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Abstract: The presence of mycotoxins in herbal medicines is an established problem throughout the
entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs)
typically involves challenging sample pretreatment procedures and an efficient detection instrument.
However, although numerous reviews have been published regarding the occurrence of mycotoxins
in herbal medicines, few of them provided a detailed summary of related analytical methods
for mycotoxin determination. This review focuses on analytical techniques including sampling,
extraction, cleanup, and detection for mycotoxin determination in herbal medicines established
within the past ten years. Dedicated sections of this article address the significant developments
in sample preparation, and highlight the importance of this procedure in the analytical technology.
This review also summarizes conventional chromatographic techniques for mycotoxin qualification
or quantitation, as well as recent studies regarding the development and application of screening
assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based
lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding
the advanced research that has been done and closes with an indication of future demand for the
emerging technologies.

Keywords: herbal medicines; mycotoxin; sampling; sample pretreatment; chromatographic methods;
rapid detection method

Key contribution: This review thoroughly summarizes the advances and progress of the analytical
method from sampling, pretreatment to detection for mycotoxins contamination in herbal medicines.
It concludes the breakthrough in the mycotoxins analysis techniques and figures out their limitations
used in herbal matrix.

1. Introduction

Herbal medicines, which are also referred to as phytomedicines or botanical medicines, have
played a critical role in world health for thousands of years. According to the World Health
Organization (WHO), “herbal medicines include herbs, herbal materials, herbal preparations and
finished herbal products, that contain as active ingredients parts of plants, or other plant materials,
or combinations” [1].

Over the last decade, the use of herbal medicines has expanded across the globe and gained
considerable popularity. As a result of cultural and historical influences, herbal medicines remain an
important part of the healthcare system in China, India, and Africa [2–4]. In recent years, the utilization
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of herbal medicines as complementary therapy has become more common in developed countries that
have a typically well-established health care system structure [5,6]. According to the WHO, over 100
million Europeans currently use Traditional and Complementary Medicine (T&CM), and one-fifth
among them regularly using T&CM for health care. It has been shown that there are many more
T&CM users in Africa, Asia, Australia, and North America [7].

With increasing expansion in herbal medicine use globally, the quality control mechanisms
surrounding the herbal medicines have become the main concern for both health authorities and the
public. In the case of herbal medicines, contamination is critical to monitor, as toxicities related to
extrinsic factors that are typically associated with undesirable toxic substances, rather than the herbs
themselves, can result. In particular, fungal/microbial contamination has been a global concern for
decades. According to prior investigations, toxigenic fungi species that are generated from soil or
plants themselves can result in contamination of herbal medicines. These toxigenic fungi include
species belonging to Aspergillus, Penicillium, Fusarium, and Alternaria genera [8–10]. Under unfavorable
environmental conditions, these fungi produce mycotoxins, which are secondary metabolites that
could contaminate various plants when in the field or at any stage during the collection, handling,
transportation, or storage of the plants (e.g., mycotoxin contamination produced by Fusarium species
can occur in the field and build up during the harvesting and drying stage, while additional toxins
mainly produced by Penicillium and Aspergillus species can contaminate in storage operation) [11].
Reports regarding mycotoxin contamination screening of medicinal herbs and related products
demonstrate that aflatoxins (AFs), ochratoxins, fumonisins (FBs), trichothecenes, and zearalenones
(ZENs) are found to be the most commonly contaminated ones [12,13] (Table 1). These mycotoxins
were identified to be carcinogenic, teratogenic, and mutagenic. In addition, they were also found to
harm live cells, kidney, reproductive system, immune system, and central nervous system [14]. Among
all the known mycotoxins, the most toxic one is aflatoxin B1 (AFB1). It was classified as a Group-1
carcinogen by the International Agency for Research on Cancer (IARC) due to its strong toxicity [15],
and represents the main threat worldwide.
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Table 1. Typical mycotxoins investigated in herbal medicines.

Type of Mycotoxin Source and Solubility References

Source Solubility

Aflatoxin
(AFB1, AFB2, AFG1, AFG2, AFM1)

Main source: Aspergillus
Solubility: soluble in moderately polar organic solvents (e.g., chloroform, methanol, dimethysulfoxide), scarcely
soluble in water (10–30 mg/mL) and insoluble in non-polar organic solvents

[16–18] [18]

Ochratoxins
(OTA, OTB)

Main source: Aspergillus and Penicillium
Solubility: OTA: moderately soluble in polar organic solvents (e.g., chloroform, methanol) and dissolves in dilute
aqueous sodium bicarbonate

[16–18] [18]

Trichothecenes
(Type A trichothecenes: (T-2, HT-2, NEO,
DAS), Type B trichothecenes (DON, NIV,
DOM-1, Fusarenone-X))

Main source: Fusarium, Myrothecium, Stachybotrys, Trichoderma, Cephalosporium, Trichothecium and Verticimonosporium
Solubility: Type A trichothecenes: highly soluble in ethyl acetate, acetone, chloroform, dichloromethane and diethyl
ether; Type B trichothecenes: soluble in methanol, acetonitrile and ethanol

[18,19] [18]

Zearalenones
(ZEN, α-ZOL, β-ZOL, ZAN)

Main source: Fusarium
Solubility: ZEN: soluble in water, slightly soluble in hexane and progressively more soluble in benzene, acetonitrile,
dichloromethane, methanol, ethanol and acetone

[16,18] [18]

Fumonisins
(FB1, FB2, FB3)

Main source: Fusarium
Solubility: soluble in water, acetonitrile–water or methanol, and insoluble in chloroform and hexane [16–18] [18]

Alternaria toxins
(AOH, AME, TEA, TEN)

Main source: Alternaria
Solubility: AME: insoluble in aqueous NaHCO3 or water, slightly soluble in ether, sparingly soluble in benzene
AOH: insoluble in hexane, light petroleum, benzene, aqueous NaHCO3 and water, more soluble than AME in
ethanol, methanol, acetone
TEA: slightly soluble in water
TEN: slightly soluble in benzene

[10,20] [21]

Patulin
Main source: Penicillium
Solubility: soluble in water, methanol, ethanol, acetone and ethyl or amyl acetate and less soluble in diethyl ether
and benzene

[18] [18]

Citrinin Main source: Aspergillus, Penicillium and related species
Solubility: practically insoluble in water, soluble in ethanol, dioxane, dilute alkali, acetone, benzene, and chloroform [18] [22]

Cyclopiazonic acid Main source: Penicillium and other fungi species including Aspergillus
Solubility: soluble in chloroform and dimethyl sulfoxide [18] [18]

Sterigmatocystin Main source: Aspergillus
Solubility: highly soluble in pyridine [18] [23]
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Table 1. Cont.

Type of Mycotoxin Source and Solubility References

Source Solubility

Gliotoxin
Main source: a wide variety of widespread moulds
Solubility: soluble in pyridine, dioxane, dimethylformamide, acetic acid, and chloroform, slightly soluble in
benzene, acetone, carbonate trachloride, and ethyl alcohol

[18] [24]

Tremorgenic mycotoxins
(Penitrem A, Verruculogen)

Main source: a wide spectrum of fungi belonging to the genera Penicillium, Aspergillus, Claviceps and Acremonium
Solubility: Penitrem A: soluble in acetone, methanol and dimethyl sulfoxide. Verruculogen: soluble in benzene,
ethyl acetate, and acetone, slightly soluble in ethanol, and very soluble in chloroform

[18] [25,26]

Penicillic acid
Main source: several species of Aspergillus and Penicillium
Solubility: moderately soluble (2%) in cold water and in cold benzene, highly soluble in hot water, alcohol, ether,
and chloroform, and insoluble in pentane-hexane

[18] [27]

Chaetoglobosin A Main source: Chaetomium globosum and some species of Penicillium
Solubility: soluble in acetone, methanol [28–30] [28,29]

Beauvericin and other enniatins
(BEA, ENN A, ENN A1, ENN B, ENN B1)

Main source: Fusarium
Solubility: having low solubility in water [31] [31,32]

Moniliformin Main source: Fusarium
Solubility: soluble in water and polar solvents [18] [18]

AFB1: Aflatoxin B1, AFB2: Aflatoxin B2, AFG1: Aflatoxin G1, AFG2: Aflatoxin G2, AFM1: Aflatoxin M1, OTA: Ochratoxin A, OTB: Ochratoxin B, T-2: T-2 toxin, HT-2: HT-2 toxin, NEO:
Neosolaniol, DAS: Diacetoxyscirpenol, DON: Deoxynivalenol, NIV: Nivalenol, DOM-1: Deepoxydeoxynivalenol, ZEN: Zearalenone, α-ZOL: α-Zearalenol, β-ZOL: β-Zearalenol, ZAN:
Zearalanone, FB1: Fumonisin B1, FB2: Fumonisin B2, FB3: Fumonisin B3, AOH: Alternariol, AME: Alternariol-methyl ether, TEA: Tenuazonic acid, TEN: Tentoxin, BEA: Beauvericin,
ENN A: Enniatins A, ENN A1: Enniatins A1, ENN B : Enniatins B, ENN B1: Enniatins B1.
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Currently, numerous published reviews reported the occurrence of mycotoxin contamination in
herbal materials and related products. These reports indicated that mycotoxin contamination in herbal
medicines is considered a global issue, particularly in the case of developing countries [16,33–39]
(Figure 1). To date, more than 40 mycotoxins have been detected in herbal medicines [12,13,40].
The typical examples of these mycotoxins are shown in Table 1. In addition to the toxicity effects of
mycotoxins themselves, the presence of mycotoxins in herbal medicines may also function to decrease
the medicinal potency, lead to drug interactions, and potentiate adverse effects that could influence the
safety of these herbal remedies [41].
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Due to the hazardous effects associated with mycotoxins, approximately 100 countries
implemented specific limits for the presence of mycotoxins in foodstuffs and feedstuffs by the
end of 2003 [42]. National regulations have been established for numerous mycotoxins, including
the naturally occurring AFs and aflatoxin M1 (AFM1), the trichothecenes deoxynivalenol (DON),
diacetoxyscirpenol (DAS), T-2 toxin (T-2) and HT-2 toxin (HT-2), fumonisin B1, B2 and B3 (FB1,
FB2 and FB3), agaric acid, ergot alkaloids (EA), ochratoxin A (OTA), patulin (PAT), phomopsins,
sterigmatocystin (ST) and ZEN [42]. However, in the case of medicinal plants, official regulations
regarding the presence of only AFs and OTA in medicinal herbs are shared globally in pharmacopoeias,
national, and organizational regulations. In general, the current legal limit for AFB1 in herbal medicines
ranges between 2 and 10 µg kg−1, while the limit for combined aflatoxin B1, G1, B2 and G2 (total AFs)
ranges from 4 to 20 µg kg−1, and the limit for OTA ranges from 15 to 80 µg kg−1, as depicted in Table 2.

In regard to AFs, the European Union (EU) has set a limit of 5 µg kg−1 for AFB1 and 10 µg kg−1

for total AFs in nutmeg, ginger, turmeric, and pepper [43]. However, the European Pharmacopeia
(EP) has implemented stricter limits for the presence of AF in herbal drugs, with the limits set to
2 µg kg−1 for AFB1 and 4 µg kg−1 for total AFs [44]. The same limit is set for the presence of AF in
herbal drugs, which was set by the British Pharmacopeia (BP) [45]. Germany has implemented a limit
of 2 µg kg−1 for AFB1 and 4 µg kg−1 for total AFs in any materials that are used in manufacturing
of medicinal products (including medicinal herbal products) [46]. In the USA, a limit of 5 µg kg−1

has been implemented for AFB1 and 20 µg kg−1 for total AFs was established by the United States
Pharmacopeia (USP) for certain types of raw medicinal herb materials, as well as their powder and/or
dry extract [47,48]. Identical limits have been set by Argentina for herbs, herbal materials, and herbal
preparations that are used in herbal tea infusions [46]. In addition, Canada has implemented the
same legislation regarding products that contain ginseng or any substance derived from this source,
including evening primrose oil, sugar cane, sugar beets, and cottonseed [49]. In China, a total of
nineteen different types of traditional Chinese medicines (TCMs) medicinal herbs are regulated in
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order to detect AF, with the limits being 5 µg kg−1 for AFB1 and 10 µg kg−1 for total AFs. In order
to regulate AF levels [50], South Korea has also established limits of 10 µg kg−1 for AFB1 and 15 µg
kg−1 for total AFs in sixteen types of medicinal herbs [51]. Japan has set a limit of 10 µg kg−1 for
total AFs in crude drugs as well as preparations containing crude drugs as the primary ingredient
(crude drug preparations) [52]. Indonesia has set a legislative limit of 20 µg kg−1 for total AFs in
the category of “coconut, spices and traditional drug medicines/herbs” [42]. In Vietnam, limits of
5 µg kg−1 for AFB1 and 10 µg kg−1 for total AFs have been implemented for dry white and black
pepper, nutmeg, ginger, and turmeric [53]. Compared with AF, only few countries or organizations,
such as Vietnam [53] and the EU [43], have established a maximum residue level (MRL) for OTA in
nutmeg, ginger, turmeric, black and white pepper, liquorice root and its extract, with the legislative
limit varying from 15 µg kg−1 to 80 µg kg−1.

Table 2. Maximum recommended levels of AFs and OTA in medicinal plants.

Country/Region Product (Group) AFB1
µg kg−1

Total AFs
µg kg−1

OTA
µg kg−1 Reference

Europe a Herbal drugs 2 4 [44]

United States Some types of raw medicinal herb materials,
as well as their powder and/or dry extract 5 20 [47,48]

China A total of nineteen different types of TCMs 5 10 [50]

Britain Herbal drugs 2 4 [45]

Korea

Armeniacae Semen, Arecae Semen, Cassiae Semen,
Crotonis Semen, Curcumae Radix, Dolichoris Semen,
Glycyrrhizae Radix et Rhizoma, Nelumbinis Semen,
Myristicae Semen, Persicae Semen, Pinelliae Tuber,
Polygalae Radix, Carthami Flos, Thujae Semen,
Trichosanthis Semen, Zizyphi Semen

10 15 [51]

Indonesia Coconut, spices and traditional drug
medicines/herbs 20 [42]

Canada
Products containing ginseng or any substance
derived from this source, Evening Primrose Oil,
sugar cane, sugar beets, cottonseed

5 20 [49]

Japan Crude drug and preparations containing crude
drugs as main ingredient (crude drug preparations) 10 [52]

Vietnam

Nutmeg
5 10 30

[53]
Ginger and turmeric
Black and white pepper
Licorice root used for herbal tea 20
Licorice extract for beverage or to mix 80

Germany Any materials used in manufacture of medicinal
products (including medicinal herbal products) 2 4 [46]

Argentina Herbs, herbal materials and herbal preparations
used for herbal tea infusions 5 20 [46]

Europe b

Nutmeg

5 10 15

[43]

Ginger
Turmeric
White and black pepper
Dried figs 6 10
Liquorice root, ingredient for herbal infusion 20
Liquorice extract, for use in food in particular
beverages and confectionary 80

a Recommended by European Pharmacopoeia Commission; b Recommended by European Commission.

In order to satisfy the requirements of the recent legislation and to protect consumer health, it is
imperative that sensitive methods be developed for mycotoxin analysis. The development of accurate
and rapid methods for the determination of mycotoxin levels in herbal medicines remains a challenging
task due to the trace level of mycotoxin, as well as the involvement of an extremely complicated matrix.
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Therefore, in contrast to the analytical technology that is utilized in general food and feed, methods for
medicinal herbs typically require modification along with characters of different types of matrixes,
which are primarily embodied in the sample preparation. Numerous reviews have focused on the
occurrence of mycotoxins in herbal medicine [16,33,54–57]; however few provided detailed summaries
of the development of the analytical methods utilized for mycotoxin determination. A previous
review reported by our group in 2012 focused on the development of mycotoxin detection methods in
TCMs [58]. In recent years, the application of biotechnology and nanotechnology has greatly pushed the
analytical techniques forward. Here, this review thoroughly summarizes the advances and progress of
the analytical methods from sampling, pretreatment to detection of mycotoxin contamination in herbal
medicines. In addition, we review the recent development of screening assays used for mycotoxin
detection in herbal medicines.

2. Sampling, Extraction and Cleanup

2.1. Sampling

Sampling plays a critical role in how precise the determination of mycotoxin levels are due to
the fact that the molds that generate mycotoxins do not grow uniformly on the substrate and existing
contamination in natural samples is not homogeneous. A study carried out in 2003 demonstrated that
the actual mycotoxin concentration of a bulk lot cannot be determined with 100% certainty due to the
variability associated with each step in the mycotoxin test procedure. Thus, the sampling procedure
could dramatically impact the final results regarding the determination of mycotoxins [59].

In order to standardize the sampling procedure for mycotoxin testing, Commission Regulation
(EC) No 401/2006 was set in order to lay down the sampling methods and analysis for the official
control of mycotoxin levels in foodstuffs [60]. This was revised in 2010 and 2014, respectively [61,62].
For example, with spices, the incremental samples should be taken depending on the weight of the lot.
In the case of lots that weigh equal to or greater than 15 tons, 100 incremental samples should be taken
from sub lots that make up a 10 kg aggregate sample weight. In the case of samples weighing less than
15 tons, 5 to 100 incremental samples should be taken depending on the lot weight, resulting in an
aggregate sample weight of 0.5 to 10 kg. It should be noted that the earlier legislation Commission
Directive 2002/27/EC also regulates the sampling methods utilized for AF analysis in spices. Certain
distinctions exist between these two regulations. Specifically, according to Directive 2002/27/EC,
when the weight of the lot is less than 15 tons, 10 to 100 incremental samples should be taken that
make up a 1 to 10 kg aggregate sample weight [63].

In addition, the method for sampling bulk and retail herbal material packages has been included
in the guidelines published by the WHO in regard to quality control methods for herbal materials [64].
In terms of sampling from bulk material, when a batch consists of five containers or packaging units,
a sample must be taken from each. In addition, it is also recommended that in the case of batches with
6–50 units, samples from five should be taken. In the case of batches including greater than 50 units,
samples must be taken from 10% of the individual units, and the number of units must be rounded up
to the nearest multiple of 10. In regard to sampling material from retail packages, when each wholesale
container (box, carton, etc.) is selected for sampling, two consumer packages must be taken at random.
In the case of small batches (1–5 boxes), a total of 10 consumer packages should be taken.

In some instances, the sampling plan was carried according to particular experience. For example,
when Philip Müller et al. studied AF contamination of Indian Cassia senna L. (Caesalpinaceae) pods
prior to harvest, during the drying procedure, and during storage, they found it necessary to take a
minimum sample size of 2 kg of the material randomly in order to obtain a representative sample.
In the case of instances when there was greater than 400 kg of the total stock material, over 500 g/100 kg
of pods were selected for analysis [65].

In summary, of the studies published regarding mycotoxin analysis in herbal medicine,
the majority of the samples were randomly collected from two sale terminals (public markets and
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drugstore), while some studies reported the collection of samples from herbal medicine users [66].
In the majority of these reports, a very small quantity of the lot was used in the end for contamination
quantification. However, only few studies provided a detailed description of the sampling procedure
used [67,68]. The sampling step typically represents the largest source of error due to the extreme
distribution of mycotoxins among kernels within the lot [59]. Therefore, a reasonable sampling plan
will help to minimize the risk of misclassifying the product, which could further facilitate trade as
well as provide consumer protection. Thus, it is suggested that researchers pay more attention to the
sampling procedure in the future studies.

2.2. Extraction Procedure

The purpose of extraction is to remove mycotoxin from the herbal medicine matrix as much as
possible into a solvent that is suitable for subsequent cleanup or direct analysis. The extraction solvent
and method used are the two most important considerations for the extraction procedure.

2.2.1. Extraction Solution

The selection of the extraction solvent depends on several things, including physical and chemical
characteristics of the analyte, solvent cost and safety, the solubility of the non-analyte in the extraction
solvent and subsequent processing steps following extraction. Ideally, the extraction solvent should
remove only the mycotoxin of interest from the sample matrix. However, due to the complex matrix of
herbal medicines and the absence of a completely specific extraction solvent, the extraction solvent
used should be adjusted according to the characteristics of both the analyte and associated matrix.

Currently, the most common solvents used for the extraction of mycotoxins from herbal medicines
are methanol-water and acetonitrile-water (Tables 3 and 4). However, in order to enable higher
extraction efficiencies and lower matrix effects (MEs), the extraction solvents still need to be compared
across many studies. The improved efficiency of acetonitrile-based solvents compared to methanol
has been demonstrated by some groups. It was demonstrated not only for the determination of single
type of mycotoxin present in TCMs, such as FBs [69], but also for ZEN and its related mycotoxins [70],
DON, Nivalenol (NIV) [71], and the simultaneous detection of multiple mycotoxins [13].

In addition to of the commonly used solvents (e.g., methanol and acetonitrile), other solvent types
such as ethanol [72], acetone [73], ethyl acetate [12,74] and chloroform [75,76] are also used sometimes
for mycotoxin extraction from herbal medicines. It should be noted that if ethyl acetate is used as
the extraction solution, an extra defatting procedure may be required prior to cleanup or detection
due to the high levels of fatty matrix compounds that are known to be co-extracted with the ethyl
acetate-containing solvent [12].

There could be clear differences in the recovery as a result of varying the percentage of
organic solvent. Wang and co-workers carried out a study to investigate the effect of five different
methanol/water ratios (75%, 80%, 85%, 90% and 100% methanol) on the simultaneous extraction
of AFB1 and OTA from licorice roots and fritillary bulbs. This study demonstrated that the highest
extraction efficiency was obtained using a methanol/water ratio of 85% [77]. Another group reported
a method for simultaneous determination of seventeen mycotoxins in Puerariae lobatae radix. In
this study, acetonitrile/water (90:10, v/v) was selected as the extraction solvent after comparing the
extraction efficiency of three different ratios (80%, 90% and 100%) of an acetonitrile/water solvent
system [78].

The necessity to compare the proportion of organic solvent was more systematically demonstrated
by a recent report regarding the analysis of AFs in TCMs. In this study, the matrix was divided into
several types (volatile oils, proteins, polysaccharides and fatty oils), and five different ratios of aqueous
methanol solutions were evaluated as the extraction solvent for each type. These studies demonstrated
that a 75% aqueous methanol solution was the optimal solvent for volatile oils, while a ratio of 85%
was optimal for proteins and 70% for polysaccharides and fatty oils [79].
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Table 3. Overview on HPLC methods in mycotoxins analysis in herbal medicines.

Mycotoxin Detection Sample Extraction Solution Extraction Method Cleanup LOD LOQ Reference

AFs HPLC-FLD post-column
Photochemical derivatization Ginseng, ginger Methanol-10 mM PBS containing

1% Tween 20 (80:20, v/v) Shaking IAC 0.1 ng g−1 for AFB1 1 ng g−1 for AFB1 [80]

AFs HPLC-FLD post-column
Photochemical derivatization Ginger Methanol-0.5%

NaHCO3 solution (70:30, v/v) Shaking IAC [81]

AFs HPLC-FLD post-column
Photochemical derivatization

Ginseng, ginger, kava
kava, black cohosh,
echinacea, valerian

Acetonitrile–water (84:16, v/v) Shaking IAC [82]

AFs HPLC-FLD post-column
Photochemical derivatization Glycyrrhiza uralensis Methanol-water (80:20, v/v) Sonicating IAC 0.015–0.06 µg kg−1 0.05–0.2 µg kg−1 [83]

AFs HPLC-FLD post-column
Photochemical derivatization Nelumbinis semen Methanol-water (80:20, v/v) Homogenizing IAC 0.03–0.10 µg kg−1 0.06–0.25 µg kg−1 [84]

AFs HPLC-FLD post-column
Photochemical derivatization

Traditional Chinese
medicine Yinpian Methanol-water (70:30, v/v) Sonicating IAC 0.12–0.44 pg 0.31–1.09 pg [85]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Ginger and related
products Methanol-water (80:20, v/v) Sonicating IAC 0.03–0.2 µg kg−1 0.1–0.6 µg kg−1 [86]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Nutmeg Methanol-water (80:20, v/v) Sonicating IAC 0.02–0.06 µg kg−1 0.06–0.2 µg kg−1 [87]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Chinese herbal pieces Methanol-water (70:30, v/v) Sonicating IAC [88]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Coix seed Methanol-water (80:20, v/v) Sonicating IAC 0.01–0.11 µg kg−1 0.04–0.32 µg kg−1 [89]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Fructus Bruceae Methanol-water (80:20, v/v) Sonicating IAC 0.02–0.08 ng mL−1 0.05–0.20 ng mL−1 [90]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Shujin Huoxue pills Methanol-water (70:30, v/v) Sonicating IAC 0.26–1.04 pg [91]

AFs HPLC-FLD post-column
Photochemical derivatization

Sterculiae
Lychnophorae Methanol-water (70:30, v/v) Sonicating IAC 0.0144–0.0528 µg L−1 0.0288–0.1056 µg L−1 [92]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Spices Methanol-water (70:30, v/v) or
Methanol-water (80:20, v/v) Shaking IAC 0.01 ng g−1 for each AF [93]

AFs
HPLC-FLD
post-column
Photochemical derivatization

Red pepper, black
pepper, turmeric
and cinnamon

Methanol-water (80:20, v/v) Homogenizing IAC 0.02–0.08 ng g−1 [38]
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Table 3. Cont.

Mycotoxin Detection Sample Extraction Solution Extraction Method Cleanup LOD LOQ Reference

AFs
HPLC-FLD
post-column
Photochemical derivatization

Six kinds of
medicinal herbs Methanol-water (70:30, v/v) Homogenizing IAC 0.04–0.2 µg kg−1 0.25–1.0 µg kg−1 [94]

AFs
HPLC-FLD
post-column bromination
derivatization

Twelve kinds of spices Methanol-water (80:20, v/v) IAC 1 µg kg−1 [95]

AFs
HPLC-FLD
post-column bromination
derivatization

Thirty seven TCMs Methanol-water (70:30, v/v) Sonicating IAC 0.06–0.20 µg kg−1 [96]

AFs
HPLC-FLD
post-column bromination
derivatization

Thirty three species of
medicinal herbs and
11 kinds of patent
medicines

Methanol-water (70:30, v/v) Sonicating IAC [97]

AFs
HPLC-FLD
post-column bromination
derivatization

Herbal plants Methanol-water IAC 0.03–0.3 µg kg−1 0.05–0.7 µg kg−1 [98]

AFs HPLC-FLD
post-column iodine derivatization Nighteen TCMs Methanol-water (70:30, v/v) Sonicating IAC 0.22–0.75 µg kg−1 [99]

AFs HPLC-FLD
post-column iodine derivatization

Bulbus Fritillariae
Thunbergii, Fructus
Schisandrae Chinensis,
Fructus Crataegi,
Fructus Mume

Methanol-water (70:30, v/v) Sonicating IAC 0.06 µg kg−1 0.3 µg kg−1 [100]

AFs HPLC-FLD
post-column iodine derivatization Sixteen plant species Methanol-water (80:20, v/v) Homogenizing IAC 0.5 µg kg−1 for AFB1 [101]

AFs HPLC-FLD
post-column iodine derivatization

Citri Reticulatae
Pericarpium Methanol-water (70:30, v/v) Shaking IAC 0.19–0.24 µg kg−1 [102]

AFs HPLC-FLD
post-column iodine derivatization

Proprietary Chinese
medicines Methanol Sonicating GO-based dSPE 0.020–0.041 ng mL−1 0.061–0.125 ng mL−1 [103]

AFs
HPLC-FLD
post-column derivatization with
electrochemically generated bromine

Twenty-eight samples
of herbal medicinal
products

Methanol-water (80:20, v/v) Homogenizing IAC 0.04 ng g−1 [104]

AFs
HPLC-FLD post-column
derivatization with
electrochemically generated bromine

Five kinds of medicinal
herbs Methanol-water (70:30, v/v) Sonicating IAC 0.05–0.1 ng g−1 [105]
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Table 3. Cont.

Mycotoxin Detection Sample Extraction Solution Extraction Method Cleanup LOD LOQ Reference

AFs

HPLC-FLD
post-column derivatization
with electrochemically
generated bromine

One hundred and three
samples of different
kinds of spices and
herbs

Methanol-water (80:20, v/v) Shaking IAC 0.2–0.5 µg kg−1 0.6–1.5 µg kg−1 [67]

AFs
HPLC-FLD
post-column derivatization with
electrochemically generated bromine

Dried figs Methanol-water (80:20, v/v) IAC 0.1 ng g−1 [106]

AFs
HPLC-FLD
post-column derivatization with
electrochemically generated bromine

Citri Reticulatae
Pericarpium Methanol-water (70:30, v/v) Shaking IAC 0.10–0.18 µg kg−1 [102]

AFs
HPLC-FLD
post-column derivatization with
electrochemically generated bromine

One hundred and
eighty five functional
food and 56 herbal
medicines

Methanol-water (70:30, v/v) Shaking IAC 0.07–0.32 ng g−1 0.21–0.96 ng g−1 [66]

AFs HPLC-FLD
pre-column derivatization with TFA White pepper Chloroform-water (100:10, v/v) Silica cartridge

and C18 cartridge 0.006–0.009 µg L−1 [75]

AFs HPLC-FLD
pre-column derivatization with TFA

Ninety one spice
samples Methanol-water (80:20, v/v) Shaking IAC 0.1–0.2 µg kg−1 [76]

AFs HPLC-FLD
pre-column derivatization with TFA

Twenty three
commercial traditional
herbal medicines

Methanol-water (70:30, v/v) Shaking IAC 0.01 µg kg−1 [107]

AFs HPLC-FLD
pre-column derivatization with TFA Ginseng roots Methanol-water (80:20, v/v) Shaking IAC 0.1 ng g−1 for AFB1 [108]

AFs HPLC-FLD
pre-column derivatization with TFA

Eighty eight spices and
processed spice
products

Methanol-water (70:30, v/v) Shaking IAC 0.01–0.15 µg kg−1 0.03–0.45 µg kg−1 [109]

AFs HPLC-FLD
pre-column derivatization with TFA

Eight kinds of
medicinal herbs Methanol-water (80:20, v/v) Blending IAC 0.02–0.09 ppb [110]

AFs HPLC-FLD
pre-column derivatization with TFA Pu-erh tea Acetonitrile-water (84:16, v/v) Shaking SPE [111]

AFs HPLC-FLD
pre-column derivatization with TFA

One hundred and
eighty five functional
food and 56 herbal
medicines

Methanol-water (70:30, v/v) Shaking IAC 0.32–2.28 ng g−1 0.95–6.83 ng g−1 [66]

AFs HPLC-FLD
pre-column derivatization with TFA

Black, White and Green
Peppers Acetonitrile-water (60:40, v/v) Blending IAC 0.01–0.5 ng mL−1 0.05–2.5 ng mL−1 [112]

AFs HPLC-FLD Maytenus ilicifolia Methanol-water (70:30, v/v) Sonicating IAC 0.1–3.5 ng g−1 [68]

AFs UPLC-FLD Ginger and related
products Methanol-water (80:20, v/v) Sonicating IAC 0.005–0.2 µg kg−1 0.0125–0.5 µg kg−1 [113]
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Table 3. Cont.

Mycotoxin Detection Sample Extraction Solution Extraction Method Cleanup LOD LOQ Reference

OTA HPLC-FLD
Fifty-seven traditional
Chinese medicinal
plants

Methanol-water (80:20, v/v) Sonicating IAC 0.3 µg kg−1 0.8 µg kg−1 [114]

OTA UPLC-FLD Ginger Acetonitrile–water (60:40, v/v) Sonicating MIP-SPE 0.09 ng mL−1 0.30 ng mL−1 [115]

OTA UPLC-FLD Ginger powder Acetonitrile–water (60:40, v/v) Sonicating AAC 0.5 µg kg−1 1.5 µg kg−1 [116]

OTA HPLC-FLD Ginseng, Ginger Methanol-1%
NaHCO3 solution (70:30, v/v) Shaking IAC 0.1 ng g−1 1 ng g−1 [80]

OTA HPLC-FLD Ginger Methanol-0.5%
NaHCO3 solution (70:30, v/v) Shaking IAC [81]

OTA HPLC-FLD Glycyrrhiza uralensis Methanol-water (80:20, v/v) Sonicating IAC 0.25 µg kg−1 0.75 µg kg−1 [83]

OTA HPLC-FLD Ginger and
related products Methanol-water (80:20, v/v) Sonicating IAC 0.3 µg kg−1 0.9 µg kg−1 [86]

OTA HPLC-FLD Nutmeg Methanol-water (80:20, v/v) Sonicating IAC 0.25 µg kg−1 0.8 µg kg−1 [87]

OTA HPLC-FLD Spices Acetonitrile–water (60:40, v/v) Shaking IAC 0.10 ng g−1 [93]

OTA HPLC-FLD
Black pepper, white
pepper and spice
mixture samples

1M phosphoric acid-chloroform
(10:100, v/v) Shaking IAC 0.2 µg kg−1 [76]

OTA UPLC-FLD Ginger and related
products Methanol-water (80:20, v/v) Sonicating IAC 0.1 µg kg−1 0.3 µg kg−1 [113]

CIT HPLC-FLD Red mold rice Ethanol-water (75:25, v/v) Shaking [72]

CIT HPLC-FLD
Red yeast rice,
medicinal plants and
their related products

Methanol-water (70:30, v/v) Vortexing IAC 0.8 µg kg−1 2 µg kg−1 [117]

CIT HPLC-FLD Red fermented rice Methanol-water (80:20, v/v) Sonicating 0.0005 µg mL−1 0.001 µg mL−1 [118]

DON, NIV HPLC-UV Thirty samples of
TCMs Acetonitrile-water (80:20, v/v) Homogenizing SPE

63 µg kg−1 for DON
and 50.0 µg kg−1

for NIV

125.0 µg kg−1 for
DON and
100.0 µg kg−1

for NIV

[71]

ZEN HPLC-FLD
One hundred and seven
samples of Chinese
medicinal herbs

Methanol-water (80:20, v/v) Homogenizing IAC 9.5 µg kg−1 [119]

ZEN HPLC-ELSD Barley Methanol Blending QuEChERS 1.56 ng g−1 [120]

ZEN,
α-ZOL,
β-ZOL

HPLC-FLD Coix seed Methanol-water (80:20, v/v) Sonicating IAC 11.7–50.2 µg kg−1 29.3–125.5 µg kg−1 [89]

FB1, FB2,
FB3

HPLC-FLD
pre-column derivatization
with o-phthaldialdehyde

Sixteen plant species Methanol Homogenizing SPE 5 µg kg−1 for FB1 [101]
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Table 4. Examples of analytical methods for mycotoxins analysis by LC-MS/MS in herbal medicine.

Mycotoxin Sample Extraction Solution Extraction Method Cleanup LOD LOQ Reference

AFs Zizyphi Fructus SFE Without purification 0.17–0.32 ng g−1 0.56–1.05 ng g−1 [121]

AFs One hundred and seventy four
samples from 50 medicinal herb species Methanol-water (70:30, v/v) Sonicating IAC 0.135–0.883 µg kg−1 [122]

AFs Lotus seeds Methanol-water (80:20, v/v) Blending IAC 0.003–0.007 µg kg−1 0.010–0.020 µg kg−1 [123]

AFs Mucuna pruriens, Delphinium
denudatum, and Portulaca oleraceae Methanol-water (70:30, v/v) Sonicating IAC 0.28–1.10 µg kg−1 0.79–3.34 µg kg−1 [124]

AFs Armeniacae Semen Amarum Acetonitrile-water (84:16, v/v) Vortexing Without purification 5.200–6.300 ng L−1 10.40–12.60 ng L−1 [125]

AFs Walnut kernel Methanol-water (70:30, v/v) Sonicating

Self-made amino
-function nanometre
Fe3O4 magnetic
polymer SPE

0.004–0.013 µg kg−1 0.012–0.042 µg kg−1 [126]

AFs Twenty two TCMs matrix types
Methanol-water (70:30, v/v),
Methanol-water (75:25, v/v),
Methanol-water (85:15, v/v)

Sonicating, shaking,
and homogenizing C18-SPE 0.008–0.022 µg kg−1 0.011–0.029 µg kg−1 [79]

AFs, OTA Glycyrrhiza uralensis Methanol-water (80:20, v/v) Sonicating IAC 0.003–0.007 µg kg−1 0.010–0.020 µg kg−1 [127]

AFB1, OTA Licorice roots, fritillary bulbs Methanol-water (85:15, v/v) Sonicating C18-SPE 0.012 µg kg−1 for AFB1,
0.024 µg kg−1 for OTA

0.035 µg kg−1 for AFB1,
0.095 µg kg−1 for OTA

[77]

AFs, OTA, ST Two-hundred and forty-four samples
of 25 types of widely used TCMs Acetonitrile–water (84:16, v/v) Soaking and shaking 0.1–25.0 ng L−1 [128]

AFB1, AFB2, AFG1,
AFG2, AFM1, AFM2

Thirty TCMs Acetonitrile–water (84:16, v/v) Homogenizing Home-made mixed
cartridge 0.07–0.26 µg kg−1 0.10–0.73 µg kg−1 [129]

AFs, PAT Chinese patent medicines Acetonitrile–water (84:16, v/v) Vortexing Mycosep 228 Aflapat
mutifutional column 0.1–1 µg kg−1 [130]

OTA Five types of TCMs Acetonitrile–water (60:40, v/v) Soaking AAC 0.5–0.8 µg kg−1 1.5–2.5 µg kg−1 [131]

PAT
Fructus crataegi, fructus mume,
pericarpium citri reticulatae, fructus
aurantii

Pectinase enzymolysis and
acetonitrile-water (60:20, v/v)
extraction

Blending dSPE and
Mycrosep228AlaPat 0.3–0.5 µg kg−1 [132]

OTA, PAT Seventy nine samples of various spices
and herbs

Methanol-water (3:1, v/v) for
FBs, acetonitrile–water
(60:40, v/v) for OTA

Homogenizing for
FBs, soaking for OTA

SAX cartridge for FBs,
and IAC for OTA

0.1 ng g−1 for OTA,
0.5–1.0 ng g−1 for FBs

[133]

ZEN, α-ZOL Twenty five TCMs Methanol-water (80:20, v/v) Shaking IAC 0.6 µg kg−1 1.2 µg kg−1 [134]

ZEN, α-ZOL, β-ZOL,
ZAN, α-ZAL, β-ZAL

Thirty-three commercially available
dried TCMs Acetonitrile–water (60:40, v/v) Soaking and

Homogenizing
Home-made cleanup
cartridge 0.06–0.79 ng mL−1 0.13–0.99 ng mL−1 [70]

T2, HT-2, NEO,
and DAS Coix seed Acetonitrile–water (84:16, v/v) Sonicating Magnetic SPE 0.3–1.5 µg kg−1 [135]

FB1, FB2 and FB3 Four types of dried TCMs Acetonitrile–water (50:50, v/v) Soaking and
homogenizing

MultiSep 211 Fum
columns 0.05–0.10 ng mL−1 0.08–0.16 ng mL−1 [69]
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Table 4. Cont.

Mycotoxin Sample Extraction Solution Extraction Method Cleanup LOD LOQ Reference

CIT Twenty seven TCMs Methanol-water (70:30, v/v) Shaking IAC 1.0 µg kg−1 2.5 µg kg−1 [136]

ENNs and BEA Sixty types of dried Chinese
medicinal herbs Methanol Shaking Without purification 0.8–1.2 µg kg−1 2.5–3.7 µg kg−1 [32]

23 mycotoxins Botanical food supplements Ethyl acetate-formic acid
(95:5, v/v) Shaking Oasis HLBTM SPE

cartridges 0.3–30 ng g−1 1–100 ng g−1 [12]

22 mycotoxins Raw tea and herbal infusion materials Ethyl acetate-formic acid
(99:1, v/v) Shaking NH2-SPE and C18-SPE

column 2.1–122 µg kg−1 4.1–243 µg kg−1 [74]

35 mycotoxins Four types of dried TCMs Acetonitrile–water (84:16, v/v) ASE Homemade Cleanup
Cartridges 0.01–1.56 µg kg−1 0.11–1.86 µg kg−1 [13]

15 mycotoxins Milk thistle samples (seeds and extract)
30 mM NaH2PO4 buffer pH 7.1
and 5% formic acid
in acetonitrile

Vortexing QuEChERS 0.45–459 µg kg−1 1.5–1530 µg kg−1 [137]

17 mycotoxins Puerariae lobatae radix Acetonitrile–water (90:10, v/v) Sonicating
PuriToxSR TC-M160
MultiPurification
Column

0.00203–1.06 µg kg−1 0.0488–4.97 µg kg−1 [78]

10 mycotoxins Panax notoginseng Acetonitrile Sonicating HLB multifunction
cleanup column 0.043–2.9 µg kg−1 0.15–8.6 µg kg−1 [138]

11 mycotoxins Morinda officinalis Methanol-water (80:20, v/v)
containing 0.1% formic acid Vortexing Without purification 0.02–4.00 ng mL−1 0.06–10 ng mL−1 [139]

8 mycotoxins Angelica sinensis PBS and 5% formic acid in
acetonitrile vortexing QuEChERS 0.005–0.125 µg kg−1 0.0625–0.25 µg kg−1 [140]

8 mycotoxins Chinese yam and related products Methanol-water-formic acid
(79:20:1, v/v/v) Sonicating Without purification 0.02–0.15 ng mL−1 0.06–0.50 ng mL−1 [141]

21 mycotoxins Radix Paeoniae Alba PBS and 5% formic acid in
acetonitrile Vortexing Modified QuEChERS 0.03–5.36 µg kg−1 0.20–22.50 µg kg−1 [142]

11 mycotoxins Areca catechu Methanol-water (80:20, v/v) Soaking and vortexing Without purification 0.1–20 µg kg−1 0.25–50 µg kg−1 [143]

11 mycotoxins Malt Acetonitrile-water-acetic acid
(80:19:1, v/v/v) Sonicating Without purification 0.01–5.85 ng mL−1 0.03–17.5 ng mL−1 [144]

11 mycotoxins Three types of ground herbs Acetonitrile-water (50:50, v/v) Shaking A buffered
QuEChERS SPE 0.5–4.0 µg kg−1 1.5–12 µg kg−1 [145]

11 mycotoxins Alpinia oxyphylla Acetonitrile -water-acetic acid
(79:20:1, v/v/v). Sonicating Without purification 0.03–6.00 µg kg−1 0.10–20.0 µg kg−1 [146]

ZEN and type A
trichothecenes Salviae Miltiorrhizae Radix et Rhizoma Acetonitrile-water (84:16, v/v) Soaking and

sonicating Fe3O4/MWCNT 0.45–1.80 µg kg−1 1.20–4.80 µg kg−1 [147]
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A large portion of methanol or acetonitrile is used as an extraction solvent; however, a low portion
of organic solvent is sometimes helpful in order to obtain satisfactory results. For example, when
type A trichothecenes in coix seed were determined in the work of Dong et al., it was found that the
percentage of acetonitrile used in the extraction solvent was critical. Specifically, the recoveries were
found to increase along with decreasing acetonitrile percentage. When 2% acetonitrile was applied,
satisfactory recoveries were obtained for all mycotoxins analyzed [135]. This could be explained by
the fact that the material involved in the subsequent procedure for cleanup was easy to disperse into
the aqueous solution, leading to an efficient purification.

Additional reagents were sometimes required to assist in the extraction. For example, acid
(e.g., formic acid, acetic acid) and salt were required for the analysis of mycotoxins. Some studies
have implied that the addition of proper ratio of formic acid to the extraction solvent could improve
recoveries of AFs and FBs [139,141,148]. Higher recoveries and lower MEs were obtained with
the addition of 1% acetic acid to the extraction solvent when 11 mycotoxins were simultaneously
determined in malt [144]. The addition of proper NaHCO3 into the extraction solution could function
to improve the recoveries of AFs and OTA in ginseng and ginger matrices [80].

The addition of water typically improves the extraction efficiency due to the fact that water
increases penetration of the solvent into the material by breaking interactions between toxins and
other sample constituents, such as proteins or sugars [149]. However, it should be noted that
solvent including water was not tolerated in the case of some matrices. In a study carried out
by Chen et al. [138], the extraction solvent was optimized for the determination of 10 mycotoxin
contaminants in Panax notoginseng. This study demonstrated that water would make a lot of saponins
dissolve, which significantly affected the detection signal. Therefore, it was found that a 100%
acetonitrile solution was the optimal solvent.

Often, if the efficiency of the one step extraction is satisfactory, it is not necessary to repeat the
extraction. Otherwise, two types of solvents can be used successively to carry out a two-step extraction
method in order to obtain increased extraction efficiency [140,142]. In addition, extra management
is required prior to extraction in the case of the detection of certain mycotoxins in herbal medicines.
For example, PAT is prone to combine with a protein that originates from herbs to generate the
complexity of PAT. Therefore, in the case of PAT determination in Fructus Crataegi and Fructus Mume,
samples must be pretreated with pectinase in order to dissociate PAT from protein and obtain the
dissociated PAT molecule [132].

2.2.2. Extraction Method

In addition to the type of extraction solvent used, the extraction method is another critical
determinant of the extraction efficiency. The conventional solid-liquid extraction technology used
for mycotoxin extraction involves the use of ultrasonic extraction, homogenization, and shaking.
Vortexing and blending are also used sometimes for the detection of mycotoxins in herbal medicines.
When selecting the extraction method, the matrix constitution should be considered. A recent report
demonstrated that samples with different matrix types required their own specific extraction method.
For example, in the case of matrices with high fatty oil and polysaccharide contents that are more
viscous, an ultrasonography extraction method was found to be prone to aggregating the extracts and
thereby prevented the dissolution of AFs from the matrices [79].

The extraction time required, as well as the number of samples analyzed, is also important
considerations. Homogenization represents the most rapid method in comparison to other methods,
with an extraction time of only 1–5 min [94,104,129]. However, homogenization is not applicable for
the simultaneous extraction of numerous samples. Therefore, when large numbers of samples must be
processed, an ultrasonic extraction method, which is easy to carry out, represents a good choice, while
shaking requires a longer extraction time [32,79,128].

In addition to the extraction format used, the extraction time must also be optimized in order to
obtain increased extraction efficiencies [79,146]. It should be noted that a too long extraction period
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could result in increased MEs as the starch disperses or forms glue, reducing mycotoxin recovery [150].
In addition, the extraction temperature could also impact extraction recovery. Extraction recovery
has been demonstrated to typically increase with increasing temperature. However, in order to avoid
co-extracting a large fraction of interferes, and to prevent the degradation of unstable mycotoxins, it is
proposed to ensure that an extraction temperature of greater than 40 ◦C not be used [146].

It should be noted that extraction is preceded by a maceration step, which is helpful to obtain the
highest possible extraction efficiency. The addition of water to wet the sample enables the release of
analytes bound to the matrix [151]. In addition, the maceration procedure allows water to dissolve and
remove water-soluble substances that may form a barrier to prevent extraction solvent from reaching
the herb. This step therefore increases the availability of analytes for extraction by the followed
extraction step [152].

As reported by Zhang et al. [148], mycotoxin recoveries were demonstrated to increase with
an increasing soaking time, with a 30 min soaking time found to be adequate. The maceration step
has also been utilized in other studies when mycotoxins were identified in herbal medicines. For
example, the extraction recoveries were found to be significantly improved when the maceration step
was carried out for 20 min followed by a 70 min extraction step [128].

The primary drawback associated with the extraction techniques mentioned above is that they
are solvent and labor intensive. As the number of samples constantly increases, there is an increased
interest in the development of more rapid and automatic approaches for sample extraction. Accelerated
solvent extraction (ASE) is currently one of the most promising isolation procedures using organic
solvents at a high pressure and at temperature above the boiling point [153]. High extraction efficiencies
were obtained by varying significant factors, including extraction pressure, temperature, time, and the
number of cycles. Recently, ASE was applied for the co-extraction of multiple mycotoxins from
different TCMs by Han et al. [13]. This technique was compared to traditional extraction techniques,
including ultrasonic and homogenization methods. The studies demonstrated that the optimal ASE
method exhibited higher extraction efficiency, allowing for complete extraction using a minimum
amount of solvent in a short period of time. This study demonstrated that high temperatures generally
increase the extraction rate by both improving the solubility of the analytes and decreasing the viscosity
and surface tension of the extraction solution. However, it should be noted that higher temperatures
may cause degradation of the analytes or cause the analytes to react with the matrix. Supercritical fluid
extraction (SFE) represents another alternative to the solvent-intensive extraction procedures, and has
gained increased attention in the field in regards to removing influences caused by the matrices. Studies
have demonstrated that analytes can be extracted by changing the pressure and temperature. One of
the most important advantages of SFE over conventional extraction techniques is the pre-concentration
effect, an effect crucial for trace analysis. Studies have demonstrated that mycotoxins could be extracted
by SFE in TCMs. Specifically, Liu et al. [121] demonstrated good recovery results when SFE was used to
extract AFs from Zizyphi Fructus. In this study, the developed SFE procedure was shown to efficiently
eliminate matrix interferences by the removal of the majority of polar substances.

2.3. Cleanup

Considering the low residue level of mycotoxins (generally at µg kg−1 level) and the complex
chemical composition of herbal medicine samples, a cleanup step was required prior to instrumental
analysis in most cases (Tables 3 and 4). This cleanup step may function to further concentrate
mycotoxins in addition to removing sample impurities. A variety of cleanup methods have been
implemented and shown to contribute to the accurate measurement of mycotoxins in herbal medicine,
including solid phase extraction (SPE) and immunoaffinity column (IAC).
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2.3.1. SPE

Conventional SPE

SPE columns with various commercially available packing have been utilized for mycotoxin
cleanup [149,154]. For example, SPE cartridges bonding C-18 sorbent were used to purify AFs from
herbal samples. These are rich in fatty oils in order to protect the columns from damage in the
subsequent test procedure [79], or to perform simultaneous cleanup for AFB1 and OTA in licorice
roots and fritillary bulbs [77]. In addition, a strong anionic exchange (SAX) column was used for
the purification of FBs from African traditional herbal medicines [101], as well as certain herbs and
spices [133].

Satisfactory results were usually obtained using only one type of SPE column for cleanup.
However, in the case of multimycotoxins with various polarities, as well as in the case of complicated
matrices, two types of SPE columns have been proposed to be used in combination. For example,
when multimycotoxins were analyzed in raw tea and herbal infusion materials, a NH2-SPE column
and C18-SPE column were proposed to be used in combination in order to recover all of the described
mycotoxins [74]. In detail, samples were extracted using ethyl acetate/formic acid (99:1, v/v).
The extract was divided into two parts; one part was cleaned up using an NH2-SPE column followed
by a C18-SPE column; another part was passed through the same C18-SPE column. Finally, the two
elutes were combined for analysis. As another example, Ferreira et al. used a silica cartridge followed
by a C18 cartridge in order to purify AFs in pepper [75].

Special SPE

Commercially available columns exist for a single type of mycotoxin (AFs, DON, FBs, etc.).
In addition, multifunctional columns are available for the simultaneous determination of different
groups of mycotoxins. For example, a TC-M160 column was used for the purification step of AFs in
Pu-erh tea [111]. Yue et al. proposed the use of Puri ToxSR TC-T200 DON as a cleanup step for the
simultaneous determination of DON and NIV in TCMs [71]. AFs and PAT in Chinese patent medicines
were simultaneously purified using a mycosep 228 Aflapat multifunctional column [130]. MultiSep 211
Fum columns were used to analyze FBs in TCMs [69]. Mavungu et al. carried out the cleanup procedure
using Oasis HLBTM SPE cartridges to identify 23 mycotoxins in botanical supplements [12]. Chen et
al. purified 10 mycotoxins from Panax notoginseng using a HLB multifunction cleanup column [138].
A TC-M160 column was utilized to purify 17 mycotoxins from Puerariae lobatae radix [78].

Home-Made Cartridge

Because of the diversity of herbal medicine matrices, satisfactory results are not always obtained
when using commercial SPE columns. Therefore, homemade cartridges have been proposed for
mycotoxin cleanup steps in some cases. There are two critical points to bear in mind in regard to
making homemade cartridges, including lower adsorbents of analytes and higher adsorbents of
herbal medicine matrices, such as pigments. Currently, silica gel, alumina, and kieselguhr are three
adsorbent materials that are commonly used for mycotoxin cleanup in herbal medicine matrices.
Wu’s group has published a series of studies regarding the use of homemade cleanup cartridges
for the determination of mycotoxins in TCMs. For example, the silica gel was used for purification
of 35 mycotoxins [13], while the mixture of silica gel and alumina was used to purify AFB1, AFB2,
AFG1, AFG2, AFM1 and AFM2 [129]. In addition, cartridges filled with equal proportions of alumina
base, florisil, and kieselguhr have been used for cleanup of ZEN, α-Zearalenol (α-ZOL), β-Zearalenol
(β-ZOL), Zearalanone (ZAN), α-Zearalanol (α-ZAL), and β-Zearalanol (β-ZAL) [70].

New Absorbents

Despite the conventional types of absorbent available, currently, some advanced nanomaterials
have been used for mycotoxin determination, including carbon nanomaterial and magnetic carbon
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nanomaterial. The primary advantage of carbon nanomaterials is their high adsorption capacities
due to their unique electronic, mechanical, and chemical properties [155]. Graphene oxide (GO) is the
oxidized derivative of graphene, which is a type of representative carbon nanomaterial. GO is rich in
oxygen atoms on the surface, including epoxy, hydroxyl, and carboxyl groups. These groups play a
critical role in the formation of hydrogen bonds or electrostatic interactions with organic compounds
containing oxygen- or nitrogen-functional groups. In addition, GO is able to adsorb aromatic rings
from certain organic compounds through strong π-π interactions [155]. Recently, GO was used for the
first time in the pre-concentration step in the extraction of AFs from traditional proprietary Chinese
medicines [103]. The stacking between the benzene rings of AFs and GO, in addition to the hydrogen
bonds formed between the oxygen containing groups contained in AFs and GO could be responsible
for the adsorption of AFs on GO absorbent. However, in this report, a single pretreatment by GO was
unable to meet the requirement of sensitive detection. In an effort to remove as much interference as
possible, a cleanup procedure involving an MgSO4/NaCl salt mixture was carried out prior to the GO
pre-concentration step.

Multi-walled carbon nanotubes (MWCNTs) are another type of carbon nanomaterial that is
comprised of several rolled-up graphite sheets. MWCNTs have been demonstrated to adsorb type
A trichothecenes and therefore, were used as SPE sorbents for the purification and enrichment of
mycotoxins in maize, wheat, and rice [156]. In recent studies carried out by Han’s group [135,147],
MWCNTs were incorporated with magnetic material to form magnetic-SPE adsorbents. These could be
collected using an external magnetic field and recycled with a simple washing step, thereby achieving
a rapid and easy protocol. First, magnetic-SPE adsorbents were successfully applied to purify four
type A trichothecenes (T-2, HT-2, DAS and Neosolaniol (NEO)) in coix seed, and were subsequently
used for the simultaneous enrichment and purification of ZEN and four type A trichothecenes in
Salviae Miltiorrhizae Radix et Rhizoma.

While useful for the analysis of mycotoxins, the nanomaterials used in the studies discussed above
were all self-synthetized, which could limit the scope of the application of these materials. In addition,
only AFs, ZEN, and the four type A trichothecenes (T-2, HT-2, DAS and NEO) were investigated.
The appropriate nanomaterials are awaiting evaluation for numerous other types of mycotoxins.

SPE has been demonstrated to be a safe, efficient, and reproducible technique. However, because
herbal medicines are rich in secondary metabolites, including pigments, flavone, essential oils,
polysaccharide, and fatty acids that could interfere with mycotoxin analysis, even if the samples
are purified by SPE extraction, in most cases it still requires highly sensitive and selective detectors,
such as mass detector to meet the requirements (Table 4). Therefore, cleanup methods with higher
specificity are necessary.

2.3.2. IAC

IAC, a method based on the interaction between antigen and antibody, exhibits some merits,
including a minimal loss of mycotoxins and a maximal elimination of interfering substances. Therefore,
compared to SPE extraction, the utilization of IAC as a cleanup procedure could greatly improve the
specificity of subsequent analysis, thereby lowering the requirements of the detector.

For the determination of AFs in herbal medicine, IAC is most frequently used and is an efficient
cleanup method that has been recommended by numerous related official organizations [44,47,50–52].
However, antibodies are prone to the influence of the herbal matrix, and the commonly used IAC
approach therefore typically yields low recoveries [85,87,105,107]. In order to improve the recoveries
of AFs in herbal matrix, numerous studies have been carried out in an effort to analyze potential
factors that could be responsible for low rates of AF recovery. These studies have proposed solutions to
mitigate these factors. For example, in the case of AFs, it was mentioned in the study of Ip et al. [100]
that high extract acidity could lead to low recovery of AFs from certain medicinal herbs, especially
in the case of AFG2. It was suggested that this problem can be reconciled through the use of 0.1 M
phosphate buffer as the dilution solvent, as it has a higher buffering capacity compared to PBS and does
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not contain sodium chloride. Some studies have implied that a higher recovery of AFG2 was achieved
when a more diluted sample extract was applied to the IAC [102,107]. Moreover, other studies [86,87]
have demonstrated that addition of appropriate concentration of Tween-20 could function to improve
AF recovery. However, these solutions were aimed at only a single type of matrix, with little attention
focused on extending the applicability of other types of medicinal herbs. Recently, Yang’s group [94]
carried out a systematic study to investigate critical points during the IAC cleanup procedure that
are crucial for the detection of AFs in medicinal herbs. This group proposed a practical strategy
that would be widely applicable to different types of herbal materials. Specifically, they focused on
three impacts: (1) eliminating the effect of high acidity, (2) reducing the appearance of precipitate
and nonspecific adsorption, and (3) decreasing the ME. These results demonstrated that a satisfactory
recovery could be obtained when the sample extract was diluted in 0.1 M phosphate buffer solution
(pH 7.8, 2% Tween-20) at a 1:8 dilution ratio.

In addition to AFs, there have been reports of using IAC to purify other types of mycotoxins
from herbal medicines, including OTA [114], ZEN [119,134], and citrinin (CIT) [117]. In addition,
certain IACs that can be used to clean up multi-mycotoxins have been proposed for the purification
of mycotoxins from herbal medicines, such as AflaOchra TestTM immunoaffinity column (VICAM,
Milford, MA, USA) [86,87,127], and AflaZearal TestTM immunoaffinity column (VICAM, Milford,
MA, USA) [89].

The development of IAC has greatly improved the specificity of the cleanup method. However,
the antibodies used in IAC sorbent have some down sides, including expensive cost, cross-reactivity,
and poor tolerance to organic solvents.

2.3.3. Aptamer-Affinity Column (AAC)

Aptamers are single-stranded (ss) oligonucleotides that are capable of recognizing target
molecules with high affinity and specificity, similar to the properties of antibodies [157]. Compared
with antibodies, aptamers offer significant advantages, including a lower cost and less labor intensive.
In addition, aptamers that are immobilized on solid phases can be recycled, as they are easily
regenerated within several minutes at room temperature [158,159]. Therefore, aptamers represent a
promising tool for use in mycotoxin cleanup steps from complex matrices.

In 2013, Yang et al. [116] first prepared an OTA AAC using a covalent immobilization strategy.
Next, AAC was successfully used to absorb OTA in ginger powder. In this study, both accuracy and
reusability were compared between AAC and IAC. On one hand, it was found that there was a greater
number of interfering peaks following cleanup with AAC compared to with IAC. However, on the
other hand, no significant differences were found between the recoveries from these two cleanup
procedures. Furthermore, cleanup with AAC was found to be less time-consuming. In addition, it was
found that while AAC could be reused eight times without notable effects on aptamer-binding efficiency
in ginger powder samples, IAC could only be reused four times. It should also be noted that it took only
a few minutes to regenerate AAC for reusing, while it took >12 h for IAC to be regenerated for reuse.

Subsequently, this study [131] thoroughly validated the applicability of AAC for use with various
types of TCM matrices, including fruits, seeds, rhizomes, roots, flowers, grasses, leaves, and animals.
Satisfactory recoveries and enrichment purification effects were obtained using the AAC-based cleanup
method, and this result further indicated that AAC possesses a promising application prospect in
trace analysis.

2.3.4. Molecularly Imprinted Polymers (MIPs)

MIPs are synthetic polymers that are capable of highly specifically recognizing of target analytes.
The analyte retention results from a shape recognition in artificial binding sites that recognize the target
molecule. In the most commonly used preparation process, monomers form a complex with a template
through covalent or non-covalent interactions, and are then joined using a cross-linking agent [160].
MIPs exhibit clear advantages over true antibodies, including a high binding capacity, stability in
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extreme environments, and a relatively low synthesis cost [161]. In addition, MIPs provide promising
advantages for small molecular weight mycotoxins, for which selective antibody development has been
demonstrated to be difficult [162]. However, as summarized by Pereira et al. [149], certain mycotoxins
are too toxic or too expensive to be used in an MIP preparation and can pose a number of problems.
These problems include inconsistent molecular recognition, polymer swelling in unfavorable solvents,
slow binding kinetics, and potential sample contamination by template bleeding.

Molecularly imprinted solid-phase extraction (MISPE) devices for mycotoxin detection have
become commercially available. Cao et al. [115] has demonstrated the use of MIP-based SPE columns
for a cleanup protocol for OTA in ginger. This study demonstrated that MIP exhibited a similar
recovery compared to IAC. In addition, following a simple regenerated procedure, the MIP-based SPE
column exhibited excellent stability, and could be reused at least forty-one times and obtain greater
than 80% OTA recovery rates with ginger samples.

2.3.5. QuEChERS

Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) is a pretreatment technology that
was originally developed in 2003 for pesticide determination [163]. This technology includes an
extraction/partitioning step using acetonitrile and salts followed by a cleanup step that is based on
a dispersive solid-phase extraction (dSPE) [164]. Due to its simplicity to operate, QuEChERS-based
approaches have been used increasingly within the field for the extraction and purification of
multi-mycotoxins from herbal medicine matrices.

During the extraction step, acetonitrile is primarily used as the solvent. However, it has also been
proposed to soak the dry samples in water or PBS/NaH2PO4 buffer prior to the addition of extraction
solvent, a step that is advantageous for later extraction [137,140,148]. In addition, because certain
mycotoxins are pH-sensitive, such as FBs, OTA, and Ochratoxin B (OTB), proper formic acid is typically
added to the acetonitrile in order to generate a low pH to prevent generation of the ionized form,
which could contribute to satisfactory recoveries. For example, in the study that developed a method
for the simultaneous determination of 22 mycotoxins in Pheretima, different ratios of formic acid in
acetonitrile were investigated. This study demonstrated that recoveries of FBs, OTA, and OTB were
less than 10% when using 1% formic acid. While when the percentage of formic acid was increased to
10%, satisfactory recoveries of OTA and OTB were obtained. However, FBs recoveries were only at
40–70%. It was determined that when 15% formic acid was used, FBs recoveries were greater than 80%.
This could be due to the fact that FBs contain more carboxylic acid groups relative to OTA and OTB,
which requires a lower pH in order to maintain their molecular form (a more extractable form) [148].

In regard to the phase separation steps, magnesium sulfate and sodium chloride are typically
used in order to reduce water in the sample. This is sometimes added along with anhydrous trisodium
citrate and sodium citrate dibasic sesquihydrate due to the fact that the citrate system has an amortizing
role, making pH-sensitive mycotoxins, such as FBs, acquire satisfactory recoveries [137,140,142].

In regard to the subsequent cleanup procedure of QuEChERS, C18, primary secondary amine
(PSA) and graphitized carbon black (GCB) are the typically used sorbents. It should be noted that
PSA is prone to absorption of acidic mycotoxins such as FB1 and FB2, while the GCB adsorbent is
prone to adsorption of mycotoxins that possess a planar structure, such as AFB1, AFB2, AFG1, AFG2,
and ST [142].

In some cases, the cleanup step based on dSPE is removed or replaced by another purification
protocol. For example, in the study of Liu et al. [140], a QuEChERS-based extraction protocol was
applied for the simultaneous analysis of 8 different mycotoxins, including AFB1, AFB2, AFG1, AFG2,
OTA, FB1, FB2, and ZEN. The recoveries of these analytes were obtained from 78.9–97.8% only
when an extraction/partitioning step was carried out. In 2013, Arroyo-Manzanares et al. [137]
proposed a method for the determination of 15 mycotoxins in milk thistle using ultra high
performance liquid chromatography-tandem mass spectrometry, which was used to determine FB1,
FB2, NIV, DON, and fusarenon-X (FUS-X) following sample treatment with a modified method
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using a QuEChERS-based protocol. A subsequent cleanup step based on dispersive liquid-liquid
microextraction was used to determine the remainder of the mycotoxins. Using a cleanup step with a
commercial kit was found to result in decreased recoveries of all mycotoxins.

2.3.6. One-Step Extraction

In general, an extra purification procedure is required for sample preparation of herbal medicines.
However, in the case of some relatively simple matrices, it has been shown that it is not necessary to
carry out this further cleanup procedure following extraction [32,139,141,143,144]. This type of protocol
is considered to be a one-step extraction method. The majority of studies used a further concentration
step to improve the sensitivity, or a dilution step to lower MEs. For example, when the method
for the determination of multi-class mycotoxins in Chinese yam was developed, the sample (1.0 g)
was extracted using 4 mL methanol-water-formic acid (79:20:1, v/v/v) with a 20 min ultrasonication
treatment. A total of 1 mL of the extracted material was dried using nitrogen gas and re-dissolved in
0.5 mL methanol-water (50:50, v/v) for analysis [141]. A similar simple pre-treatment protocol was
also used in studies carried out by Liu et al. [139,143]. However, in these studies, a one-fold dilution
was used after extraction in place of the concentration step.

3. Analytical Techniques of Mycotoxins

3.1. Chromatographic Techniques for Detecting/Quantifying Mycotoxins

In addition to Thin-layer chromatography (TLC) methods, chromatographic methods, such as
Liquid Chromatography (LC) and Gas Chromatography (GC) coupled to a specific detector, are the
most commonly used techniques to date for obtaining highly accurate results. In the case of single
mycotoxin analysis, e.g., AF, ochratoxin, the traditional LC with a FLD detector is the most widely used
method for herbal medicine matrices. Currently, the co-occurrence of multiple mycotoxins has gained
increasing attention. Therefore, liquid chromatography–tandem mass spectrometry (LC-MS-MS) is the
technique choice for the simultaneous determination of various mycotoxins that belong to different
chemical families.

3.1.1. TLC Method

Since the discovery of AFs in 1961, TLC has been the traditional method used for the analysis of
mycotoxins [165]. Along with the increased demand for data accuracy, separation and quantitation
procedures have been gradually improved from TLC to HPLC. A review by Honma et al. [166] showed
that the determinations of AFB1 in maize samples were mainly carried out using TLC methods in 1978.
However, the percentage of TLC methods usage has been shown to decrease to 48% in 1989, and to
7% in 2002.

Currently, TLC methods are still recommended for the detection of AF in any plant material in
the USP [47]. Due to a low detection cost and less demand on equipment, TLC methods are sometimes
applied for the screening of mycotoxins in raw herbal drug materials when fungal analysis and related
mycotoxin contamination are explored. Some examples are presented in Table 5.
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Table 5. Representative TLC methods for mycotoxin detection in herbal medicines.

Sample Mycotoxin Reference

A total of 152 samples, belonging to 56 species of
medicinal herbs AFB1, AFB2, AFG1, AFG2, ZEN, T-2, NEO, DON [167]

Ninety-one samples of medicinal herbs, composed
by 65 different plant species AFB1, AFB2, AFG1, AFG2, OTA [168]

A total of 30 raw materials comprising five samples
of each medicinal AFB1 [169]

A total of 68 powdered samples AFB1, AFB2, AFG1, AFG2, CIT, ST [170]

A total of 25 sun dried freshly stored fruit samples of
and 25 powdered of Emblica officinalis,
Terminalia bellirica, Terminalia chebula

AFB1, AFB2, AFG1, AFG2 [171]

Eighty samples consisting of 20 each of four
medicinal plants AFB1, AFB2, AFG1, AFG2 [172]

Two random samples of two different plant materials AFB1, AFG1, CIT, Griseofulvin, OTA, ST [173]

Thirty different samples of medicinal plants AFB1, AFB2, AFG1, AFG2, OTA [174]

Ten sun dried one year stored crude drug samples AFB1, AFB2, AFG1, AFG2 [175]

A total of 210 samples randomly bought from
traditional medical practitioners AFB1, AFB2, AFG1, AFG2 [176]

A total of 63 samples which includes 38 different
types of commonly used herbs, herbal products,
spices, and food materials

AFB1, AFB2, AFG1, AFG2 [177]

Eighteen samples of 6 different types AFB1 [178]

3.1.2. LC Technique

High-performance liquid chromatography (HPLC) with a FLD detector is perhaps the most
commonly and widely used approach for AF determination in herbal medicine matrices, and has
been recommended in pharmacopeia in numerous countries and regions [44,47,50–52]. AFB1 and
AFG1 fluorescence is significantly quenched using aqueous solvent mixtures in reverse-phase
chromatography. Therefore a derivatization reaction is typically carried out for determination. Over the
past fifteen years, both pre- and post-column derivatization protocols have been proposed.

In the case of pre-column derivatization, the sample should be derived prior to the detection
procedure. Trifluoroacetic acid (TFA) is the commonly used derivatization regent [66,75,76,107–112].
In general, the pre-column derivatization process involves a complex and time-consuming
concentration procedure that cannot be performed by an on-line operation.

Compared to pre-column derivatization, post-column derivatization was reported more. Three
types of post-column derivatization methods have been proposed including chemical, photochemical,
and electrochemical derivatization methods. For chemical derivatization, iodine and pyridinium
hydrobromide perbromide are typically used as derivatization reagents, and an additional pump
and heating system is typically used [95–103]. Therefore, the post-column electrochemical and
photochemical derivatization methods have obvious advantages, due to the fact that the operating
procedures are easier to carry out and that they provide a higher sensitivity and wider linearity
range [66,90,102].

Due to the complicated chemical constitution in herbal medicines, interference from sample
matrices may be encountered at the retention times of analytes, resulting in incorrect identification
of analyte. As a rule, these results require further confirmation using more reliable detectors, such
as mass spectrometry, which is most commonly used in studies. However, some studies have also
proposed an alternative strategy for the analyte confirmation. This strategy involves comparing
HPLC chromatograms of sample extract with derivatization and underivatization for the fluorescence
intensities of AFB1 and AFG1. In addition, they propose to perform re-measurements by adjusting the
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polarity of the mobile phase in order to overcome interference problem [88,93,107]. This technique
provides a practical approach for laboratories without an expensive mass spectrometer.

The high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method
has also been proposed to use for the determination of OTA in herbal medicines [76,80,81,93,114].
In addition, the simultaneous determination of AFs and OTA using HPLC-FLD was recently
developed [83,86,87]. This is likely attributed to the successful application of AlflaOchra TestTM

immunoaffinity columns in the herbal medicine matrix pretreatment, allowing for the simultaneous
purification of AF and OTA.

While less investigated compared to AF and OTA, the determination of some other mycotoxins
in herbal medicine matrices using HPLC-FLD was proposed, including CIT [72,117,118], ZEN [119],
and FBs [101].

Recently, ultra-high performance liquid chromatography (UPLC) was used to analyze mycotoxins
in herbal medicines [113,115,131]. Compared to traditional HPLC, UPLC was demonstrated to
significantly improve chromatographic resolution and sensitivity and reduce the analysis cycle. These
properties are suitable for high-throughput detection of trace complex mixtures. The technological
progress of UPLC deserves mention: In 2012, Waters launched and trademarked the Waters®

ACQUITY® UPLC® Fluorescence (FLR) Detector with a large volume flow cell. It can be used to detect
AFs without derivatization. Wen et al. [113] combined UPLC with FLR in order to develop a method
for the simultaneous analysis of AFs and OTA in ginger and other related products. Compared to their
prior work using HPLC-FLD and post-column photochemical derivatization [86], a comparable AFB1

and AFG1 sensitivity and an obviously increased AFB2 and AFG2 sensitivity were achieved in only
half of the measurement time.

In addition to FLD and MS, other detectors have also been combined with HPLC for the detection
of mycotoxins in herbal medicines, including UV and ELSD. Yue et al. [71] developed a method for
the simultaneous determination of DON and NIV in TCMs using HPLC-UV. While the sensitivity
of this method was found to be decreased relative to that obtained using GC-ECD [179], the sample
pretreatment protocol was more efficient for routine analysis, as it did not include a derivatization
step. The work of Wu et al. [120] demonstrated that their HPLC-ELSD method provided a convenient
and reliable alternative to commonly used HPLC-FLD methods for the rapid determination of ZEN
content, as it used a relatively simple QuEChERS method for sample cleanup.

As depicted in Table 3, the method based on HPLC/UPLC with FLD or UV for mycotoxin analysis
in herbal medicine matrices typically involves a sample pretreatment step with sufficient selectivity
such as IAC. This greatly narrows its application, as IACs are not available for all mycotoxin types.

Along with the popularization of modern MS technology, LC-MS/MS has been used increasingly
for the quantitative analysis of mycotoxins in herbal medicine matrices in recent years. As depicted
in Table 4, an upward trend is seen to be developing for the method used for the simultaneous
determination of mycotoxins with great chemical diversity. This is something that is not achievable
using HPLC with fluorescent or UV detection. Currently, it has been demonstrated that as many as
35 different toxins can be detected within one run by LC-MS/MS in herbal medicine matrices [13].

However, when using electrospray ionization, the ME will present a significant challenge that will
affect the quantitative accuracy of determination by LC-MS/MS in complicated samples [180]. Primarily,
different analytes vary with MEs, and substantial variations in signal suppression/enhancement
exist between different sample matrices [13,146]. This leads to a challenging compensation. It is
assumed that the use of an external matrix-matched calibration or an internal standard (IS) can
function to minimize variations between samples. Stable isotopically labeled internal standards
(SILIS) have been demonstrated to provide significant benefits for the correction of signal deviation,
as they possess very similar chemical properties and identical retention times as the non-labeled
substances [181]. However, SILIS are not commercially available for all mycotoxins, and many of these
SILIS are very expensive. Therefore, reports involving SILIS are only aimed towards the analysis of
a single type of mycotoxin [32,69,129]. Currently, due to easily operating, external matrix-matched
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calibration is commonly used to circumvent MEs for the simultaneous determination of multiple
mycotoxins [74,78,135,137,138,141,142,145–148]. In order to ensure reliable quantitation, some studies
combine ISs and the matrix calibration in order to eliminate MEs [13,70,139,143]. In some conditions,
standard addition was carried out in order to correct quantitative analysis when matrix-matched
calibration was unable to be applied due to matrix differences between different samples [12].

3.1.3. GC Technique

GC was used as an alternate method for mycotoxin determination, especially when MS detectors
are widely used. This allows for simultaneous qualitative and quantitative measurements of
single or multiple analytes. An additional derivatization step, such as silylation or acylation,
is commonly required following sample cleanup treatment. This is due to the fact that some
mycotoxins are not sufficiently volatile at the column temperature, or cannot be converted into
volatile derivatives [154,182,183].

As summarized by Lattanzio et al. [184] and Meneely et al. [154], there were numerous studies
regarding the application of GC or GC-based methods for the determination of trichothecenes in food
and feed samples. However, only few studies have addressed herbal medicine matrices. In 2009,
the method for determination of T-2 toxin in traditional Chinese herbal medicines using GC-ECD was
developed by Yue et al. [185]. In order to improve the selectivity and sensitivity of this method, an
immunoaffinity column was used to purify the analyte in place of gel permeation chromatography
filled with Bio-Beads S-X3 and Mycosep 225 column, which were used for the cleanup protocol in
earlier studies [186,187]. Derivatization was carried out using 50 µL 25% (v/v) n-(heptafluoro-n-butyl)
imidazole (HFBI) solution at 60 ◦C for 1 h. The derivatized heptofluorobuturyl ester was then extracted
using 50 µL n-hexane and 200 µL aqueous sodium bicarbonate (4%) for determination. The limit of
detection (LOD) of this method was determined to be 2.5 µg kg−1. This LOD was significantly lower
than the LOD of 100 µg kg−1 achieved in an earlier study regarding T-2 detection in grain matrix [186].
In 2010, a similar sample pretreatment and derivatization protocol was successfully applied for DON
detection in medicinal herbs and related products using the GC-ECD method [179]. The LOD and
limit of quantification (LOQ) were determined to be 2.0 µg kg−1 and 5.0 µg kg−1, respectively, which
met the most rigid European regulatory standard (200 µg kg−1). This method was applied for the
analysis of real samples. Positive samples with DON contamination levels were found to range from
17.2 to 50.5 µg kg−1, which was further confirmed using GC-MS. In 2012, Kong et al. [188] further
extended this method for the simultaneous determination of T-2 and HT-2 toxins. Following thorough
validation, this was used for the analysis of TCMs and related products from various sources.

While high sensitivity was achieved, no significant advances were reported in relation to GC or
GC-based methods for the analysis of mycotoxins in herbal medicine matrices in the past five years.
This is likely attributed to the increasing application of LC-MS technology, which is more efficient in
regards to time and can be carried out in the absence of complex derivatization procedure.

3.2. Rapid Screening Technologies for Mycotoxin Analysis

Rapid screening assays are critical tools for monitoring mycotoxin levels in herbal medicines.
Most immunological techniques can be utilized for rapid screening. In general, these techniques are
qualitative assays that demonstrate either the presence or absence of mycotoxins in herbal medicines.
Screening assays have superior properties, including the speed at which the analysis is carried out,
the simplicity of sample preparation, and the low cost per analysis. However, these methods also
possess drawbacks as well, with the most notable one being reliability, as false-positive results are
often obtained. However, different types of immunological techniques are continuing to emerge and
are being rapidly developed.
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3.2.1. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was first applied in the early 1970s and is a detection assay that combines specific immune
response between an antigen and an antibody with efficient catalytic enzymes [189]. Currently,
ELISA is likely the most commonly used antibody-based assay due to its advantages, including high
specificity, rapid speed, simple design, and relatively inexpensive equipment. Some commercial ELISA
test kits are available for common mycotoxins, including AFs, OTA, trichothecenes, FBs, and CIT [190].
However, the majority of these test kits are geared towards the food or feed matrix. Therefore, some
studies have indicated that the complicated co-extract of herbal samples, especially the analogs of
analytes, could lead to non-specific reactions of antibodies, leading to an overestimate of contaminants
at very low concentrations [191–193]. In an effort to overcome the ME, matrix-matched calibration
was used in some studies [193,194]. Other studies have proposed purification of sample extract using
a multifunctional column or IAC prior to the ELISA test [195,196]. Recently, it has been proposed
that ELISA should be used only as a qualitative preliminary screen, and samples which are test
positive by ELISA should be further confirmed and exact contaminate levels should be quantified
using LC-MS/MS or HPLC [191,197–200]. The Summary of some publications regarding mycotoxin
determination in herbal matrices by ELISA is compiled in Table 6.

Table 6. Reported ELISA methods for mycotoxin detection in herbal medicines.

Sample Mycotoxin LOD Reference

Red scaled, red and
black pepper AFs and AFB1

0.25 µg kg−1 for AFs,
1.0 µg kg−1 for AFB1

[199]

Black pepper, coriander,
ginger and turmeric OTA [193]

P. ginseng, P. quinquefolius ZEN [200]

Eighty-four medicinal and/or
aromatic herb samples

OTA, FBs, AFs, ZEN, T-2,
DON, CIT

0.025 µg kg−1 for OTA,
83 µg kg−1 for FBs,
1.4 µg kg−1 for AFs,
0.14 µg kg−1 ZEN,
0.28 µg kg−1 for T-2,
14.80 µg kg−1 for DON
and 16.5 µg kg−1 for CIT

[195]

A total of 700 herbal medicine
samples (70 types and
10 samples of each type)

AFB1 0.05 ng mL−1 [201]

Ninety three organic spice and
37 organic herb samples AFB1 [196]

A total of 36 samples of spices AFB1 [39]

Red chilli, black pepper,
turmeric, coriander, cumin,
fennel, caraway, fenugreek,
and dry ginger

AFs, OTA, CIT
4 ng g−1 for AFs,
2 ng g−1 for OTA, and
15 ng g−1 for CTN

[197]

Lichens

AOL, AFB1, DON, DAS, ZEN,
Mycophenolic acid (MPA),
OTA, PR toxin (PR), ST, T2,
FB1, Cyclopiazonic acid (CPA),
CIT, Emodin (EMO), EA,
Roridin A (ROA)

2 (AFB1, T2, EA), 4 (ST),
8 (OTA, ROA), 20 (MPA,
CIT, AOL, ZEN),
40 (DON, EMO), 50 (FB1)
and 100 (DAS, CPA, PR)
ng g−1

[202]

Lotus seeds AFB1 0.128 µg L−1 [194]

Cassava flour AFs [203]

Garlic FB1, FB2 0.17 ppm [198]

Ginger, galangal, garlic,
elephant garlic AFB1 [204]
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3.2.2. Lateral Flow Immunoassay (LFIA)

Since its initial development in the 1980s, immunochromatographic test strip, also known as
LFIA, has gained acceptance within the field across the world [205]. This method is an efficient
screening technology that holds great advantages, including rapidity and simplicity, and relies on the
transport of a particulate conjugate tag antibody (or antigen) probe to a specific antigen (or antibody)
immobilized on the surface of a porous membrane [206]. As highlighted in a review published in 2013,
LFIA has been used to rapidly screen for the presence of a single mycotoxin such as AF, OTA, AFM1,
FBs, DON and ZEN in a variety of food or feed commodities [207]. In addition, multi-component
immunochromatographic assays are available for the simultaneous determination of AFB1, OTA and
ZEN in agro-food [208]. In a study carried out in 2015 [209], a colloidal gold test strip base on LFIA
technique was developed for the detection of AFB1 in lotus seeds. This is a commonly used edible
herbal medicine, and is particularly vulnerable to AF contamination. This proposed method involved
a simple sample pretreatment step using 5 g of each sample extracted with 10 mL methanol-water
(80:20, v/v) and diluted four folds with PBS (pH 7.4). The LOD of the test strip was determined to be
2.5 ng mL−1. Following confirmation by LC-MS/MS, no false positive or negative results were found.
However, there have been no significant advances for the application of LFIA in herbal medicines over
the recent years. The main reason for this limitation could have to do with how to avoid interference
from the complicated matrix for the determination of trace analytes. Studies have proposed approaches
aimed to minimize the ME, as summarized by Xie et al. [210]. These approaches include avoiding
the use of organic solvents in the extraction procedure, using lower organic solvent concentrations
in the extraction solution and dilution step, and applying a moderate volume of extraction solution
with gentle stirring for a shorter time instead of conventional extraction method that requires robust
shaking with high volumes of liquids for long periods of time.

3.2.3. Aptamer-Based Lateral Flow Assay

The aptamer-based lateral flow assay is an attractive method due to its inherent advantages of
using aptamers compared to antibodies. Commonly, nucleic acid-based aptamers exhibit greater
resistance to rough chemical conditions, including pH, ion strength, and organic solvent. This enables
aptamers to better retain high sensitivity and specificity. In this respect, aptamers are preferable for
use in complicated matrices. Aptamer-based lateral flow assays have been developed for the rapid
screening of OTA in red wine [211] and for AFB1 in corn sample [212]. Recently, an aptamer-based
lateral flow strip was proposed for the on-site detection of OTA in Astragalus membranaceus, a frequently
used TCM [213] (Figure 2). In the test protocol, one gram of a test sample is simply extracted using
2.5 mL of methanol-water (80:20, v/v) and diluted four folds with a working buffer in order to eliminate
interference from the matrix and methanol. Following optimization of critical testing parameters,
a visual LOD of 1 ng mL−1 was obtained with higher specificity, and the screening procedure could be
carried out in 15 min. A total of one of nine samples was found to be positive for OTA, and these results
were in agreement with LC-MS/MS analysis. We note that the proposed method was only applied
towards Astragalus membranaceus matrix, and the suitability of other matrices should be further studied.
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Figure 2. Schematic illustration of aptamer-based lateral flow strip for detection of OTA [213].

3.2.4. Cytometric bead array (CBA)

CBA is a suspension array based on optically encoded microbeads. This technology is rapidly
expanding for detection in both basic biological research and clinical diagnostic applications. CBA
can provide sensitive, rapid, and real-time analysis for trace small molecules such as mycotoxins and
pesticides. In addition, CBA is particularly suitable for on-site high-throughput detection. Recently,
CBA has been used for both single [214–216] and multiple mycotoxin [217–219] detection in food and
feed. In 2016, Xiao et al. [220] developed a cytometric bead array (CBA) method based on the indirect
competition principle for the detection of OTA in Malt (Figure 3), a common Chinese herbal medicine.
This is the first time that CBA technology was utilized for mycotoxin analysis in herbal medicines.
Specifically, one gram of sample was extracted using 2 mL of 60% methanol and diluted 5 times with
20% methanol-PBS. Next, the OTA presented in the sample extract was competed with the BSA-OTA
conjugated on the surface of fluorescence-encoded microsphere in order to attach to the anti-OTA
monoclonal antibody (mAb). Then, FITC-IgG was bound to the captured antibody on the microsphere,
and an accurate OTA quantitation was carried out using FITC fluorescence intensity measurements on
the microsphere surface. Following optimization of critical parameters, the LOD of the method was
determined to be 0.12 ng mL−1, which was 1.2 µg kg−1 multiplied by the dilution factor. A total of
two of the sixteen samples were determined as positive samples, with contaminate values of 3.36 and
3.83 µg kg−1. These results were further confirmed by LC-MS/MS in order to prevent false-positive
results. The method was recently modified by the same group based on the original basis [221]. This
modification included using magnetic microspheres instead of polystyrene microsphere in order to
simplify the separation and wash steps.

However, CBA has not yet been used extensively as a tool for routine mycotoxin analysis, due to
the high cost and the complexity of the instruments required.
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4. Conclusions

Herbal medicines have been used for disease prevention and treatment worldwide. Mycotoxin
contamination represents one of the most critical toxicities present in herbal medicine and has been a
concern globally. The effective control of mycotoxin contamination requires accurate and sensitive
analytical methods.

Sample pretreatment has always been a challenging step for trace analysis in herbal medicine
matrices. Because of the sophisticated and various compositions of herbs, especially in the case when
multiclass mycotoxins are simultaneously determined, sample preparation protocols must often be
optimized in order to increase the extraction efficiencies. Significant advances have been made in
the cleanup protocol with the emergence of traditional IAC and SPE. Novel nanomaterials have been
applied as absorbents, which were demonstrated to improve specificity relative to conventional types.
In addition, AAC and MIP columns were introduced as an alternative to IAC, as they can be recycled
in order to reduce costs.

Chromatographic techniques play a critical role in the analysis of mycotoxins in herbal medicine
matrices. AFs, which are regulated by various pharmacopeias, are commonly identified with HPLC-FLD
using different derivatization methods. However, in recent years, the co-occurrence of multiple
mycotoxins in herbal medicines has drawn great attention within the field. Developments based
on a modified QuEChERS procedure or multiple functional column purification combined with
LC-MS/MS has functioned to increase the scope of mycotoxins that can be simultaneously analyzed.

While some analytical methods have been proposed, most are only aimed towards a single matrix.
Thus, a more universal approach should be developed in order to extend the application scope, such
as classifying the analytical method based on the basis of matrix variations.

Another issue in mycotoxin determination is the development of a rapid detection method.
Conventional analytical methods always involve a more complex sample pretreatment protocol and a
long detection time. These parameters limit their applications in high-throughput screening methods
for mycotoxins. Thus, an increased interest has developed in the generation of a rapid detection
approach. However, while there have been several types of rapid methods that have been successfully
used, these have only been used for single herbal medicine matrices. Therefore, the challenge that
exists for an analytical chemist is to broaden the application scope of the current methods, and work
to develop a new rapid system that can use a variety of formats and platforms that are suitable for
mycotoxin detection in herbal medicines.

Although a number of emerging mycotoxins have been investigated in herbal medicine, little
attention has paid to their conjugates, which can escape conventional analytical detection of parent
(free) forms. In the future, it is recommended the related research be extended in herbal medicine
samples. For example, estimating the potential risk of some samples that are commonly used and
particularly vulnerable to mycotoxin contamination (e.g., coix seed, malt, medicated leaven), as well as
performing novel types of conjugated mycotoxin screening and preparing their reference substances.
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Finally, mycotoxin analysis in herbal medicine would greatly benefit from the development of
novel and effective sample extraction technologies. In addition, advances must be made in screening
assays to enable on-site detection for mycotoxin analysis in herbal medicine.
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