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ABSTRACT

Motivation: Somatic homozygous deletions of chromosomal regions

in cancer, while not necessarily oncogenic, may lead to therapeutic

vulnerabilities specific to cancer cells compared with normal cells. A

recently reported example is the loss of one of the two isoenzymes in

glioblastoma cancer cells such that the use of a specific inhibitor se-

lectively inhibited growth of the cancer cells, which had become fully

dependent on the second isoenzyme. We have now made use of the

unprecedented conjunction of large-scale cancer genomics profiling

of tumor samples in The Cancer Genome Atlas (TCGA) and of tumor-

derived cell lines in the Cancer Cell Line Encyclopedia, as well as the

availability of integrated pathway information systems, such as

Pathway Commons, to systematically search for a comprehensive

set of such epistatic vulnerabilities.

Results: Based on homozygous deletions affecting metabolic en-

zymes in 16 TCGA cancer studies and 972 cancer cell lines, we iden-

tified 4104 candidate metabolic vulnerabilities present in 1019 tumor

samples and 482 cell lines. Up to 44% of these vulnerabilities can be

targeted with at least one Food and Drug Administration-approved

drug. We suggest focused experiments to test these vulnerabilities

and clinical trials based on personalized genomic profiles of those

that pass preclinical filters. We conclude that genomic profiling will

in the future provide a promising basis for network pharmacology of

epistatic vulnerabilities as a promising therapeutic strategy.

Availability and implementation: A web-based tool for exploring all

vulnerabilities and their details is available at http://cbio.mskcc.

org/cancergenomics/statius/ along with supplemental data files.

Contact: statius@cbio.mskcc.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Comprehensive cancer profiling studies, such as The Cancer

Genome Atlas (TCGA) and other studies by the International

Cancer Genome Consortium, have helped identify many gen-

omic alterations in cancer genomes, including homozygous dele-

tions that often result from genomic instability. Deletions that

confer a proliferative advantage, such as the homozygous

deletion of a tumor-suppressor gene, are selected in cancer cells

via clonal expansion (Hanahan and Weinberg, 2011). Other de-

letions with relatively little effect on the tumor’s proliferative

capabilities can be seen at low frequencies when they are, by

chance, co-selected with other oncogenic events. Both types of

deletions, however, result in the loss of a locus that often con-

tains multiple genes. Such a deletion may not be lethal to a cell if

one or more unaffected partner genes (e.g. an isoenzyme) can

sufficiently carry the load of the deleted partner, but the loss of

these passenger genes may create therapeutic vulnerabilities

(Fig. 1). On loss of an initial gene, interference with the function

of its partner gene(s) may result in cell death, a phenomenon

known as synthetic lethality.

Muller et al. (2012) recently published a case study for syn-

thetic lethality for glioblastoma. Enolase performs an essential

function in cells, catalyzing the conversion of 2-phosphoglycerate

and phosphoenolpyruvate in the glycolytic pathway. At least

three known genes encode enolase isoenzymes: ENO1, ENO2

and ENO3. ENO1 has been shown to be homozygously deleted

in certain glioblastomas, probably as a passenger event to the

deletion of ERFFI1, but the tumor cells are able to survive be-

cause of the activity of other enolase encoding genes, in particu-

lar ENO2. Although the loss of ENO1 alone may not be lethal,

cancer cells lacking ENO1 are selectively vulnerable to the loss of

ENO2 (i.e. synthetic lethality), whereas non-cancer cells with

intact ENO1 can tolerate a loss of ENO2.
Most of the cancer genomics research focuses on identifying

driver alterations by frequency or occurrence pattern and exploit-

ing them to treat cancer (Ciriello et al., 2012; Kim et al., 2013;

Mermel et al., 2011; Taylor et al., 2008). However, there is an op-

portunity toexploit synthetic lethalities specific toparticular popu-

lations of cancer cells created by the homozygous loss of genes

responsible for core cellular functions. These are rare patient-spe-

cific events, and there are no existing tools for identifying these

vulnerabilities for a given patient. A system that can efficiently

analyze genomic data from biological samples to identify particu-

lar therapeutic vulnerabilities in cancer cells specific to those sam-

ples based on potential synthetic lethal partner genes can identify

personalized treatments to inhibit or kill those cancer cells.
Here, we describe a computational method, Statius (named

after the Roman poet, Publius Papinius Statius, who is known

for his famous poems Achilleid and Thebaid), to systematically

predict metabolic vulnerabilities in tumor samples from genomic

profiles. We present results obtained from the analysis of 16* To whom correspondence should be addressed.
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publicly available cancer studies (Fig. 2). Integrating data, in an

automated manner, frommultiple data resources—including sev-

eral pathway databases, drug–target annotation resources and

cancer genomics utilities—we were able to predict sample-specific

metabolic vulnerabilities, which result from a homozygous dele-

tion event in the corresponding sample, and list drugs that can

help exploit each particular vulnerability. The complete list of the

predicted vulnerabilities can be found at http://cbio.mskcc.org/

cancergenomics/statius.

2 RESULTS

2.1 Data collection

2.1.1 Drug–target relationships As a first step in our analysis,

we collected information on available targeted drugs and their

known targets. For this, we gathered drug–target data from mul-

tiple curated data resources including, but not limited to,

DrugBank (Knox et al., 2011) and KEGG Drug (Kanehisa

et al., 2012) using the PiHelper tool (Aksoy et al., 2013). We

further collected information from the National Cancer

Institutes’ Online Cancer Resource (http://cancer.gov) to anno-

tate whether a drug has been approved for cancer therapy. We

were able to extract information for 7817 targeted drugs and

17 981 drug–target relationships corresponding to these drugs.

To remove non-specific drugs, we excluded from our initial ana-

lysis drugs that have more than five known targets, leaving 7625

drugs and 15 210 drug targets covering 1674 genes.

2.1.2 Gene sets representing isoenzymes We next created a list of
all known metabolic isoenzymes as representatives of synthetic

lethal gene groups. To accomplish this, we used curated human

metabolic pathway information from Pathway Commons in

BioPAX format (Cerami et al., 2011; Demir et al., 2010). We

specifically collected metabolism pathways provided by

Reactome and HumanCyc databases (Croft et al., 2011;

Romero et al., 2005). Using these data resources, we extracted

official gene symbols from protein entities that catalyze the same

metabolic reaction and considered them as isoenzymes.

In addition to these pathway databases, we also used meta-

bolic enzyme information provided by the KEGG Enzyme

database (Kanehisa et al., 2012). For each enzyme, identified

by a specific Enzyme Commission (EC) number, we extracted

the corresponding human gene symbols and grouped them as

isoenzyme gene sets.
Combining data from these three resources, we were able to

extract 1290 unique gene sets. We filtered out 1063 gene sets

consisting of more than five genes, as our preliminary screen

showed that gene sets with more than five genes do not increase

the number of predicted vulnerabilities in a considerable manner,

as well as those that consist of only non-targetable genes.

2.1.3 Cancer studies and genomic profiles Next, we obtained

genomic profiles, minimally somatic copy-number alteration

(CNA) data, from publicly available cancer studies. To obtain

information on multiple studies, we used the web service of the

cBioPortal for Cancer Genomics (Cerami et al., 2012; Gao et al.,

2013). We used categorical CNA information to identify whether

a gene is homozygously deleted for a given sample. Whenever

available, we also collected normalized gene expression levels for

a homozygously deleted gene of interest to see whether the gene

is underexpressed compared with the rest of the samples in the

same cancer study. For this analysis, we used genomic profiles

for 5971 samples (4999 tumor samples and 972 cell lines) from 16

different cancer studies that had publicly available CNA data

(Table 1). All but two studies we included in our set had also

the mRNA expression data available.

2.1.4 Additional gene annotations Most of the isoenzymes show

tissue-specific expression patterns where the expression of an iso-

enzyme is restricted to a single or multiple tissues. We wanted to

use this context-specific background information in our analysis

and take the tissue associated with a cancer study, when trying to

find vulnerabilities. It is also known that some genes are essential

for the viability of a cell, and therefore, targeting such a gene

causes some level of toxicity to all cells in a non-selective manner,

making these genes unpreferred targets for an ideal therapy.
Therefore, we annotated the genes to recognize tissue-specific

expression patterns and also essentiality. Using Tissue-specific

Gene Expression and Regulation (TiGER) database, we first

Fig. 2. Overall process of identification of therapeutic vulnerabilities.

Statius imports cancer genomics data provided by the cBioPortal

(Cerami et al., 2012; Gao et al., 2013), along with pathway and drug

annotations from a customizable list of external resources. It then pro-

duces a list of sample-specific vulnerabilities categorized by the cancer

study as output. These potential vulnerabilities can be further tested in

cell lines bearing the vulnerability of interest

Fig. 1. Deletions often result in the loss of a locus (horizontal bars) that

often contains multiple genes. These deletions can sometimes cause loss of

a metabolic gene as a passenger event. This type of alterations are not

lethal to a cell if another gene can sufficiently carry the load of the deleted

metabolic gene, but the loss of these passenger genes may create thera-

peutic vulnerabilities in tumors
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extracted tissue-specific genes. We also, when possible, annotated

the cancer studies with a tissue in accordance with the TiGER

terminology (Liu et al., 2008). These data allowed us to query for

a given sample, associated with a cancer study and thus a tissue,

whether a gene of interest is expected to be expressed. We next

used data provided by Database of Essential Genes (DEG) to

annotate whether a gene of interest is essential for the organism

(Zhang et al., 2004). Using this dataset, we mark a human gene

as essential if its homologue in any of the well-known model

organisms is known to be essential for the viability of that par-

ticular organism.

2.2 Identification of vulnerabilities

2.2.1 Sample-specific vulnerabilities Putting all these informa-

tion together, we then analyzed each sample in our dataset—in

the context of the cancer study it belongs to—to identify poten-

tial metabolic vulnerabilities. To accomplish this, for a given

cancer study, a tumor or cell line sample and an isoenzyme

gene set, we looked for cases where (i) one or more isoenzymes

are lost because of homozygous deletion, (ii) and the other ex-

pressed isoenzymes can be selectively targeted by at least one

drug. Once we found the vulnerabilities in this selective

manner, we also included all possible drugs, selective or not, in

our final results.

2.2.2 Vulnerability scores To sort all predicted vulnerabilities

based on their internal consistency and annotations, we assigned

a score over 4.0 to each sample-specific vulnerability. For this,

we checked whether a given sample-specific vulnerability satis-

fied any of the following criteria: (i) the homozygously deleted

gene is also underexpressed (or not expressed), (ii) there are any

Food and Drug Administration (FDA)-approved drugs in the

suggested drug list, (iii) there are any ‘cancer’ drugs in the sug-

gested drug list, where a cancer drug means a drug that is cur-

rently FDA-approved and being used in cancer treatment and

(iv) the target of the suggested drug is not an essential gene in any

of the model organisms.

2.2.3 Vulnerabilities in tumor samples and matching cell lines We
ran our analysis on 5971 cancer samples covering 16 distinct

cancer studies and identified 4104 metabolic vulnerabilities in

1019 tumor samples and 482 cancer cell lines (Figs 3a and b).

In all, 146 of 4104 (4%) vulnerabilities had a score of 3, whereas

31, 51 and 14% vulnerabilities had a score of 2, 1 and 0, respect-

ively. Overall, we were able to identify 263 distinct homozygous

deletions that cause a predicted vulnerability (Table 2;

Supplementary Data for complete results); we found that 220

of 263 homozygous deletions were present in tumor samples

and 71% of these had at least one matching cell line (Fig. 3c).

We also found that 1833 (44%) of the vulnerabilities can poten-

tially be targeted with at least one FDA-approved drug, but in a

less-selective manner (Fig. 3d). One such example to this less-

selective targeting is the potential use of methotrexate when

either DHFR or DHFRL1 is deleted in the sample, although

the drug targets both genes in this isoenzyme pair (Table 3).

Furthermore, we found that in 1695 of 4104 (41%) vulnerabil-

ities that we identified, intervention with drugs will involve tar-

geting at least one essential enzyme (Supplementary Fig. S1).
To allow better investigation of these vulnerability results, we

developed a web user interface accessible at http://cbio.mskcc.

org/cancergenomics/statius. The interface allows users to browse

vulnerabilities either through a cancer study or gene set-based

views, and for each predicted vulnerability, it provides additional

context annotations and information with external links (Fig. 4).

Table 1. We screened 5971 samples from 16 different cancer studies

Cancer study Genomic profiles

Source Samples CNA Exp. Tissue

Acute myeloid leukemia TCGA (The Cancer and Genome Atlas, 2013) 191 þ þ Bone marrow

Adenoid cystic carcinoma MSKCC (Ho et al., 2013) 60 þ � �

Bladder cancer MSKCC (Iyer et al., 2013) 97 þ þ Bladder

Breast invasive carcinoma TCGA (Koboldt et al., 2012) 913 þ þ �

CCLE Novartis/broad (Barretina et al., 2012) 972 þ þ �

Colon and rectum adenocarcinoma TCGA (Muzny et al., 2012) 575 þ þ Colon

Glioblastoma multiforme TCGA (The Cancer and Genome Atlas, 2008) 497 þ þ Brain

Head and neck squamous cell carcinoma TCGA 306 þ þ �

Kidney renal clear cell carcinoma TCGA (Creighton et al., 2013) 436 þ þ �

Lung adenocarcinoma Broad (Imielinski et al., 2012) 182 þ � Lung

Lung adenocarcinoma TCGA 230 þ þ Lung

Lung squamous cell carcinoma TCGA (Hammerman et al., 2012) 197 þ þ Lung

Ovarian serous cystadenocarcinoma TCGA (The Cancer and Genome Atlas, 2011) 569 þ þ Ovary

Prostate adenocarcinoma MSKCC (Taylor et al., 2010) 194 þ þ Prostate

Sarcoma MSKCC/broad (Barretina et al., 2010) 207 þ þ Soft tissue

Uterine corpus endometrioid carcinoma TCGA (Kandoth et al., 2013) 363 þ þ Uterus

Total 5971

Note: The majority of the cancer studies were from TCGA, and the others were from different individual institutions. We annotated each cancer study with its tissue of origin

in accordance with the TiGER database (Liu et al., 2008). TCGA: The Cancer Genome Atlas; MSKCC: Memorial Sloan-Kettering Cancer Center; Broad: Broad Institute;

CNA: DNA copy-number alteration; Exp: mRNA expression; �: tissue annotation not available.
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3 METHODS

3.1 Obtaining information on isoenzymes

3.1.1 From pathway resources: Reactome and HumanCyc We

obtained biological pathway information from both Reactome and

HumanCyc (Croft et al., 2011; Romero et al., 2005). We used entity-

level normalized BioPAX Level 3 outputs for both data resources. The

normalization was accomplished through Pathway Commons 2 and

cPath 2 software to standardize external references of entities in these

pathway datasets (Cerami et al., 2006). We then parsed these BioPAX

Level 3 pathway data using Paxtools library and extracted isoenzyme

gene sets using the following procedure [(Demir et al., 2010, 2013);

http://biopax.org/paxtools.php]: we first iterated for all

BiochemicalReactions that have at least one Controller to it. For a

given BiochemicalReaction, we then iterated for all Controller entities of

the reaction and obtained corresponding Xrefs (external references).

Number of vulnerabilities for each study

Proportion of vulnerable cell lines and tumors

Homozygous deletions that
result in a vulnerability

Proportion of vulnerabilities that can be targeted
with either an FDA-approved or a cancer drug

(a)

(b) (c)

(d)

Fig. 3. Systematic screening of cancer samples revealed metabolic vulnerabilities that are of therapeutic interest in a uniform way across different cancer

types. (a) Across 16 cancer studies, we identified 4101 vulnerabilities. (b) We screened 5971 samples (972 cell lines and 4999 tumor samples) and found

1019 tumor samples and 482 cancer cell lines to have possible metabolic vulnerabilities (red). (c) All vulnerabilities were attributable to 263 distinct

homozygous deletion events; 156 (60%) of these deletions were shared between at least one cell line and one tumor sample. (d) Forty-four percent of all

identified vulnerabilities can potentially be targeted with an FDA-approved drug (green) and furthermore 8% with an FDA-approved drug that is

currently known to be used in cancer therapy (orange)
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Using Xrefs that map an entity to HGNC (HUGO Gene Nomenclature

Committee), we collect HGNC gene symbols of corresponding control-

lers and treat them as isoenzyme groups. For each isoenzyme group, we

keep the name of the reaction, the pathway it belongs to and an image of

the corresponding reaction associated with that particular group for later

visualization features. All reaction images were generated with ChiBE

(Babur et al., 2010). For the described procedure, we used the whole

HumanCyc dataset, but for Reactome, we only used the reactions that

belong to the Metabolism pathway (Resource Description Framework

identification: http://www.reactome.org/biopax/48887Pathway991).

3.1.2 From KEGG enzyme We also extracted metabolic isoenzyme

information from KEGG Enzyme database using the provider’s

Representational-state-transfer (REST)-based web service. For this, we

first obtained all metabolic enzymes, identified by their corresponding EC

numbers, registered in KEGG Enzyme (http://rest.kegg.jp/list/ec). Then,

for each enzyme, we obtained all human genes that are associated with

the enzyme and created groups of isoenzymes using their gene symbols.

For later reference, we keep the primary name of the enzyme and the text-

based description of the reaction associated with the corresponding iso-

enzyme group.

3.1.3 Combining isoenzyme data form multiple resources and
filtering After collecting isoenzyme groups, we pooled isoenzyme

groups from these multiple resources. For isoenzyme gene sets that

came from different resources but had the exact gene composition, we

used the following priority for the data resources to decide which copy to

keep in the final analysis: (i) KEGG Enzyme, (ii) Reactome (Croft et al.,

2011) and (iii) HumanCyc (Romero et al., 2005).

3.2 Collecting drug–target data

To collect drug–target data from multiple resources, we used PiHelper

and aggregated data from all data resource it supports by default: (i)

DrugBank (Knox et al., 2011), (ii) KEGG Drug (Kanehisa et al.,

2012), (iii) Rask-Andersen et al., 2011, (iv) Genomics of Drug

Sensitivity in Cancer (Yang et al., 2013), (v) Garnett et al., 2012 and

(vi) Cancer.gov (http://cancer.gov).

We ran PiHelper with the default parameters and exported all aggre-

gated drug–target data in TSV (tab-separated values) format as previ-

ously described (Aksoy et al., 2013). This provided us with a list of genes

that can be targeted with a drug, and we used this information to anno-

tate all genes in our isoenzyme gene sets.

Table 2. The 20 most common candidate therapeutic vulnerabilities detected in the analysis of 5971 cancer samples from 16 different studies

Serial

number

Isoenzyme set Deleted

gene

Vulnerable samples Metabolic reaction Drugs

Tumors Cell

lines

1 EXTL2, EXTL3 EXTL3 173 47 Glucuronyl-galactosyl-proteoglycan

4-alpha-N-

acetylglucosaminyltransferase

Uridine-diphosphate-N-

acetylglucosamine

2 PAPSS1, PAPSS2 PAPSS2 97 17 Adenylyl-sulfate kinase Adenosine-50-phosphosulfate

3 CPT1C, CPT1B,

CPT2, CPT1A

CPT1B 90 10 Carnitine O-palmitoyltransferase L-carnitine

4 A2M, BMP1 BMP1 68 2 High-density lipoprotein–mediated

lipid transport

Becaplermin

5 GOT1, GOT2,

GOT1L1

GOT1L1 65 27 Aspartate degradation II Maleic acid, 40-deoxy-40-acetylya-

mino-pyridoxal-50-phosphate

6 GYG1, GYG2 GYG2 58 0 Glycogenin glucosyltransferase UDP-D-galactose

7 ATP2C1, ATP2C2 ATP2C2 57 20 Calcium transport I Desflurane/halothane

8 ADA, ADAT3 ADAT3 53 13 Adenine and adenosine salvage III Pentostatin

9 SAT1, SAT2 SAT2 48 44 Diamine N-acetyltransferase Diminazene

10 FNTA, PGGT1B PGGT1B 47 15 Protein geranylgeranyltransferase

type I

Tipifarnib

11 DHFR, DHFRL1 DHFR 47 5 Dihydrofolate reductase 5-chloryl-2,4,6-quinazolinetriamine

12 AKR1B10,

AKR1B1,

CYP2E1

CYP2E1 42 33 Methylglyoxal degradation III Tolrestat

13 TK1, TK2 TK2 42 8 Thymidine kinase Dithioerythritol

14 ACAT1, ACAT2 ACAT2 39 23 Acetyl-CoA C-acetyltransferase Sulfasalazine

15 ENO1, ENO2,

ENO3

ENO1 37 18 Phosphopyruvate hydratase 2-phosphoglycolic acid

16 ACAT1, ACAT2 ACAT1 36 22 Acetyl-CoA C-acetyltransferase Pyripyropene A

17 MTHFD1,

MTHFD1L

MTHFD1L 34 24 Formate—tetrahydrofolate ligase LY374571/LY249543

18 ALDH2, ALDH3A2 ALDH3A2 30 28 Putrescine degradation III Daidzin

19 TRYP1, CAT TYRP1 12 71 Ethanol degradation IV Fomepizole

20 AMY1A/B/C,

AMY2A, AMY2B

AMY1A/B/C 1 61 Alpha-amylase Acarbose

Note: Our analysis revealed 263 candidate vulnerabilities. Each of these vulnerabilities is associated with a gene set that represents isoenzymes that catalyze a metabolic

reaction, and deletion of one or more partner genes results in a vulnerability if there are targeted drug(s) that can selectively inhibit the other enzymes in the gene set. The

majority of the vulnerabilities in tumors were also present in at least one cell line (see Supplementary Table S1 for an extended version of this table).
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3.3 Labeling genes using additional annotations

3.3.1 Annotating tissue-specific expression patterns For tissue-

specific gene expression annotation, we used data produced by TiGER

(Liu et al., 2008). We downloaded raw file containing tissue-specific

UniGene lists and mapped this information, i.e. whether the expression

of a gene is restricted to a single tissue, using gene symbol to UniGene

maps from the same provider. We also adopted the tissue terminology

used by TiGER and annotated cancer studies we used in our study in

accordance with this terminology (Table 1).

3.3.2 Annotating essential genes To annotate genes that are known

to be essential in a model organism, we used data provided by DEG

(Zhang et al., 2004). For this, we downloaded the whole database and

Table 3. Vulnerabilities that can potentially be exploited with a cancer drug—a drug that is approved by FDA for use in cancer therapy

Serial

number

Isoenzyme set Cases Metabolic reaction Drug(s) of interest

1 TOP2B*, TOP2A* 70 DNA topoisomerase (ATP)-hydrolysing Daunorubicin, Epirubicin, Doxorubicin,

Etoposide, Dexrazoxane

2 DHFR*, DHFRL1* 68 dihydrofolate reductase Methotrexate, Pemetrexed, Pralatrexate

3 IKBKE*, TBK1*, IKBKB,

CHUK*

46 IkappaB kinase Arsenic trioxide

4 LIG1, LIG3, LIG4* 43 DNA ligase (ATP) Bleomycin

5 P4HB*, MTTP* 34 Chylomicron-mediated lipid transport Vandetanib, Nilotinib, Imatinib, Bosutinib,

Dasatinib

6 RRM1*, RRM2* 33 Synthesis and interconversion of nucleotide

di- and triphosphates

Clofarabine, Fludarabine, Gemcitabine

7 CMPK1, CMPK2* 20 Deoxycytidylate kinase Gemcitabine

8 GGPS1*, FDPS* 7 Dimethylallyltranstransferase Zoledronate

9 PTGS2, PTGS1* 3 Taglandin-endoperoxide synthase Thalidomide, Lenalidomide

10 TXNRD1, TXNRD2*,

TXNRD3

5 Thioredoxin-disulfide reductase Arsenic trioxide

11 TOP1, TOP3A*, TOP1MT,

TOP3B

4 Irinotecan Topotecan

Note: In some cases, deletion of either of partner genes can result in a therapeutic vulnerability. For example, TOP2A and TOP2B are isoenzymes that function as ATP-

hydrolyzing DNA topoisomerases. Of 5971 cases (tumor or cell line samples), 70 have either TOP2B- or TOP2A-deletion (*). Either of these deletions creates vulnerabilities

that can be exploited with drugs, such as Doxorubicin or Etoposide, that selectively inhibit these isoenzymes.

Fig. 4. Four vulnerabilities, with different contexts, identified in the ovarian serous cystadenocarcinoma (TCGA) cancer study. Each vulnerability is

associated with a sample and a metabolic context. Furthermore, for each vulnerability, the gene sets are annotated to provide information whether a gene

is homozygously deleted (red; HomDel), essential (black; E/G), not expressed (orange; N/E), shows tissue-specific expression (green; TS/E) or is known

to be selectively targeted by a drug (gray; drugs: N). For gene sets extracted from Pathway Commons, the metabolic reaction of interest is visualized as

an image that was produced by ChiBE (Babur et al., 2010)
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used gene symbol-based annotations for only eukaryotes. We annotate all

human genes in the database as essential in our analysis. For non-human

essential genes, we used homology-group datasets provided by the

HomoloGene (http://www.ncbi.nlm.nih.gov/homologene) to map these

genes to their human homologues. When annotating a gene as essential,

we always include the species information as part of the annotation for

future reference. We collected annotations from the following model

organisms: (i) Homo sapiens, (ii) Mus musculus, (iii) Drosophila mel-

anogaster, (iv) Saccharomyces cerevisiae, (v) Caenorhabditis elegans,

(vi) Danio rerio and (vii) Arabidopsis thaliana.

3.4 Handling cancer studies and genomic profiles

We accessed public data for cancer studies listed in Table 1 using

cBioPortal’s web service [(Cerami et al., 2012; Gao et al., 2013); http://

cbioportal.org]. For each study, (i) we first collected all case IDs, (ii) we

then obtained categorized gene-centric CNA data (when possible, we

used data generated through either GISTIC or RAE algorithms: �2:

homozygous deletion; �1: heterozygous deletion; 0: diploid; 1: gain; 2:

amplification) (Mermel et al., 2011; Taylor et al., 2008), (iii) when avail-

able, we used normalized Z-scores for gene-centric mRNA expression

and treated values5�2 as underexpressed for a particular sample and

(iv) manually assigned tissues based on the type of the cancer.

One exception to these general rules was the Cancer Cell Line

Encyclopedia (CCLE), where normalized mRNA expression data was

missing. For this study, we used median-normalized gene-centric probe

levels and treated log2 values55, which corresponds to upper limit of the

lower quartile of all expression data, as underexpressed.

A list of genomic profile IDs that were used for this analysis can be

found within the Supplementary Material. Further details for each

genomic profile can be accessed from the cBioPortal Web site: http://

cbioportal.org.

4 DISCUSSION

Cancer cell contains many somatic genomic alterations, some

of which may result in therapeutic vulnerabilities. Therapeutic

approaches targeting such vulnerabilities are promising because
they are expected to be lethal to cancer cells but not to healthy

(e.g. non-cancer) cells, thus reducing the potential for toxic side

effects. Here we present a systematic approach to identify a
subset of such vulnerabilities, involving metabolic pathways, by

taking advantage of publicly available data resources. As a proof

of concept, we ran our analysis on 16 cancer studies available via
the cBioPortal for Cancer Genomics and predicted 4104 meta-

bolic vulnerabilities. We included the CCLE in our analysis as a

separate cancer study, and this allowed us to match vulnerabil-
ities in tumor samples with those in cell lines. Overall, we found

2706 vulnerabilities resulting from 220 distinct homozygous de-

letion events in 1019 tumor samples. In all, 71% of these vulner-
ability-causing homozygous deletions were also present in at

least one cell line, therefore, opening the possibility of testing a

majority of these predicted vulnerabilities in vitro. Reassuringly,
using this systematic method, we were able to detect a previously

verified metabolic vulnerability, which is due to a homozygous

deletion affecting an enolase isoenzyme (Muller et al., 2012)
(Supplementary Fig. S2). Unlike other studies that have previ-

ously predicted metabolic vulnerabilities using a theoretical

model of cancer metabolism, here we interpreted all datasets in
a sample-specific manner (Folger et al., 2011). This helped us

capture many vulnerabilities that were not reported previously

(Table 2) (Folger et al., 2011; Muller et al., 2012).

Furthermore, we based our analysis on homozygous deletions
in cancer samples with a particular focus on metabolic pathways,
but our method can easily be extended to signaling pathways and

also to any disabling genomic or epigenomic event, such as mu-
tations and hyper-methylation events. We restricted our analysis
to consider only homozygous deletions because at the time of the

study, the number of samples that have a copy-number profile
was considerably higher compared with the number of samples
that have either mutation or methylation profile. Moreover, we

only used metabolic pathways because details of metabolic reac-
tions are provided at a better level of granularity in many of the
pathway data resources. This allowed us to infer potentially syn-

thetic lethal gene sets from the pathway resources with higher
confidence. For many signaling pathways, this type of inference
is considerably harder to accomplish because they are not as well

characterized and well curated as metabolic pathways yet.
The quality of our vulnerability predictions highly depends on

the quality of the homozygous deletion calls made for each meta-

bolic gene. A false-positive homozygous deletion call, for ex-
ample, will also lead to a false-positive vulnerability prediction
in our analysis. To overcome this problem, we assign a higher

score to vulnerabilities when the homozygously deleted gene is
also underexpressed in a specific sample. Another likely source of
false-positive predictions is our assumption that all metabolic

reactions are essential for cell viability, and therefore, genes cat-
alyzing the same reaction form a synthetic lethal group. These
types of issues, however, can be easily addressed by testing a

predicted vulnerability in vitro using one of the cell lines that
has the vulnerability of interest.
To better prioritize the vulnerabilities in terms of their applic-

ability to the clinic and their reliability, we assigned a score (over
4.0) to each individual vulnerability we identified based on the
following criteria. First, to emphasize the likelihood of homozy-

gous deletion being true, we checked whether transcripts of
homozygously deleted genes are also expressed relatively at low
levels compared with the diploid samples. Next, we looked

whether the suggested drug to exploit a vulnerability is either
FDA-approved or already being used in cancer therapy, where
satisfying either criteria indicates not only better availability of

the drug for validation experiments but also relatively easier
translation to clinical trials. Finally, we checked whether target-
ing the vulnerability will inhibit an essential gene, hence increas-

ing the possibility of a toxic effect for the host.
These criteria reflect a subjective view of a reliable vulnerabil-

ity prediction and can be expanded by incorporating more an-

notation and supportive datasets to the analysis. For example,
various drug screen studies and small hairpin RNA knockdown
assays provide relative sensitivities of cell lines toward inhibition

of various cellular species as public datasets (Barretina et al.,
2012; Cheung et al., 2011), and this information can be further
used in the context of vulnerabilities, where sensitivities that can

be explained by a predicted vulnerability are given an extra score.
Another possible extension to our scoring scheme is to give extra
scores to vulnerabilities for which suggested drugs are currently

being tested in clinical trials for the tumor type that matches the
patient’s.
Our analysis identifies only vulnerabilities for which the target

gene can selectively be inhibited by a compound, but for each
vulnerability prediction, we also report drugs that are less
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selective and yet potentially interesting for exploiting a vulner-

ability. Considering both selective and non-selective drugs, our

results show that 44% of the identified vulnerabilities can poten-

tially be targeted with an FDA-approved drug; moreover, a

smaller fraction, 8%, of all vulnerabilities seems to be targetable

with drugs that are both FDA-approved and already being used

in cancer therapy (Table 3).

Opportunities to exploit these vulnerabilities have previously

been overlooked because genomic alterations that cause such

vulnerabilities are relatively less frequent within each cancer

study. We show that with the help of a systematic method that

can efficiently combine data from diverse resources, it is possible

to identify vulnerabilities that cover a considerable number of

patients when aggregated across different cancer studies. We be-

lieve this type of systematic and patient-specific treatment sug-

gestion will prove essential especially in designing ‘basket trials’

that will investigate the effects of a targeted agent against a spe-

cific genetic alteration (Fig. 5).
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