Z-test for correlated correlations

within a population [55]. It is calculated as

Z ¼ ðZgx � ZgyÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � rxyÞh

q

where Fisher’s z-transformation is used to obtain Zg� ¼ 1

2
ln 1þrg�

1� rg�

� �
,

h ¼
1 � ðfrm2Þ

1 � rm2

where

f ¼
1 � rxy

2ð1 � rm2Þ

and

rm2 ¼
1

2
ðr2

gx þ r2

gyÞ:

The Z value is interpreted such that

Z

> 0; x! y

< 0; y! x

¼ 0; x ?? y

8
><

>:

and a p-value, pSteiger is generated from the Z value to indicate the probability of obtaining a

difference between correlations ρgx and ρgy at least as large as the one observed, under the null

hypothesis that both correlations are identical.

The existence of causality and its direction is inferred based on combining information

from the MR analysis and the Steiger test. The MR analysis indicates whether there is a poten-

tial causal relationship (pMR), and the Steiger test indicates the direction (sign(Z)) of the causal

relationship and the confidence of the direction (pSteiger). For the purposes of compiling simu-

lation results, these can be combined using an arbitrary α = 0.05 value:

• If pSteiger< α and pMR< α and Z> 0 then a causal association for the correct model is

accepted, x! y

• If pSteiger< α and pMR< α and Z< 0 then a causal association for the incorrect model is

accepted, y! x

• Otherwise if pSteiger> α or pMR> α, neither model is accepted

Note that the same correlation test approach can be applied to a two-sample MR setting.

Two-sample MR refers to the case where the SNP-exposure association and SNP-outcome

association are calculated in different samples (e.g. from publicly available summary statistics
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[26, 30]). Here the Steiger test of two independent correlations can be applied where.

Z ¼
Zgx � Zgy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN1 � 3Þ þ 1=ðN2 � 3Þ

p

An advantage of using the Steiger test in the two sample context is that it can compare cor-

relations in independent samples where sample sizes are different. Steiger test statistics were

calculated using the r.test function in the R package R/psych [56].

The Steiger test assumes that there is a causal relationship between the two variables, and

that the SNP is a valid instrument for one of them. However it is liable to give incorrect causal

directions under some other circumstances. First, some levels of horizontal pleiotropy, where

the SNP influences the outcome through some pathway other than the exposure, could induce

problems because this is a means by which the instrument is invalid. Second, some differential

values of measurement error between the exposure and the outcome could lead to incorrect

inference of the causal direction (S2 Text). Third, some levels of unmeasured confounding

between the exposure and the outcome could lead to inference of the wrong causal direction

(S3 Text).

Causal direction sensitivity analysis for measurement error

The Steiger test for inferring if x! y is based on evaluating ρgx> ρgy. However, ρgx (or ρgy) are

underestimated if x (or y) are measured imprecisely. If, for example, x has lower measurement

precision than y then we might empirically obtain ρg,xo< ρg,yo because ρg,xo could be underesti-

mated more than ρg,yo.
As we show in S2 Text it is possible to infer the bounds of measurement error on xo or yo

given known genetic associations. The maximum measurement imprecision of xo is ρg,xo,
because it is known that at least that much of the variance has been explained in xo by g. The

minimum is 0, denoting perfectly measured trait values (the same logic applies to yo). It is pos-

sible to simulate what the inferred causal direction would be for all values within these bounds.

To evaluate how reliable, R, the inference of the causal direction is to potential measure-

ment error in x and ywe need to predict the values of ρgy − ρgx for those values of measurement

error. We offer two tools in which to do this. First, the user can provide values of measurement

error for x and y and obtain a revised inference of the causal direction. Second, we integrate

over the entire range of ρgy − ρgx values for possible measurement error values, assuming

that any measurement error value is equally likely. Across all possible values of measurement

error in x and y we find the volume that agrees with the inferred direction of causality and the

volume that disagrees with the inferred direction of causality, and take the ratio of these two

values. A ratio R = 1 indicates that the inferred causal direction is highly sensitive to measure-

ment error, because equal weight of the measurement error parameter space supports each

direction of causality. In general, the R value denotes that the inferred direction of causality is

R times more likely to be the empirical result than the opposite direction (S2 Text).

Simulations

Simulations were conducted by creating variables of sample size n for the exposure x, the mea-

sured values of the exposure xo, the outcome y, the measured values of the outcome yo and the

instrument g. One of two models are simulated, the “causal model” where x causes y and g is

an instrument for x; or the “non-causal model” where g influences a confounder u which in

turn causes both x and y. Here x and y are correlated but not causally related. Each variable in
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the causal model was simulated such that:

g � Binomð2; 0:5Þ

x ¼ ag þ bgg þ �g
xo ¼ amx þ bmxx þ �mx
y ¼ ax þ bxx þ �x
yo ¼ amy þ bmyy þ �my

where non-differential measurement error is represented by a noise (measurement impreci-

sion) term �m� � Nð0; s2
m�Þ, and measurement bias terms αm� and βm� for the exposure vari-

able x and the outcome variable y. Note that following the first section of the Results we no

longer include the bias terms for simplicity. We have formulated the non-causal model as:

y ¼ agy þ bgyg þ �gy

All α values were set to 0, and β values set to 1. Normally distributed values of �� were gener-

ated such that

corðg; xÞ2 ¼ 0:1

corðx; yÞ2 ¼ f0:2; 0:4; 0:6; 0:8g

s2
mx ¼ f0; 0:2; 0:4; 0:6; 0:8; 1g

s2
my ¼ f0; 0:2; 0:4; 0:6; 0:8; 1g

n ¼ f100; 1000; 10000g

giving a total of 432 combinations of parameters. Simulations using each of these sets of vari-

ables were performed 100 times, and the CIT and MR methods were applied to each in order

to evaluate the causal association of the simulated variables. Similar patterns of results were

obtained for different values of cor(g, x).

Applied example using two sample MR

Two sample MR [30] was performed using summary statistics for genetic influences on gene

expression and DNA methylation. To do this we obtained a list of 458 gene expression—DNA

methylation associations as reported in Shakhbazov et al [39]. These were filtered to be located

on the same chromosome, have robust correlations after correcting for multiple testing, and to

share a SNP that had a robust cis-acting effect on both the DNA methylation probe and the

gene expression probe. Because only summary statistics were available (effect, standard error,

effect allele, sample size, p-values) for the instrumental SNP on the methylation and gene

expression levels, the Steiger test of two independent correlations was used to infer the direc-

tion of causality for each of the associations. The Wald ratio test was then used to estimate the

causal effect size for the estimated direction for each association.

All analysis was performed using the R programming language [57] and code is made

available at https://github.com/explodecomputer/causal-directions and implemented in the

MR-Base (http://wwww.mrbase.org) platform [26].

Supporting information

S1 Text. The influence of measurement error in the exposure on mediation-based estimated.

(PDF)
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S2 Text. Sensitivity analysis for measurement error on the MR Steiger test.

(PDF)

S3 Text. The influence of unmeasured confounding on the inference of causal directions.

(PDF)

S1 Fig. Influence of confounding on CIT. Illustrative simulations (n = 5000) showing the

results from CIT analysis under a model of confounding. Here, the phenotypes x and y are not

causally related, but there is a genetic effect and a confounder both influencing each pheno-

type. Each point represents a single simulation. Where power is high (when the absolute values

of the x and y axes are large) the CIT returns a significant result (p< 0.01) when testing the

causal effect of x on y, and when testing the causal effect of y on x.

(TIF)

S2 Fig. Influence of confounding on MR Steiger. Graph representing the unmeasured con-

founding parameters that will lead to the MR Steiger test returning the wrong causal direction.

Columns of boxes represent different signed values of the observational variance explained

between x and y (R2
xy).

(TIF)
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